

This thesis has been submitted in fulfilment of the requirements for a postgraduate degree

(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following

terms and conditions of use:

This work is protected by copyright and other intellectual property rights, which are

retained by the thesis author, unless otherwise stated.

A copy can be downloaded for personal non-commercial research or study, without

prior permission or charge.

This thesis cannot be reproduced or quoted extensively from without first obtaining

permission in writing from the author.

The content must not be changed in any way or sold commercially in any format or

medium without the formal permission of the author.

When referring to this work, full bibliographic details including the author, title,

awarding institution and date of the thesis must be given.

Learning Natural Coding Conventions

Miltiadis Allamanis
T

H
E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Doctor of Philosophy

Institute for Adaptive and Neural Computation

School of Informatics

University of Edinburgh

2016

Abstract

Coding conventions are ubiquitous in software engineering practice. Maintaining a uni-

form coding style allows software development teams to communicate through code by

making the code clear and, thus, readable and maintainable — two important properties

of good code since developers spend the majority of their time maintaining software

systems. This dissertation introduces a set of probabilistic machine learning models

of source code that learn coding conventions directly from source code written in a

mostly conventional style. This alleviates the coding convention enforcement problem,

where conventions need to first be formulated clearly into unambiguous rules and then

be coded in order to be enforced; a tedious and costly process.

First, we introduce the problem of inferring a variable’s name given its usage con-

text and address this problem by creating Naturalize — a machine learning framework

that learns to suggest conventional variable names. Two machine learning models, a

simple n-gram language model and a specialized neural log-bilinear context model are

trained to understand the role and function of each variable and suggest new stylistically

consistent variable names. The neural log-bilinear model can even suggest previously

unseen names by composing them from subtokens (i.e. sub-components of code identi-

fiers). The suggestions of the models achieve 90% accuracy when suggesting variable

names at the top 20% most confident locations, rendering the suggestion system usable

in practice.

We then turn our attention to the significantly harder method naming problem.

Learning to name methods, by looking only at the code tokens within their body, re-

quires a good understating of the semantics of the code contained in a single method.

To achieve this, we introduce a novel neural convolutional attention network that learns

to generate the name of a method by sequentially predicting its subtokens. This is

achieved by focusing on different parts of the code and potentially directly using body

(sub)tokens even when they have never been seen before. This model achieves an F1

score of 51% on the top five suggestions when naming methods of real-world open-

source projects.

Learning about naming code conventions uses the syntactic structure of the code

to infer names that implicitly relate to code semantics. However, syntactic similarities

and differences obscure code semantics. Therefore, to capture features of semantic

operations with machine learning, we need methods that learn semantic continuous

logical representations. To achieve this ambitious goal, we focus our investigation on

iii

logic and algebraic symbolic expressions and design a neural equivalence network ar-

chitecture that learns semantic vector representations of expressions in a syntax-driven

way, while solely retaining semantics. We show that equivalence networks learn sig-

nificantly better semantic vector representations compared to other, existing, neural

network architectures.

Finally, we present an unsupervised machine learning model for mining syntactic

and semantic code idioms. Code idioms are conventional “mental chunks” of code that

serve a single semantic purpose and are commonly used by practitioners. To achieve

this, we employ Bayesian nonparametric inference on tree substitution grammars. We

present a wide range of evidence that the resulting syntactic idioms are meaningful,

demonstrating that they do indeed recur across software projects and that they occur

more frequently in illustrative code examples collected from a Q&A site. These syn-

tactic idioms can be used as a form of automatic documentation of coding practices

of a programming language or an API. We also mine semantic loop idioms, i.e. highly

abstracted but semantic-preserving idioms of loop operations. We show that semantic

idioms provide data-driven guidance during the creation of software engineering tools

by mining common semantic patterns, such as candidate refactoring locations. This

gives data-based evidence to tool, API and language designers about general, domain

and project-specific coding patterns, who instead of relying solely on their intuition, can

use semantic idioms to achieve greater coverage of their tool or new API or language

feature. We demonstrate this by creating a tool that suggests loop refactorings into

functional constructs in LINQ. Semantic loop idioms also provide data-driven evidence

for introducing new APIs or programming language features.

iv

Lay Summary
Software systems are made out of source code that defines in a formal and unambiguous
way the instructions that a computer needs to execute. Source code is a core artifact of
the software engineering process. However, since software systems need to be main-
tained and extended, source code needs to be frequently revisited by software engineers
who need to read, understand and maintain the code. To this effect, source code acts
as a means of communication between software developers and therefore source code
needs to be easily understandable (and therefore easily modifiable).

To achieve this, software teams enforce — implicitly and explicitly — a set of
coding conventions, i.e. a set of self-imposed restrictions on how source code is written.
These conventions are not a product of any technical constraints or limitations but are
imposed for efficient developer communication through source code. One important
coding convention is related to naming software artifacts. The names need to clearly
reveal the role and the function of each code artifact. Other conventions include the
idiomatic use of source code constructs. These idioms convey easily understandable
semantics and therefore aid humans when reasoning about code functionality.

This thesis presents an automated way for inferring and enforcing coding conven-
tions to help software engineers write conventional and thus more maintainable code. To
achieve this, we use machine learning — a set of statistical and mathematical modeling
methods whose parameters are learned from data and and can be used to make “smart”
predictions about previously unseen observations. Specifically, this thesis presents ma-
chine learning models that learn to suggest conventional names for software engineering
artifacts. This task requires novel machine learning models that “understand” the role
and the function of the source code artifacts and how they compose to provide a distinct
functionality.

In addition, this dissertation presents a machine learning-based method that auto-
matically finds widely used source code idioms from a large set of source code. Code
idioms are “mental chunks” of code that serve a single, easily identifiable semantic
purpose. The mined idioms serve as a form of documentation of how code libraries and
programming language constructs are used. Finally, we mine semantic idioms, mental
chucks of code that are not syntactic but represent common types of operations. We
show how these idioms can be used within software engineering tools and to support
the evolution of programming languages.

v

Acknowledgements
When writing an acknowledgments section, one has to decide between being brief but

vague or exhaustive and specific. I will pick the latter since I feel it is the only way to

fully express my gratitude to all the people that have helped in many different ways

during the last few years.

This PhD thesis would not have been possible without the constant, help from my

PhD advisor, Charles Sutton. We have spent hundreds of hours in discussions and emails

about research projects, while he patiently taught me how to tackle hard problems and

acquire a “taste” for research problems. Without his visionary understanding of the

field and his belief that great research impact is possible, this dissertation would not

have been at its present state.

I would also like to thank Earl T. Barr, who although not officially related to my PhD

acted as a remote PhD advisor, frequently chatting about new ideas, while he patiently

explained to me programming language and software engineering concepts. Although

being at UCL, his support was vital throughout this PhD.

This PhD has be kindly and generously supported by Microsoft Research though

its scholarship program, thanks to the Edinburgh Microsoft Research Joint Initiative

in Informatics. The scholarship has funded my PhD studies for the first three years. It

also funded my travel expenses to conferences at amazing places all over the world.

