11 research outputs found

    Truth Discovery in Crowdsourced Detection of Spatial Events

    Get PDF
    ACKNOWLEDGMENTS This research is based upon work supported in part by the US ARL and UK Ministry of Defense under Agreement Number W911NF-06-3-0001, and by the NSF under award CNS-1213140. Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views or represent the official policies of the NSF, the US ARL, the US Government, the UK Ministry of Defense or the UK Government. The US and UK Governments are authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright notation hereon.Peer reviewedPostprin

    Identifying online user reputation of user–object bipartite networks

    Get PDF
    Identifying online user reputation based on the rating information of the user–object bipartite networks is important for understanding online user collective behaviors. Based on the Bayesian analysis, we present a parameter-free algorithm for ranking online user reputation, where the user reputation is calculated based on the probability that their ratings are consistent with the main part of all user opinions. The experimental results show that the AUC values of the presented algorithm could reach 0.8929 and 0.8483 for the MovieLens and Netflix data sets, respectively, which is better than the results generated by the CR and IARR methods. Furthermore, the experimental results for different user groups indicate that the presented algorithm outperforms the iterative ranking methods in both ranking accuracy and computation complexity. Moreover, the results for the synthetic networks show that the computation complexity of the presented algorithm is a linear function of the network size, which suggests that the presented algorithm is very effective and efficient for the large scale dynamic online systems

    On the discovery of continuous truth: a semi-supervised approach with partial ground truths

    Get PDF
    In many applications, the information regarding to the same object can be collected from multiple sources. However, these multi-source data are not reported consistently. In the light of this challenge, truth discovery is emerged to identify truth for each object from multi-source data. Most existing truth discovery methods assume that ground truths are completely unknown, and they focus on the exploration of unsupervised approaches to jointly estimate object truths and source reliabilities. However, in many real world applications, a set of ground truths could be partially available. In this paper, we propose a semi-supervised truth discovery framework to estimate continuous object truths. With the help of ground truths, even a small amount, the accuracy of truth discovery can be improved. We formulate the semi-supervised truth discovery problem as an optimization task where object truths and source reliabilities are modeled as variables. The ground truths are modeled as a regularization term and its contribution to the source weight estimation can be controlled by a parameter. The experiments show that the proposed method is more accurate and efficient than the existing truth discovery methods

    Bayesian modelling of community-based multidimensional trust in participatory sensing under data sparsity

    No full text
    We propose a new Bayesian model for reliable aggregation of crowdsourced estimates of real-valued quantities in participatory sensing applications. Existing approaches focus on probabilistic modelling of user’s reliability as the key to accurate aggregation. However, these are either limited to estimating discrete quantities, or require a significant number of reports from each user to accurately model their reliability. To mitigate these issues, we adopt a community-based approach, which reduces the data required to reliably aggregate real-valued estimates, by leveraging correlations between the re- porting behaviour of users belonging to different communities. As a result, our method is up to 16.6% more accurate than existing state-of-the-art methods and is up to 49% more effective under data sparsity when used to estimate Wi-Fi hotspot locations in a real-world crowdsourcing application

    Quality of Information in Mobile Crowdsensing: Survey and Research Challenges

    Full text link
    Smartphones have become the most pervasive devices in people's lives, and are clearly transforming the way we live and perceive technology. Today's smartphones benefit from almost ubiquitous Internet connectivity and come equipped with a plethora of inexpensive yet powerful embedded sensors, such as accelerometer, gyroscope, microphone, and camera. This unique combination has enabled revolutionary applications based on the mobile crowdsensing paradigm, such as real-time road traffic monitoring, air and noise pollution, crime control, and wildlife monitoring, just to name a few. Differently from prior sensing paradigms, humans are now the primary actors of the sensing process, since they become fundamental in retrieving reliable and up-to-date information about the event being monitored. As humans may behave unreliably or maliciously, assessing and guaranteeing Quality of Information (QoI) becomes more important than ever. In this paper, we provide a new framework for defining and enforcing the QoI in mobile crowdsensing, and analyze in depth the current state-of-the-art on the topic. We also outline novel research challenges, along with possible directions of future work.Comment: To appear in ACM Transactions on Sensor Networks (TOSN

    Smart Systems of Innovation for Smart Places: Challenges in Deploying Digital Platforms for Co-Creation and Data-Intelligence

