13 research outputs found

    Mining Semantic Loop Idioms

    Get PDF

    Mining Semantic Loop Idioms

    Get PDF
    To write code, developers stitch together patterns, like API protocols or data structure traversals. Discovering these patterns can identify inconsistencies in code or opportunities to replace these patterns with an API or a language construct. We present coiling, a technique for automatically mining code for semantic idioms: surprisingly probable, semantic patterns. We specialize coiling for loop idioms, semantic idioms of loops. First, we show that automatically identifiable patterns exist, in great numbers, with a largescale empirical study of loops over 25MLOC. We find that most loops in this corpus are simple and predictable: 90 percent have fewer than 15LOC and 90 percent have no nesting and very simple control. Encouraged by this result, we then mine loop idioms over a second, buildable corpus. Over this corpus, we show that only 50 loop idioms cover 50 percent of the concrete loops. Our framework opens the door to data-driven tool and language design, discovering opportunities to introduce new API calls and language constructs. Loop idioms show that LINQ would benefit from an Enumerate operator. This can be confirmed by the exitence of a StackOverflow question with 542k views that requests precisely this feature

    Making Python Code Idiomatic by Automatic Refactoring Non-Idiomatic Python Code with Pythonic Idioms

    Full text link
    Compared to other programming languages (e.g., Java), Python has more idioms to make Python code concise and efficient. Although pythonic idioms are well accepted in the Python community, Python programmers are often faced with many challenges in using them, for example, being unaware of certain pythonic idioms or do not know how to use them properly. Based on an analysis of 7,638 Python repositories on GitHub, we find that non-idiomatic Python code that can be implemented with pythonic idioms occurs frequently and widely. Unfortunately, there is no tool for automatically refactoring such non-idiomatic code into idiomatic code. In this paper, we design and implement an automatic refactoring tool to make Python code idiomatic. We identify nine pythonic idioms by systematically contrasting the abstract syntax grammar of Python and Java. Then we define the syntactic patterns for detecting non-idiomatic code for each pythonic idiom. Finally, we devise atomic AST-rewriting operations and refactoring steps to refactor non-idiomatic code into idiomatic code. We test and review over 4,115 refactorings applied to 1,065 Python projects from GitHub, and submit 90 pull requests for the 90 randomly sampled refactorings to 84 projects. These evaluations confirm the high-accuracy, practicality and usefulness of our refactoring tool on real-world Python code. Our refactoring tool can be accessed at 47.242.131.128:5000.Comment: 12 pages, accepted to ESEC/FSE'202

    A Survey of Machine Learning for Big Code and Naturalness

    Get PDF
    Research at the intersection of machine learning, programming languages, and software engineering has recently taken important steps in proposing learnable probabilistic models of source code that exploit code's abundance of patterns. In this article, we survey this work. We contrast programming languages against natural languages and discuss how these similarities and differences drive the design of probabilistic models. We present a taxonomy based on the underlying design principles of each model and use it to navigate the literature. Then, we review how researchers have adapted these models to application areas and discuss cross-cutting and application-specific challenges and opportunities.Comment: Website accompanying this survey paper can be found at https://ml4code.github.i

    LILO: Learning Interpretable Libraries by Compressing and Documenting Code

    Full text link
    While large language models (LLMs) now excel at code generation, a key aspect of software development is the art of refactoring: consolidating code into libraries of reusable and readable programs. In this paper, we introduce LILO, a neurosymbolic framework that iteratively synthesizes, compresses, and documents code to build libraries tailored to particular problem domains. LILO combines LLM-guided program synthesis with recent algorithmic advances in automated refactoring from Stitch: a symbolic compression system that efficiently identifies optimal lambda abstractions across large code corpora. To make these abstractions interpretable, we introduce an auto-documentation (AutoDoc) procedure that infers natural language names and docstrings based on contextual examples of usage. In addition to improving human readability, we find that AutoDoc boosts performance by helping LILO's synthesizer to interpret and deploy learned abstractions. We evaluate LILO on three inductive program synthesis benchmarks for string editing, scene reasoning, and graphics composition. Compared to existing neural and symbolic methods - including the state-of-the-art library learning algorithm DreamCoder - LILO solves more complex tasks and learns richer libraries that are grounded in linguistic knowledge

    Learning natural coding conventions

    Get PDF
    Coding conventions are ubiquitous in software engineering practice. Maintaining a uniform coding style allows software development teams to communicate through code by making the code clear and, thus, readable and maintainable—two important properties of good code since developers spend the majority of their time maintaining software systems. This dissertation introduces a set of probabilistic machine learning models of source code that learn coding conventions directly from source code written in a mostly conventional style. This alleviates the coding convention enforcement problem, where conventions need to first be formulated clearly into unambiguous rules and then be coded in order to be enforced; a tedious and costly process. First, we introduce the problem of inferring a variable’s name given its usage context and address this problem by creating Naturalize — a machine learning framework that learns to suggest conventional variable names. Two machine learning models, a simple n-gram language model and a specialized neural log-bilinear context model are trained to understand the role and function of each variable and suggest new stylistically consistent variable names. The neural log-bilinear model can even suggest previously unseen names by composing them from subtokens (i.e. sub-components of code identifiers). The suggestions of the models achieve 90% accuracy when suggesting variable names at the top 20% most confident locations, rendering the suggestion system usable in practice. We then turn our attention to the significantly harder method naming problem. Learning to name methods, by looking only at the code tokens within their body, requires a good understating of the semantics of the code contained in a single method. To achieve this, we introduce a novel neural convolutional attention network that learns to generate the name of a method by sequentially predicting its subtokens. This is achieved by focusing on different parts of the code and potentially directly using body (sub)tokens even when they have never been seen before. This model achieves an F1 score of 51% on the top five suggestions when naming methods of real-world open-source projects. Learning about naming code conventions uses the syntactic structure of the code to infer names that implicitly relate to code semantics. However, syntactic similarities and differences obscure code semantics. Therefore, to capture features of semantic operations with machine learning, we need methods that learn semantic continuous logical representations. To achieve this ambitious goal, we focus our investigation on logic and algebraic symbolic expressions and design a neural equivalence network architecture that learns semantic vector representations of expressions in a syntax-driven way, while solely retaining semantics. We show that equivalence networks learn significantly better semantic vector representations compared to other, existing, neural network architectures. Finally, we present an unsupervised machine learning model for mining syntactic and semantic code idioms. Code idioms are conventional “mental chunks” of code that serve a single semantic purpose and are commonly used by practitioners. To achieve this, we employ Bayesian nonparametric inference on tree substitution grammars. We present a wide range of evidence that the resulting syntactic idioms are meaningful, demonstrating that they do indeed recur across software projects and that they occur more frequently in illustrative code examples collected from a Q&A site. These syntactic idioms can be used as a form of automatic documentation of coding practices of a programming language or an API. We also mine semantic loop idioms, i.e. highly abstracted but semantic-preserving idioms of loop operations. We show that semantic idioms provide data-driven guidance during the creation of software engineering tools by mining common semantic patterns, such as candidate refactoring locations. This gives data-based evidence to tool, API and language designers about general, domain and project-specific coding patterns, who instead of relying solely on their intuition, can use semantic idioms to achieve greater coverage of their tool or new API or language feature. We demonstrate this by creating a tool that suggests loop refactorings into functional constructs in LINQ. Semantic loop idioms also provide data-driven evidence for introducing new APIs or programming language features
    corecore