394 research outputs found

    Stigmergy-based modeling to discover urban activity patterns from positioning data

    Full text link
    Positioning data offer a remarkable source of information to analyze crowds urban dynamics. However, discovering urban activity patterns from the emergent behavior of crowds involves complex system modeling. An alternative approach is to adopt computational techniques belonging to the emergent paradigm, which enables self-organization of data and allows adaptive analysis. Specifically, our approach is based on stigmergy. By using stigmergy each sample position is associated with a digital pheromone deposit, which progressively evaporates and aggregates with other deposits according to their spatiotemporal proximity. Based on this principle, we exploit positioning data to identify high density areas (hotspots) and characterize their activity over time. This characterization allows the comparison of dynamics occurring in different days, providing a similarity measure exploitable by clustering techniques. Thus, we cluster days according to their activity behavior, discovering unexpected urban activity patterns. As a case study, we analyze taxi traces in New York City during 2015

    A stigmergy-based analysis of city hotspots to discover trends and anomalies in urban transportation usage

    Full text link
    A key aspect of a sustainable urban transportation system is the effectiveness of transportation policies. To be effective, a policy has to consider a broad range of elements, such as pollution emission, traffic flow, and human mobility. Due to the complexity and variability of these elements in the urban area, to produce effective policies remains a very challenging task. With the introduction of the smart city paradigm, a widely available amount of data can be generated in the urban spaces. Such data can be a fundamental source of knowledge to improve policies because they can reflect the sustainability issues underlying the city. In this context, we propose an approach to exploit urban positioning data based on stigmergy, a bio-inspired mechanism providing scalar and temporal aggregation of samples. By employing stigmergy, samples in proximity with each other are aggregated into a functional structure called trail. The trail summarizes relevant dynamics in data and allows matching them, providing a measure of their similarity. Moreover, this mechanism can be specialized to unfold specific dynamics. Specifically, we identify high-density urban areas (i.e hotspots), analyze their activity over time, and unfold anomalies. Moreover, by matching activity patterns, a continuous measure of the dissimilarity with respect to the typical activity pattern is provided. This measure can be used by policy makers to evaluate the effect of policies and change them dynamically. As a case study, we analyze taxi trip data gathered in Manhattan from 2013 to 2015.Comment: Preprin

    IDENTIFYING AREA HOTSPOTS AND TAXI PICKUP TIMES USING SPATIAL DENSITY-BASED CLUSTERING

    Get PDF
    Taxis are one of the competitive sectors of transportation and are recognized as convenient and easy means of transportation to meet individual needs. However, in the operation of a taxi there are some problems that would make the taxi service less optimal, such as the difficulty with finding a taxi at specific hours, the imbalance between demand and taxi supplies, and the length of passengers waiting for a taxi. Therefore, to optimize taxi service, a knowledge base is needed for strategic management decision making. In the study, data of exploration taxis uses a DBSCAN algorithm aimed at identifying and clustering pickup hotspots based on time during weekday and weekend time from Queens, New York City. As for the features used which are pickup latitude and pickup longitude. Accuracy scores for modeling use coefficients to achieve accuracy scores of 0.80 on weekdays and 0.77 on weekends where the accuracy score falls into the accurate category in modeling. Results show that there are three areas of taxi pickup centers based on high taxi demand in January 2016, where they are at LaGuardia airport, John f. Kennedy international, and the area around Steinway Street

    Hierarchical accompanying and inhibiting patterns on the spatial arrangement of taxis' local hotspots

    Full text link
    Due to the large volume of recording, the complete spontaneity, and the flexible pick-up and drop-off locations, taxi data portrays a realistic and detailed picture of urban space use to a certain extent. The spatial arrangement of pick-up and drop-off hotspots reflects the organizational space, which has received attention in urban structure studies. Previous studies mainly explore the hotspots at a large scale by visual analysis or some simple indexes, where the hotspots usually cover the entire central business district, train stations, or dense residential areas, reaching a radius of hundreds or even thousands of meters. However, the spatial arrangement patterns of small-scale hotspots, reflecting the specific popular pick-up and drop-off locations, have not received much attention. Using two taxi trajectory datasets in Wuhan and Beijing, China, this study quantitatively explores the spatial arrangement of fine-grained pick-up and drop-off local hotspots with different levels of popularity, where the sizes are adaptively set as 90m*90m in Wuhan and 105m*105m in Beijing according to the local hotspot identification method. Results show that popular hotspots tend to be surrounded by less popular hotspots, but the existence of less popular hotspots is inhibited in regions with a large number of popular hotspots. We use the terms hierarchical accompany and inhibiting patterns for these two spatial configurations. Finally, to uncover the underlying mechanism, a KNN-based model is proposed to reproduce the spatial distribution of other less popular hotspots according to the most popular ones. These findings help decision-makers construct reasonable urban minimum units for precise traffic and disease control, as well as plan a more humane spatial arrangement of points of interest