I am also grateful to Microsoft Research for the great experiences, during my two

internships in Cambridge, UK and Redmond, WA, USA. I would like to specially thank

Danny Tarlow, Andrew D. Gordon, Christian Bird and Mark Marron for their guidance

throughout the internships and thereafter that significantly helped me. My interactions

with them led to important adjustments to the course of this dissertation.

I would like to also thank Premkumar Devanbu and Pushmeet Kohli for their valu-

able help, advice and feedback. I am also grateful to Mirella Lapata, Shay Cohen,

Jaroslav Fowkes, Krzysztof Geras, Akash Srivastava, Pankajan Chanthirasegaran and

the members of CUP, IANC and ILCC for the numerous discussions and feedback that

I have received the last few years.

This dissertation was only possible thanks to all the people and friends that have

made me who I am; unfortunately I cannot list them all here. However, I want to spe-

cially thank Stella for making life fun and interesting for the last three years. Finally,

and most importantly, I am grateful to my parents — Aleka and Nikos — who have pa-

tiently taught me so many things and have been a constant help, support and inspiration.

This thesis is dedicated to them.

vii

Declaration

I declare that this thesis was composed by myself, that the work contained herein is

my own except where explicitly stated otherwise in the text, and that this work has not

been submitted for any other degree or professional qualification except as specified.

(Miltiadis Allamanis)

ix

To my parents, Aleka and Nikos.

xi

Table of Contents

1 Introduction 1

1.1 Main Contributions . 4

1.2 Thesis Structure . 5

1.3 Declaration of Previous Work . 5

2 Background: Probabilistic Models of Source Code 7

2.1 Structure and Scope . 9

2.2 Source Code Representations and Derivative Artifacts 9

2.3 Probabilistic Models of Source Code 12

2.3.1 Code Generating Probabilistic Models of Source Code 13

2.3.2 Representational Models of Source Code 18

2.3.3 Pattern Mining Models of Source Code 24

2.4 Applications . 29

2.4.1 Recommender Systems . 29

2.4.2 Inferring Coding Conventions 33

2.4.3 Code Defects and Debugging 34

2.4.4 Code Migration . 35

2.4.5 Source Code and Natural Language 35

2.4.6 Program Synthesis . 36

2.4.7 Documentation and Summarization 37

2.4.8 Program Analysis . 37

2.5 Conclusions . 38

3 Background: Coding Conventions 39

3.1 Naming Coding Conventions . 40

3.2 Formatting Coding Conventions . 42

3.3 Coding Patterns . 43

xiii

3.4 Enforcing Coding Conventions in Practice 44

3.5 Conclusions . 45

4 Learning Variable Naming Conventions 47

4.1 Motivating Example . 49

4.1.1 Use Cases and Tools . 50

4.2 The NATURALIZE Framework 54

4.2.1 The Core of NATURALIZE 55

4.3 Choices of Scoring Function . 59

4.3.1 Using the n-gram Language Model 59

4.3.2 Log-bilinear Context Models of Code 61

4.3.3 Subtoken Context Models of Code 67

4.3.4 Source Code Features for Context Models 69

4.4 Evaluation . 70

4.4.1 Quantitative Evaluation . 73

4.4.2 Suggestions Accepted by Projects 79

4.5 Learned Representations . 79

4.6 Conclusions . 84

5 Learning Method Naming Conventions 85

5.1 A Convolutional Attention Model 89

5.1.1 Learning Attention Features 91

5.1.2 Simple Convolutional Attention Model 93

5.1.3 Copy Convolutional Attention Model 93

5.1.4 Predicting Names . 94

5.2 Evaluation . 95

5.2.1 Quantitative Evaluation . 98

5.2.2 Qualitative Evaluation . 103

5.2.3 Comparison with Log-Bilinear Model 104

5.3 Learned Representations . 106

5.4 Conclusions . 108

6 Learning Continuous Semantic Representations of Symbolic Expressions 111

6.1 Neural Equivalence Networks . 114

6.1.1 Neural Equivalence Networks 117

6.1.2 Training . 119

xiv

6.2 Evaluation . 120

6.2.1 Quantitative Evaluation . 121

6.2.2 Qualitative Evaluation . 130

6.3 Related Work in Machine Learning 131

6.4 Conclusions . 132

7 Mining Idiomatic Source Code 133

7.1 Problem Definition . 137

7.2 Mining Idioms . 141

7.2.1 Probabilistic Grammars . 142

7.2.2 Learning TSGs . 144

7.3 Mining Syntactic Idioms . 152

7.4 Syntactic Idioms Evaluation . 154

7.4.1 Top Idioms . 158

7.4.2 Code Cloning vs. Code Idioms 161

7.4.3 Extrinsic Evaluation of Mined Syntactic Idioms 162

7.4.4 Syntactic Idioms and Code Libraries 163

7.5 Mining Semantic Idioms . 165

7.5.1 Purity Analysis . 168

7.5.2 Coiling Loops . 170

7.5.3 Mining Semantic Idioms . 172

7.5.4 Semantic Idiom Ranking . 173

7.6 Semantic Idioms Evaluation . 173

7.6.1 Using Semantic Loop Idioms 177

7.7 Conclusions . 183

8 Conclusions 185

8.1 Future Work . 187

A List of Published Work 189

B GitHub Pull Request Discussions 191

B.1 JUnit Pull Request #834 . 192

B.2 Elasticsearch Pull Request #5075 . 194

B.3 K9 Pull Request #454 . 195

B.4 libgdx Pull Request #1400 . 196

xv

Bibliography 197

xvi

Acronyms

API application programming interface.

AST abstract syntax tree.

CFG context free grammar.

CoFG control flow graph.

CRF conditional random field.

DSL domain specific language.

FPR false positive rate.

GPU graphical processing unit.

IDE integrated development environment.

IR information retrieval.

LBL log-bilinear.

LM language model.

ML machine learning.

NLP natural language processing.

PCFG probabilistic context free grammar.

PDG program dependence graph.

SMT statistical machine translation.

xvii

TPR true positive rate.

TSG tree substitution grammar.

xviii

Chapter 1

Introduction

“No matter what future you might imagine, it will

rely on software-intensive systems not yet built.”
– Grady Booch (ICSE 2015 Keynote)

Software plays an increasingly important role in our lives, permeating our every-

day activities. We use software for our daily communications, work and entertainment.

Thanks to software, we are able to communicate with people that are thousands of miles

away, watch movies and read articles. Software makes transportation safer and more

efficient and powers essential devices in our homes. “Software is eating the world” (An-

dereessen, 2011). However, developing software is a costly process: software engineers

need to tackle the inherent complexity of software to avoid bugs, reduce development

and maintenance costs, and deliver software products on time. Our reliance on software

makes it imperative to research new tools that help us make software more reliable and

maintainable. New methods are needed to reduce the complexity of software and help

engineers construct better software. Additionally, novel methods that transfer knowl-

edge across projects and people are required to make software development a less time

consuming process. Finally, new techniques for detecting software defects are necessary

for creating even more robust software systems.