    Get PDF
    The effect of digital transformation towards more efficient, place-based and bottom-up innovation policies at different spatial scales has proven significant, as digital technologies modify existing policy-design routines in cities and regions. Smart places (cities, districts, neighbourhoods, ecosystems) depend on the way digitalisation disrupts systems of innovation in cities, making it more open, global, participatory and experimental. We argue that the rise and interconnection of various types of intelligence (artificial, human, collective) could bring profound changes in the way smart places are being created and evolve. In this context, cyber-physical systems of innovation are deployed through multiple nodes acquiring digital companions, collaboration is deployed over physical, social, and digital spaces, and actors can use complex methods guided by software and get insights from data and analytics. The paper also presents the case study of OnlineS3, a two-year Horizon 2020 project, which developed and tested a digital platform composed of applications, datasets and roadmaps, which altogether create a digital environment for empowering the design of smart specialisation strategies for local and regional systems of innovation. The results indicate that digital transformation allows the operationalisation of multiple methodologies which have not been used earlier by policy makers, due to lack of capabilities. It can also increase the scalability of indicators facilitating decision making at different spatial scales and, therefore, better respond to the complexity of innovation systems providing dynamic and scale-diverse information

    Truth Discovery in Crowdsourced Detection of Spatial Events

    Full text link

    Reliable Inference from Unreliable Agents

    Get PDF
    Distributed inference using multiple sensors has been an active area of research since the emergence of wireless sensor networks (WSNs). Several researchers have addressed the design issues to ensure optimal inference performance in such networks. The central goal of this thesis is to analyze distributed inference systems with potentially unreliable components and design strategies to ensure reliable inference in such systems. The inference process can be that of detection or estimation or classification, and the components/agents in the system can be sensors and/or humans. The system components can be unreliable due to a variety of reasons: faulty sensors, security attacks causing sensors to send falsified information, or unskilled human workers sending imperfect information. This thesis first quantifies the effect of such unreliable agents on the inference performance of the network and then designs schemes that ensure a reliable overall inference. In the first part of this thesis, we study the case when only sensors are present in the system, referred to as sensor networks. For sensor networks, the presence of malicious sensors, referred to as Byzantines, are considered. Byzantines are sensors that inject false information into the system. In such systems, the effect of Byzantines on the overall inference performance is characterized in terms of the optimal attack strategies. Game-theoretic formulations are explored to analyze two-player interactions. Next, Byzantine mitigation schemes are designed that address the problem from the system\u27s perspective. These mitigation schemes are of two kinds: Byzantine identification schemes and Byzantine tolerant schemes. Using learning based techniques, Byzantine identification schemes are designed that learn the identity of Byzantines in the network and use this information to improve system performance. When such schemes are not possible, Byzantine tolerant schemes using error-correcting codes are developed that tolerate the effect of Byzantines and maintain good performance in the network. Error-correcting codes help in correcting the erroneous information from these Byzantines and thereby counter their attack. The second line of research in this thesis considers humans-only networks, referred to as human networks. A similar research strategy is adopted for human networks where, the effect of unskilled humans sharing beliefs with a central observer called \emph{CEO} is analyzed, and the loss in performance due to the presence of such unskilled humans is characterized. This problem falls under the family of problems in information theory literature referred to as the \emph{CEO Problem}, but for belief sharing. The asymptotic behavior of the minimum achievable mean squared error distortion at the CEO is studied in the limit when the number of agents LL and the sum rate RR tend to infinity. An intermediate regime of performance between the exponential behavior in discrete CEO problems and the 1/R1/R behavior in Gaussian CEO problems is established. This result can be summarized as the fact that sharing beliefs (uniform) is fundamentally easier in terms of convergence rate than sharing measurements (Gaussian), but sharing decisions is even easier (discrete). Besides theoretical analysis, experimental results are reported for experiments designed in collaboration with cognitive psychologists to understand the behavior of humans in the network. The act of fusing decisions from multiple agents is observed for humans and the behavior is statistically modeled using hierarchical Bayesian models. The implications of such modeling on the design of large human-machine systems is discussed. Furthermore, an error-correcting codes based scheme is proposed to improve system performance in the presence of unreliable humans in the inference process. For a crowdsourcing system consisting of unskilled human workers providing unreliable responses, the scheme helps in designing easy-to-perform tasks and also mitigates the effect of erroneous data. The benefits of using the proposed approach in comparison to the majority voting based approach are highlighted using simulated and real datasets. In the final part of the thesis, a human-machine inference framework is developed where humans and machines interact to perform complex tasks in a faster and more efficient manner. A mathematical framework is built to understand the benefits of human-machine collaboration. Such a study is extremely important for current scenarios where humans and machines are constantly interacting with each other to perform even the simplest of tasks. While machines perform best in some tasks, humans still give better results in tasks such as identifying new patterns. By using humans and machines together, one can extract complete information about a phenomenon of interest. Such an architecture, referred to as Human-Machine Inference Networks (HuMaINs), provides promising results for the two cases of human-machine collaboration: \emph{machine as a coach} and \emph{machine as a colleague}. For simple systems, we demonstrate tangible performance gains by such a collaboration which provides design modules for larger, and more complex human-machine systems. However, the details of such larger systems needs to be further explored
    corecore