    Modeling Taxi Drivers' Behaviour for the Next Destination Prediction

    Full text link
    In this paper, we study how to model taxi drivers' behaviour and geographical information for an interesting and challenging task: the next destination prediction in a taxi journey. Predicting the next location is a well studied problem in human mobility, which finds several applications in real-world scenarios, from optimizing the efficiency of electronic dispatching systems to predicting and reducing the traffic jam. This task is normally modeled as a multiclass classification problem, where the goal is to select, among a set of already known locations, the next taxi destination. We present a Recurrent Neural Network (RNN) approach that models the taxi drivers' behaviour and encodes the semantics of visited locations by using geographical information from Location-Based Social Networks (LBSNs). In particular, RNNs are trained to predict the exact coordinates of the next destination, overcoming the problem of producing, in output, a limited set of locations, seen during the training phase. The proposed approach was tested on the ECML/PKDD Discovery Challenge 2015 dataset - based on the city of Porto -, obtaining better results with respect to the competition winner, whilst using less information, and on Manhattan and San Francisco datasets.Comment: preprint version of a paper submitted to IEEE Transactions on Intelligent Transportation System

    Trajectory data mining: A review of methods and applications

    Get PDF
    The increasing use of location-aware devices has led to an increasing availability of trajectory data. As a result, researchers devoted their efforts to developing analysis methods including different data mining methods for trajectories. However, the research in this direction has so far produced mostly isolated studies and we still lack an integrated view of problems in applications of trajectory mining that were solved, the methods used to solve them, and applications using the obtained solutions. In this paper, we first discuss generic methods of trajectory mining and the relationships between them. Then, we discuss and classify application problems that were solved using trajectory data and relate them to the generic mining methods that were used and real world applications based on them. We classify trajectory-mining application problems under major problem groups based on how they are related. This classification of problems can guide researchers in identifying new application problems. The relationships between the methods together with the association between the application problems and mining methods can help researchers in identifying gaps between methods and inspire them to develop new methods. This paper can also guide analysts in choosing a suitable method for a specific problem. The main contribution of this paper is to provide an integrated view relating applications of mining trajectory data and the methods used

    T-PickSeer: Visual Analysis of Taxi Pick-up Point Selection Behavior

    Full text link
    Taxi drivers often take much time to navigate the streets to look for passengers, which leads to high vacancy rates and wasted resources. Empty taxi cruising remains a big concern for taxi companies. Analyzing the pick-up point selection behavior can solve this problem effectively, providing suggestions for taxi management and dispatch. Many studies have been devoted to analyzing and recommending hot-spot regions of pick-up points, which can make it easier for drivers to pick up passengers. However, the selection of pick-up points is complex and affected by multiple factors, such as convenience and traffic management. Most existing approaches cannot produce satisfactory results in real-world applications because of the changing travel demands and the lack of interpretability. In this paper, we introduce a visual analytics system, T-PickSeer, for taxi company analysts to better explore and understand the pick-up point selection behavior of passengers. We explore massive taxi GPS data and employ an overview-to-detail approach to enable effective analysis of pick-up point selection. Our system provides coordinated views to compare different regularities and characteristics in different regions. Also, our system assists in identifying potential pick-up points and checking the performance of each pick-up point. Three case studies based on a real-world dataset and interviews with experts have demonstrated the effectiveness of our system.Comment: 10 pages, 10 figures; The 10th China Visualization and Visual Analytics Conferenc

    Predicting passenger origin-destination in online taxi-hailing systems

    Full text link
    Because of transportation planning, traffic management, and dispatch optimization importance, passenger origin-destination prediction has become one of the most important requirements for intelligent transportation systems management. In this paper, we propose a model to predict the next specified time window travels' origin and destination. To extract meaningful travel flows, we use K-means clustering in four-dimensional space with maximum cluster size limitation for origin and destination zones. Because of the large number of clusters, we use non-negative matrix factorization to decrease the number of travel clusters. Also, we use a stacked recurrent neural network model to predict travel count in each cluster. Comparing our results with other existing models shows that our proposed model has 5-7% lower mean absolute percentage error (MAPE) for 1-hour time windows, and 14% lower MAPE for 30-minute time windows.Comment: 25 pages, 20 figure
    corecore