The interdisciplinary area of probabilistic machine learning models of source code

is one new and promising approach towards solving these problems. It is located at the

intersection of machine learning, software engineering and programming languages re-

search. The goal is to create probabilistic source code models that learn how developers

use code artifacts within existing code while taking into account the highly structured

information within code. These models are then used to augment existing tools with

statistical information and enable new machine learning-based software engineering

1

2 Chapter 1. Introduction

tools, such as recommender systems and statistical code analyses.

This new direction is now possible thanks to the increased availability of open-

source projects and centralized hosting services such as GitHub and BitBucket. This

raises the exciting possibility that probabilistic models of source code learn from the

code that has already been written. Then these models can be used to create machine

learning-based tools that help software engineers develop, maintain, reuse and test their

code.

Within this field, this thesis presents the first — to our knowledge — research on

probabilistic models of source code that learn how to name source code identifiers

such as variable and method names, and detect common and conventional code pat-

terns. This dissertation examines the topic of inferring coding conventions and creating

recommender systems that suggest or present the inferred conventions to developers.

Coding conventions, a topic of common concern within software engineering teams,

refer to implicit or explicit conventions that software developers use when developing

software. These conventions are not requirements of the programming language but

self-imposed constraints that aim to maintain a uniform coding style within a codebase

and render source code easier to read, understand and maintain. Software engineers

care deeply about conventions, such as naming variables and methods. Good names

make the code more understandable (McConnell, 2004; Brooks, 1975) and reveal the

role and function of each code unit (e.g. method or variable) while appealing to the

well-developed verbal abilities of humans (Siegmund et al., 2014). This also applies to

non-naming conventions, such as idiomatic usage of programming constructs to more

clearly reveal and communicate the intention of the code. For example, in C-style lan-

guages although a developer can use either a for or a while loop to express the same

semantic operation, for loop constructs are preferred by convention when iterating over

an array.

This thesis introduces the coding convention inference problem, i.e. the problem

of automatically inferring coding conventions within a codebase. We are aware of no

previous work on learning conventions from existing codebases. Once the knowledge

about conventions is inferred, it can be presented or embedded within software engineer-

ing tools that help engineers write, understand and maintain code. Machine learning

systems that “understand” and reason about code have the potential to change the soft-

ware engineering process by providing smart software assistant-like tools to software

engineers that can help them throughout their daily work.

In Chapter 4, we present two approaches to the variable naming inference prob-

3

lem and in Chapter 5 we present two models for the method naming inference. We

are not aware of any previous work tackling the variable name inference problem1

or the method naming problem. These two chapters present the first — to our knowl-

edge — approach to solving the variable and method naming problems. In fact, the

performance on the variable naming problem is adequate to be embedded in a usable

software engineering tool. The model presented in those chapters make an extensive

use of the syntactic structure of the code and common patterns that appear within them.

In Chapter 6, we look into machine learning methods that abstract the syntax of the

symbolic language used to express procedural knowledge but retain its semantics. This

is a significantly harder problem since we now need to directly represent code semantics

rather than its syntactic structure, while allowing syntax to drive semantics. Learning

about semantic code operations features can help machine learning systems reason

about semantics when inferring coding conventions. Finally, in Chapter 7 we define

the notion of coding idiom as that of a widely reusable pattern of code and present a

method for inferring syntactic and semantic code idioms. We are not aware of any other

methods for mining coding patterns that include syntactic or semantic structure. These

idioms represent conventional code patterns used within projects that can be used for

documentation, software tool design and language design.

Although the coding conventions inference problem is of direct interest to software

engineering research, it should not be seen solely as a research problem in this do-

main. This problem is deeply connected to core machine learning and programming

language research questions. Learning to name source code identifiers implies a deep

understanding about the role and function of the named elements. A machine learning

model that is able to correctly name a variable implicitly has learned something about

the semantic role and function of that variable. For example, if a model successfully

predicts the name of a variable elementCounter, it has learned features that characterize

the semantic role and function of variables acting as counters, e.g. the fact that they are

non-negative integers counting some quantity. Such information can be useful for auto-

matic verification of computer programs. Similarly, if a probabilistic model correctly

predicts the name of a method name sortList, this suggests that this model has linked

the semantics of the code within the method body to the concept of sorting. Such an

understanding could be useful for program synthesis or probabilistic reuse of programs

within machine learning algorithms. Therefore, convention inference should not just

1The variable naming inference problem was independently and simultaneously researched by Ray-
chev et al. (2015).

4 Chapter 1. Introduction

be seen just as a problem useful solely to software engineers, but also as a first step to-

wards creating probabilistic models that are able to probabilistically “understand” code

semantics.

In a “software-powered world”2 it is imperative that we research, develop and de-

ploy new tools and methods that enable engineers to efficiently create robust and bug-

free software. In this thesis, we argue that probabilistic models of source code can be

part of the solution towards this goal and present novel machine learning methods and

tools that move towards this direction.

1.1 Main Contributions

The main contributions of this thesis are:

• A novel comprehensive approach to the problems of inferring variable and method

names at a token and subtoken level from existing code. We present the first gen-

eral framework for suggesting and evaluating the quality of the suggested names.

• Three machine-learning models that learn to name variables and methods at a

token or subtoken level, outperforming existing methods on the task. Our best

variable naming model achieves an F1 score of 94% on the top suggestions, while

our method naming model achieves an F1 of 45%.

• A novel neural equivalence network architecture that learns to abstract syntac-

tic similarities of expressions but retain its semantics, learning semantic vector

representations that map expression semantics to a real-valued D-dimensional

space. This method is important for learning semantic features about source code

or symbolic expressions. We show that this network significantly outperforms

other existing architectures.

• A novel method for mining conventional syntactic and semantic idioms from ex-

isting codebases based on unsupervised Bayesian nonparametrics. We show that

this model learns idioms that are useful as documentation to software engineers

and that idioms can provide valuable information when designing software tools

and programming languages.
2Quote from Satya Nadella’s email to employees on first day

as CEO at Microsoft https://news.microsoft.com/2014/02/04/
satya-nadella-email-to-employees-on-first-day-as-ceo/.

https://news.microsoft.com/2014/02/04/satya-nadella-email-to-employees-on-first-day-as-ceo/
https://news.microsoft.com/2014/02/04/satya-nadella-email-to-employees-on-first-day-as-ceo/

1.2. Thesis Structure 5

1.2 Thesis Structure

The structure of the thesis follows. First, Chapter 2 presents an extensive literature

review of the area of probabilistic modeling of source code artifacts. Chapter 3 presents

a literature review of coding conventions within software engineering research. The

two aforementioned chapters present the necessary common background for the next

chapters that present the research undertaken during this PhD.

Chapter 4 discusses and evaluates two probabilistic models of source code for

learning variable naming conventions. Next, Chapter 5 presents and evaluates two

models for learning and inferring method naming conventions. Chapter 6 presents a

method for learning continuous semantic vector representations of symbolic expression

abstracting over their syntactic form. Finally, Chapter 7 discusses a method for mining

syntactic and semantic conventional idioms of source code and their applications.

1.3 Declaration of Previous Work

This thesis contains work that has been previously published in conferences that have

been co-authored with different people. The author of this thesis has been the first au-

thor and main contributor for all these publications. Specifically, Chapter 4 contains

work published in “Learning Natural Coding Conventions” (Allamanis et al., 2014) and

“Suggesting Accurate Method and Class Names” (Allamanis et al., 2015a). Chapter 5

contains work published in “Suggesting Accurate Method and Class Names” (Allama-

nis et al., 2015a) and “A Convolutional Attention Network for Extreme Summarization

of Source Code” (Allamanis et al., 2016d). Chapter 6 contains the work published in

Allamanis et al. (2016c). Finally, Chapter 7 contains work found in “Mining Idioms

from Source Code” (Allamanis & Sutton, 2014) and “Mining Semantic Loop Idioms

from Big Code” (Allamanis et al., 2016a). Finally, Chapter 2 contains material that the

author presented to the NL+SE workshop in Seattle, WA in November 2016.

Chapter 2

Background: Probabilistic Models of

Source Code

“All models are wrong, but some are useful.”

– George Box

This section reviews the area of probabilistic, machine learning-based source code

models aiming to give a broad overview of the area, explain the core methods and

techniques and present the available tooling and applications. Source code is a highly

structured object, but traditionally it is analyzed deductively. This review chooses to

ignore deterministic, deductive and other logic-based methods for source code analysis

and discusses work that uses a statistical learning component to acquire knowledge and

generalize accurately about some aspect of the code to provide probabilistic estimations

for some prediction or other target quantity.

This type of source code models has recently created a new interdisciplinary sub-

field called naturalness of code or big code. This subfield is found in the intersection of

software engineering — and its mining software repositories community — program-

ming language, machine learning and natural language processing research. The goal

of this research area is to develop tractable machine learning models of source code

elements with the intention to provide to developers and their managers useful, “smart”

software engineering tools that learn from existing codebases. The recent advances in

this field are attributed to the rapid improvements in machine learning (ML) and natural

language processing (NLP) and the proliferation of open-source software and collabo-

rative code sites such as GitHub and BitBucket that make large amounts of source code

repositories available at a central location.

The core intuition of probabilistic models of source code is that developers im-

7

https://github.com
https://bitbucket.com

8 Chapter 2. Background: Probabilistic Models of Source Code

plicitly embed knowledge in source code when they are constructing new code or

maintaining existing software systems. By using statistical, probabilistic models of var-

ious source code elements, valuable information can be mined, handling ambiguities

and partial information in a principled way. Ambiguities and partial information arise

in multiple contexts, such as when inferring the latent user intent (e.g. during code

completion), when synthesizing code from incomplete context (e.g. from examples)

or when performing an inherently ambiguous task such as code summarization. The

work in this field aims to learn from code to create new tools that may allow new code

analyses or speed up or improve existing ones. This field can, therefore, be though as a

form of statistical source code analysis.

The names of this nascent area, “big code” and “naturalness”, find their origins

in some of the first papers within this subfield. The term “big code” — which was

created as an analogous to the (marketing) term big data by DARPA’s MUSE project1

and Raychev et al. (2015) — suggests that with large amounts of source code data

we can learn valuable information about code and use this information within tools.

However, this term may miss the fact that probabilistic models of source code can still

be useful without requiring large amounts of data to learn. The notion of “naturalness”

of source code suggests that source code is repeatable and thus has some predictability

— observed by many researchers (Hindle et al., 2012; Gabel & Su, 2010; Barr et al.,

2014; Velez et al., 2015; Nguyen et al., 2016a). Although this might not seem surprising,

one should appreciate the root cause of “naturalness”. Naturalness of code seems to

have a strong connection with the fact that developers write conventional and idiomatic

code (Allamanis et al., 2014) because it helps with understanding and maintaining

software systems. However, the term “naturalness” may suggest that this area is just as

a way of learning surface coding conventions, whereas “code predictability” notion is

significantly wider suggesting that most code artifacts — from simple token sequences

to formal verification statements — contain useful and somewhat predictable patterns

that can be exploited. Both the “naturalness” and “big code” concepts should be viewed

in a more general setting. They suggests that there is exploitable regularity across

code that can be “absorbed” and generalized by a learning component that can in turn

probabilistically reason about new code.

1http://science.dodlive.mil/2014/03/21/darpas-muse-mining-big-code/

http://science.dodlive.mil/2014/03/21/darpas-muse-mining-big-code/

2.1. Structure and Scope 9

2.1 Structure and Scope

This review is structured as follows. Since source code is the data of our models of

interest, we first discuss the format of source code data, its representations and its

derivative formats (Section 2.2). Then, a taxonomy of probabilistic models of source

code is discussed (Section 2.3). Finally, we describe the software engineering and

programming language applications of probabilistic source code models (Section 2.4).

In this review, we choose to include work that models source code in a probabilistic

way, contains a learning component and uses complex representations that transcend

the simple bag-of-words (of source code tokens) representation of the underlying code.

Non-probabilistic models of source code (e.g. formal specifications) are widely used in

software engineering and programming language research but are out of scope. Prob-

abilistic models of source code that do not include a learning component (e.g. Lau

(2001)) are also out of scope. We also exclude machine learning models that use other

software engineering data that can be derived from the software engineering process

(e.g. process metrics, requirement traceability) but do not directly model source code.

Other Reviews To our knowledge there have been some reviews that summarize

the progress and the vision of the research area. Devanbu (2015) discusses the area of

code naturalness and the applications that it has in software engineering, targeting the

software engineering community. Devanbu briefly discusses some areas where research

activity is happening in the subfield: (a) Statistical Models of Code (b) Porting and

Translation (c) Linguistics of Code (d) Suggestion and Completion (e) Analysis and

Tools (f) Assistive Technologies. Bielik et al. (2015) discuss the ideas of probabilistic

models of source code and their applications to a programming language audience

and describe a framework stemming from their previous work (Raychev et al., 2015).

Finally, Neubig (2016) provides an informal survey of methods for generating natural

language from source code. Some resources, datasets and code can also be found at

http://learnbigcode.github.io/.

2.2 Source Code Representations and Derivative Arti-

facts

Source code is the means of explaining to a computer what instructions to execute in

order to achieve a specific task. However, for the purposes of probabilistic models of

http://learnbigcode.github.io/

10 Chapter 2. Background: Probabilistic Models of Source Code

source code and this review, source code acts as the input or output data of the described

models. It is therefore important to discuss the form of the data and the various code

representations that are used.

Source code is usually a set of text files. At its simplest form each source code

file is a sequence of characters that form tokens (also known as lexemes). There are

two types of tokens. The instruction tokens that have a syntactic or semantic meaning

and are essential for the program to run. Non-instruction tokens (e.g. comments and

whitespace characters) are meant to help the developers understand the code and are

ignored by the computer. Note that in some cases whitespace characters have syntactic

meaning tokens (e.g. indentations in Python) and are essential for the code semantics.

For languages that have preprocessors (e.g. C, C++, C#) the tokenized code usually

refers to the code after the preprocessor is executed. To extract the source code tokens

a lexer (also referred to as a tokenizer or scanner) is used.

Given the tokens of the code, a parse tree (also knows as “syntax tree”) and an

abstract syntax tree (AST) can be computed in an unambiguous way. The AST contains

all the necessary information about the code, abstracting some tokens (e.g. commas,

parentheses, braces etc.). In some tools, although the AST contains all the necessary

information that are contained in the code, the transformation between token sequences

and ASTs is not one-to-one. For example, parenthesizing a single variable or remov-

ing the parentheses may result into identical ASTs. Some libraries support round-trip

conversion of ASTs to source code (possibly also including whitespace) by internally

storing additional information.

Although ASTs are tree structures, their structure is more complex than trees stud-

ied in introductory computer science courses or in natural language processing. Each

node in an AST has one or more properties that are fixed for a given type of node

by the (formal) grammar of the programming language specification. For example, in

C# ForStatementSyntax nodes always have the properties Declaration, Initializers,

Condition, Incrementors, Statement. Each property — depending on its predefined se-

mantics — may have exactly one, zero or one, or zero or more nodes as children. In

the probabilistic source code modeling literature, this subtlety is handled in different

possible ways: (a) considering the properties as (dummy) children nodes (Allamanis

et al., 2016a) (b) ignoring the properties and using a “flat” structure for the children

of the node (Maddison & Tarlow, 2014; Bielik et al., 2016) (c) handle the property as

substructure within each node (e.g. as labels) (Allamanis & Sutton, 2014).

Both token-level and AST-level models of source code can be further augmented

2.2. Source Code Representations and Derivative Artifacts 11

by resolving information about some of the tokens. Compilers and some analysis tools

bind each token/node to symbols, given the scope and other available compile-time

information. For example, all the tokens that bind to the same local variable in a scope

are linked to the same symbol.

From an AST we can create graphs that provide partial or complete views of the

code. Control flow graphs (CoFGs)2 are directed graphs that describe how control flows

within a given procedure. In the case that a CoFG is computed across functions/methods

it is called an interprocedural CoFG, although in most real-life cases retrieving a static

interprocedural CoFG is impossible (e.g. because of polymorphism).

Another view of the code is the data flow graph, that presents how data flows within

a piece of source code. The program dependence graph (PDG) combines control and

data flow within a single graph. The literature contains other (partial) views of the

code, such as Groums (Nguyen et al., 2009) that contain only actions (e.g. application

programming interface (API) calls) and control flow.

Finally, we have derivative source code artifacts, that are retrieved from run-time

traces acquired during code execution. In comparison with the aforementioned represen-

tations, traces provide partial information about the behavior of programs. Commonly

used traces include memory traces (e.g. the heap, represented as a directed graph) and

code execution traces (represented as trees or sequences).

Natural Language Text vs. Programming Languages Text Although source code

tokens and ASTs have significant similarities to natural language sentences and parse

trees there are a few important differences. Programming languages are by definition

non-ambiguous and can be deterministically parsed. Another important aspect of this

domain is that software engineers actively avoid repeating the same functionality twice,

pursuing code reusability (Bourque et al., 2014). Most often, code that is reused in

multiple locations is encapsulated within libraries and is referenced when needed. This

creates a scarcity of data and multiple implementations of identical functionality are rare

in real-life source code, with the exception of coding competitions, student assignments,

and implementation of similar features across different programming languages.

Natural language sentences tend to be relatively small — usually less than 15 tokens

long — and their syntax tends to be relatively shallow. In contrast, even when limiting

code to single functions (methods) we can easily get source code “sentences” that are

2Literature in programming language research uses the abbreviation CFG for control flow graphs, but
we avoid this here due to the possible confusion with the Context Free Grammars that are widely used
in natural language processing.

12 Chapter 2. Background: Probabilistic Models of Source Code

Table 2.1: Commonly used Tools for Extracting Code Data.

Tool Type Language Notes

ANTLR Tokenizer,

Parser

Any A general framework for lexing and parsing

Eclipse JDT Tokenizer,

Parser, Com-

piler

Java Provides support for tokenization and AST extrac-

tion. Symbols may not be full resolved if not tied

with an Eclipse Project

esprima.js Tokenizer,

Parser

JavaScript JavaScript library for tokenization and parsing.

Multiple plugins.

ast Parser Python Support for AST extraction. Limited round-trip in-

formation

Roslyn Tokenizer,

Parser, Com-

piler

C#, Visual

Basic

.NET library for source code analysis.

astroid Parser Python AST extraction and symbol resolution. Limited

documentation.

100 tokens long and the depth of the AST often exceeds 50. A further complication

arises from the identifiers in source code (Allamanis & Sutton, 2013b). Developers fre-

quently create new names for variables by agglutinating different words/subtokens (e.g.

NUM_NODES and numRedNodes). This creates significant sparsity within the vocabulary.

Splitting the identifiers into subtokens is frequently necessary.

Tools Extracting the source code representations mentioned above can be done using

a preexisting tool. In Table 2.1 we mention some of the tools that researchers have

commonly used. This is not intended to be a complete list, rather than a set of pointers

that may allow someone interested in this domain to get started.

2.3 Probabilistic Models of Source Code

We now turn our attention to probabilistic machine-learning models of source code.

Probabilistic machine-learning models, are statistical models that make some (simpli-

fying) assumptions about the domain being modeled. These assumptions are necessary

to make the models tractable to learn and use, but also induce errors. Since each model

makes a different set of assumptions, each model has its own strengths and weaknesses

and therefore it may be more suitable for different applications. In the next section (Sec-

http://www.antlr.org/
http://www.eclipse.org/jdt/core/index.php
http://esprima.org/
https://docs.python.org/3/library/ast.html
http://roslyn.io
https://github.com/pycqa/astroid

2.3. Probabilistic Models of Source Code 13

tion 2.4) we will discuss the applications that these models find in software engineering

and programming languages.

For the purpose of this section, we categorize probabilistic source code models into

three non-mutually exclusive categories based on the form of the modeled probability

distribution and the type of the input/output they accept.

Code Generating Models are able to create full snippets of source code by sequen-

tially generating its parts (e.g. tokens or AST nodes) in a probabilistic way;

Code Representational Models model some aspect of the code by learning an in-

termediate representation. This representation is subsequently used to predict

elements of the code, properties of some code unit (e.g. types of variables) or

another extrinsic property of the code, usually returning a probability distribution

over those properties;

Pattern Mining Models infer in an unsupervised manner the latent structure within

source code and thus are used for extracting a discrete number of reusable and

human-interpretable patterns. These models may be seen as the instantiation of

clustering-like models within this application domain.

The taxonomy presented here allows us to discuss various models at a high level. How-

ever, it should be noted that other categorizations are also possible. An orthogonal

categorization of models of source code, can be derived based on the granularity at

which they view source code.

Lexical models view source code as a sequence of tokens (or characters).

Syntactic models view source code as an (abstract) syntax tree.

Semantic models view source code as a graph (e.g. as a program dependence graph)

of semantic relationships among its elements.

2.3.1 Code Generating Probabilistic Models of Source Code

Code generating probabilistic models of source code describe probability distributions

over all possible productions of code. Given some training data D and for some source

code3 c and some, possibly empty, context C (c) those models learn the probability

3To simplify the notation, we use c to imply an arbitrary representation of source code, such as token
sequence, AST or graph.

14 Chapter 2. Background: Probabilistic Models of Source Code

distribution PD(c|C (c)) and are able to probabilistically generate source code given

solely the context C (c) by sampling PD . We categorize these models into three cate-

gories: language models, multimodal models and translation models. When C (c) =∅,

the probability distribution PD is a language model of source code. When C (c) is a

non-code modality (e.g. natural language), PD describes a code-generative multimodal

model of source code. When C (c) is also source code, the probability distribution PD

is a translation model of source code. Apart from generating code, by definition, code

generating probabilistic models of source code score source code assigning a non-zero

probability to every possible snippet of code. This score, sometimes referred to as “nat-

uralness” of the code, suggests how probable the code is under the learned model and

depends on the training data D .

Since all code generating models predict the complex structure of source code, they

always make some simplifying assumptions about the generative process and iteratively

predict elements of the source code to generate a full code unit (e.g. code file or method).

Because of the highly structured nature of source code (and the simplifying assumptions

made by each model), none of the existing models in the literature can generate code

that always parses, compiles or can be executed. However, some of the models take into

consideration the source code structure and impose additional constraints to remove

some inconsistencies (e.g. Maddison & Tarlow (2014) generate variables that have

already been declared within the scope).

2.3.1.1 Language Models

Language models (LMs) for source code are the most widely used form of code-

generating models and have proven useful for many software engineering and pro-

gramming language applications. Since code has been found to be “natural” (Hindle

et al., 2012), language models have been widely used and researched. These models

are heavily inspired by natural language processing (NLP) language models. Although

LMs learn the high-level structure of programming languages fairly easily, predicting

and generating source code identifiers (e.g. variable and method names) makes lan-

guage modeling hard and interesting (Allamanis & Sutton, 2013b; Maddison & Tarlow,

2014).

Token Language Models Token language models are common in this field. These

models view source code as a sequence of tokens, i.e. c = t1 . . . tM. Since predicting se-

quences is a complex problem most of the models make simplifying assumptions about

2.3. Probabilistic Models of Source Code 15

how code is generated, usually generating one token at a time, modeling P(tm|t1 . . . tM)

The n-gram LM is the most widely used LM in the area of source code-generative

probabilistic models and is one of the most effective practical LMs. N-gram models

make the assumption that the next token can be predicted using only the previous n−1

tokens. Formally, the probability of a token tm, conditioned on all of the previous tokens

t1 . . . tm−1, is a function only of the previous n−1 tokens. Under this assumption, we

can write

PD(c) = P(t1 . . . tM) =
M

∏
m=1

P(tm|tm−1 . . . tm−n+1). (2.1)

To use this equation we need to know the conditional probabilities P(tm|tm−1 . . . tm−n+1)

for each possible n-gram. This is a table of V n numbers, where V is the number of possi-

ble lexemes. These are the parameters of the model that we learn from the training cor-

pus. The simplest way to estimate the model parameters is to set P(tm|tm−1 . . . tm−n+1) to

the proportion of times that tm follows tm−1 . . . tm−n+1. In practice, this simple estimator

does not work well, because it assigns zero probability to n-grams that do not occur in

the training corpus. Instead, n-gram models are trained using smoothing methods (Chen

& Goodman, 1996). These methods find a principled way for assigning probability to

unseen n-grams by extrapolating information from m-grams (m < n).

The use of n-gram LMs in software engineering has originated with the pioneering

work of Hindle et al. (2012) who used an n-gram language model with Kneser-Ney

(Chen & Goodman, 1996) smoothing. Most related research has followed this practice.

Nguyen et al. (2013b) extended the n-gram LM by annotating the code tokens with

parse information. Raychev et al. (2014) use concrete and abstract semantics of code,

to create a token-level language model that treats language modeling as a combined

synthesis and probabilistic modeling task. At the same time, Tu et al. (2014) noticed

that source code has a high degree of localness, where tokens (e.g. variable names)

are repeated often within close distance and extended previous work in speech and

natural language processing (Kuhn & De Mori, 1990) adding a cache mechanism that

assigns higher probability to tokens that have been observed most recently, achieving

better performance compared to other n-gram LMs. Since n-gram LMs do not generate

syntactically valid code, Raychev et al. (2014) add constraints — derived from program

analysis — to the generative process, avoiding some incorrect code.

In the past few years, NLP research has created recurrent neural network LMs

that improve upon the performance of the n-gram LM. Again, these models predict

each token sequentially, but loosen the fixed-context-size assumption. Instead they

16 Chapter 2. Background: Probabilistic Models of Source Code

represent the current context using a distributed vector representation (discussed in

Subsection 2.3.2). Following this trend, Karpathy et al. (2015) study a character-level

LSTM of the Linux kernel. Similarly, White et al. (2015) and Dam et al. (2016) create

token-level recurrent neural networks. Recently, Bhoopchand et al. (2016) used a token-

level sparse pointer-based neural language model of Python that learns to copy recently

declared identifiers, in order to capture very long-range dependencies of identifiers,

showing that they can outperform standard LSTM language models. Although neural

LMs usually have superior predictive performance, training neural LMs is significantly

more costly compared to n-gram LMs.

Syntactic Models Syntactic (or structural) language models of code directly model the

code ASTs. Thus, in contrast to n-gram LMs, they describe the process of generating

trees. Such models make simplifying assumptions about how an AST is generated,

usually following NLP models of natural language grammar trees. Most source code

syntactic models sequentially generate nodes, starting from a predefined root node and

generating the next node from top to bottom and left to right. When generating a tree

node, syntactic models consider a subset of the tree that has already been generated

as context of the generation process. Maddison & Tarlow (2014) create a log-bilinear

neural network to predict the AST structure, using a distributed vector representation

for the context. Additionally, they limit their model to respect variable scopes. This

work is the first to suggest that probabilistic context free grammars (PCFGs) are not

suitable for modeling source code. This is because PCFGs consider very limited context

and thus are bad at modeling the highly verbose structure of ASTs. Recently, Raychev

et al. (2016); Bielik et al. (2016) generalize PCFGs by annotating then with arbitrary

synthesized programs that uses features from the code also improve the performance

over a PCFG. Similarly, Wang et al. (2016c) use an LSTM over the AST nodes for

the same problem. Allamanis & Sutton (2014) also create a syntactic language model

learning Bayesian tree substitution grammars (TSGs). However, although this model is

a syntactic language model, they use it for unsupervised learning of code idioms (i.e.

as a pattern mining model discussed in Subsection 2.3.3).

Semantic Language Models Semantic language models view source code as a graph

with nodes representing code elements and the edges representing the relations among

them. Generating highly structured graphs, including graph representations of source

code, is hard and all generation processes make a multitude of simplifying assumptions.

Within source code, Nguyen & Nguyen (2015) create a graph-based LM to suggest API

completion. In contrast with the language models discussed so far, this model abstracts

2.3. Probabilistic Models of Source Code 17

some information about the code and the language model can only generate partial

code.

Evaluation of Language Models Evaluation of source code language models is

performed similarly to natural language processing, using perplexity, cross-entropy and

word error rate. Cross-entropy H is the most common measure and is defined as the

average number of bits per token required to “transmit” the code, i.e.

H(c,PD) =− 1
M

log2 PD(c) (2.2)

where M is the number of tokens within c. Note that the average is per-token by conven-

tions, even when a non-token model is used. This makes comparisons across different

models valid. In some cases, where the LM is used within an application, application-

specific metrics are employed.

2.3.1.2 Translation Models

Inspired from statistical machine translation (SMT), translation models translate code

written in one (source) language to another (target) language. These models use SMT

techniques and frameworks — traditionally used in NLP. This work has found appli-

cation within code migration (Aggarwal et al., 2015; Nguyen et al., 2015; Karaivanov

et al., 2014) and pseudocode generation (Oda et al., 2015). Translation models, combine

a language model PD(t) to model the target language with a translation model PD(s|t)
to match words between languages. These methods pick the optimal translation t∗ such

that

t∗ = argmaxPD(t|s) = argmaxPD(s|t)PD(t).

Again, these probabilistic generative models of source code do not necessarily produce

valid source code, due to the simplifying assumptions they make in the language model

PD(t) and the translation model PD(s|t). Evaluation of translation models can be done

with NLP evaluation metrics, such as BLEU (Papineni et al., 2002), or programming-

related measures (e.g. does the translated code parse/compile?).

2.3.1.3 Multimodal Models

Code-generating multimodal models of source code correlate one or more non-code

modalities to source code. These model have the form PD(c|m) where m is a rep-

resentation of one or more non-code modalities m. Multimodal models have a close

relation to representational models (discussed next in Subsection 2.3.2). Multimodal

18 Chapter 2. Background: Probabilistic Models of Source Code

code-generating models learn an intermediate representation of the non-code modalities

and generate source code given that representation. In contrast, code representational

models create an intermediate representation of the code and use it to predict a non-code

modality. This stream of research has received limited attention because of the scarcity

of available data. Multimodal models of source code, have been used for code synthesis,

where given the non-code modalities, a conditional generative model of source code

can be estimated (e.g. synthesis of source code given a natural language description by

Gulwani & Marron (2014)). Another use of those models is to score the co-appearance

of the modalities (e.g. in code search, to score the probability of some text given a tex-

tual query (Allamanis et al., 2015b)). Multimodal models make two kinds of modeling

assumptions. One set of assumptions concern the transformation of the input modality

into some intermediate representation and the other assumptions for the code generating

process exactly as in language models.

This area is closely related to semantic parsing in NLP, where the input modality

m is natural language text and the other modality c is some form of executable instruc-

tions. However, research in this area is out-of-scope from this review, since it involves

carefully crafted domain specific languages (DSLs) rather than full-scale programming

languages. Neubig (2016) contains a list of relevant publications.

2.3.2 Representational Models of Source Code

Representational source code models learn an intermediate (not necessarily human-

interpretable) representation of source code and use it to predict the probability distri-

bution of code unit properties (e.g. variable types) or of some non-code artifact. These

probabilistic source code models, learn the conditional probability distribution of some

code c as PD(π| f (c)) where f is a function that transforms the code c to an appropriate

representation, possibly abstracting or removing some details. The target π is the prop-

erty that is modeled. Representational source code models have diverse architectures

and are often application-specific. Although the majority of the representational mod-

els are discriminative machine learning models, directly modeling PD(π| f (c)), not all

models follow this rule. Table 2.3 lists research related to representational source code

models.

2.3. Probabilistic Models of Source Code 19

Figure 2.1: Local (left) vs. distributed (right) vector representations. Local representa-

tions use exactly one component of the vector representation for each element, while

distributed representations distribute the meaning into multiple components.

20
C

hapter2.
B

ackground:P
robabilistic

M
odels

ofS
ource

C
ode

Table 2.2: Research on Source Code Generating Models (sorted alphabetically). These models have the general form PD(c|C (c)) and describe

the process for generating source code. References annotated with ∗ are also included in other categories.

Reference Model Type Kind Model (PD) Application

Aggarwal et al. (2015) Translation Token-Level Phrase-based SMT Migration

Allamanis & Sutton (2013b) Language Token-Level n-gram –

Allamanis et al. (2014)4 Language Token-Level & Variable Bindings n-gram Learning Conventions

Allamanis & Sutton (2014)∗5 Language Syntax Level TSG –

Allamanis et al. (2015b)∗ Multimodal Syntax-Level Neural Network Code Search/Synthesis

Bhatia & Singh (2016) Language Token-Level &Parse Neural Network Syntax Error Correction

Bhoopchand et al. (2016) Language Token-Level Neural Network Code Completion

Bielik et al. (2016) Language Syntax-Level PCFG + learned an-

notations

Code Completion

Campbell et al. (2014) Language Token-Level n-gram Syntax Error Detection

Cerulo et al. (2015) Language Token-Level HMM Information Extraction

Dam et al. (2016) Language Token-Level Neural Network –

Gulwani & Marron (2014) Multimodal Syntax-based Phrase-based

Model

Text-to-Code

Gvero & Kuncak (2015) Language Syntax-Level PCFG + Search Code Synthesis

4Described in Chapter 4.
5Described in Chapter 7.

2.3.
P

robabilistic
M

odels
ofS

ource
C

ode
21

Table 2.2: Research on Source Code Generating Models (sorted alphabetically). These models have the general form PD(c|C (c)) and describe

the process for generating source code. References annotated with ∗ are also included in other categories.

Reference Model Type Kind Model (PD) Application

Hellendoorn et al. (2015) Language Token-Level n-gram Code Review

Hindle et al. (2012) Language Token-Level n-gram Code Completion

Hsiao et al. (2014) Language Program Dependency Graph n-gram Program Analysis

Ling et al. (2016) Multimodal Token-Level Neural Network Code Synthesis

Liu (2016) Language Token-Level n-gram Obfuscation

Karaivanov et al. (2014) Translation Token-level + grammar constraints Phrase-Based SMT Migration

Karpathy et al. (2015) Language Character-Level Neural Network –

Kushman & Barzilay (2013) Multimodal Token-Level CCGs Code Synthesis

Maddison & Tarlow (2014) Language Syntax-Level with variable resolution Neural Network –

Menon et al. (2013) Multimodal Syntax-Level PCFG + annota-

tions

Code Synthesis

Nguyen et al. (2013a) Translation Token-level Phrase-Based SMT Migration

Nguyen et al. (2013b) Language Token-Level + parse information n-gram Autocompletion

Nguyen et al. (2015) Translation Token-level + parse information Phrase-based SMT Migration

Nguyen & Nguyen (2015) Language Partial Program Dependency Graph n-gram Code Completion

Oda et al. (2015) Translation Syntax & Token-Based Tree-to-String +

Phrase-based SMT

Pseudocode Generation

22
C

hapter2.
B

ackground:P
robabilistic

M
odels

ofS
ource

C
ode

Table 2.2: Research on Source Code Generating Models (sorted alphabetically). These models have the general form PD(c|C (c)) and describe

the process for generating source code. References annotated with ∗ are also included in other categories.

Reference Model Type Kind Model (PD) Application

Pham et al. (2016) Language Bytecode-Level HMM Autocompletion

Raychev et al. (2014) Language Token-Level + Semantic Constraints n-gram + RNN Code Completion

Ray et al. (2016) Language Token-Level Cache n-gram Bug Detection

Raychev et al. (2016) Language Syntax-Level PCFG + learned an-

notations

Code Completion

Saraiva et al. (2015) Language Token-Level n-gram –

Sharma et al. (2015) Language Token-Level n-gram Information Extraction

Tu et al. (2014) Language Token-Level Cache n-gram Code Completion

Wang et al. (2016c) Language Syntax-Level Neural Network Code Completion

White et al. (2015) Language Token-Level Neural Network –

Yadid & Yahav (2016) Language Token-Level n-gram Information Extraction

2.3. Probabilistic Models of Source Code 23

2.3.2.1 Structured Prediction

Structured prediction refers to the problem of joint prediction of a set of dependent vari-

ables where an underlying structure (e.g. characterized by a graphical model) defines

the relationships among the variables. Such problems have been widely studied within

machine learning and NLP and are also present in source code. Structured prediction

methods make a set of assumptions about the nature and the existence of dependencies

among the predicted variables. Raychev et al. (2015) represent a program dependence

graph as a conditional random field (CRF) and jointly predict the types or names of

JavaScript variables. Li et al. (2016) learn representations for the nodes of the heap

graph by considering the heap graph structure and the interdependencies among the

nodes. Kremenek et al. (2007) use a factor graph to learn and enforce specification of

resource usage (e.g. files).

2.3.2.2 Distributed Representations

Distributed representations (Hinton, 1984) are widely used in NLP to represent natural

language units, such as words and paragraphs (Mikolov et al., 2013a; Le & Mikolov,

2014). Distributed representations refer to arithmetic vectors or matrices where the

meaning of an element is distributed across multiple units (e.g. the “meaning” of a

vector is distributed in its components). This is in contrast to local representations

(see Figure 2.1), where each element is uniquely represented with exactly one unit.

Distributed representations are commonly used in machine learning because they tend

to generalize better. Models that learn distributed representations make the assumption

that the elements being represented and their relations “fit” well within the number of

represented dimensions.

Probabilistic source code models have used distributed representations. For exam-

ple, models that use distributed vector representations define a function c→ RD that

maps each code unit to a D-dimensional vector. Mou et al. (2016) learn distributed

vector representations to classify source code into coding assignments. Allamanis et al.

(2015a) learn distributed vector representations for variables and methods and use them

to predict their names. Gu et al. (2016) learn distributed vector representations of natu-

ral language queries and use them to predict the relevant API sequences. Li et al. (2016)

learn distributed vector representations for heap elements and use them to generate po-

tential formal specifications for the code that produced them. Finally, Piech et al. (2015)

learn distributed matrix representations of source code assignments and use them to

24 Chapter 2. Background: Probabilistic Models of Source Code

generate feedback for students.

Some code-generative models of code also use distributed representations internally.

For example the work of Maddison & Tarlow (2014) and other neural language models

(e.g. Dam et al. (2016)) use distributed representations to describe the context while

sequentially generating code. Ling et al. (2016) and Allamanis et al. (2015b) combine

the code-context distributed representation with a distributed representations of other

modalities (e.g. natural language) to synthesize code.

2.3.3 Pattern Mining Models of Source Code

Pattern mining models of source code infer the latent structure of a probability distribu-

tion

PD(f (c)) = ∑
l

PD(f (c)|l)P(l) (2.3)

where f is some deterministic function that returns a (possibly partial, e.g. API calls

only) view of the code and l represent a set of latent variables that the model introduces

and aims to infer. These models can be broadly thought as clustering source code

into a finite set of groups. The goal of these probabilistic models of source code is to

mine a finite set of human-interpretable patterns within the structure of source code,

without using any annotations or supervision and present the mined patterns to software

engineers. Applications of such models are common in the mining software repositories

community and include documentation (e.g. API patterns), summarization and anomaly

detection. There is a large amount of literature within unsupervised non-probabilistic

models of source code taking advantage of data mining methods, such as frequent

pattern mining and anomaly detection. These models are excluded from this discussion,

since they are not probabilistic models of source code. Table 2.4 presents a list of

related work in this area.

Allamanis & Sutton (2014) learn a tree substitution grammar using Bayesian non-

parametrics and find groups of grammar productions that are more probable than pre-

dicted by a simple PCFG. They name the groups of grammar productions idioms. In

a similar fashion, Fowkes & Sutton (2015) learn the latent variables of a graphical

model to infer common API usage patterns. Movshovitz-Attias & Cohen (2015) infer

the latent variables of a graphical model that models a software ontology.

Evaluation of pattern mining models is usually harder, since the discovered latent

structure quality may be subjective. Thus, application-level metrics are often used.

2.4.
A

pplications
25

Table 2.3: Research on Representational Models of Source Code (sorted alphabetically). These models have the general form PD(π| f (c)).
References annotated with ∗ are also included in other categories.

Reference Input Code Repre-

sentation

Target Prediction (π) Representation

Type

Application

Allamanis et al. (2015a)6 Token Context &

Features

Variable/Method/Class Names Distributed Coding Conventions

Allamanis et al. (2015b)∗ Natural Language &

AST Context

Language Model (AST) Distributed Code Search

Allamanis et al. (2016d)7 Code Tokens Method Name Distributed Coding Conventions &

Summarization

Bichsel et al. (2016) Dependency Graph Identifier Names Graphical Model Deobfuscation

Bruch et al. (2009) Incomplete Object

Usage

Object Usage Local Code Completion

Corley et al. (2015) Tokens Feature Location Distributed Feature Location

Dam et al. (2016)∗ Tokens & Code Con-

text

Language Model (Tokens) Distributed –

Gu et al. (2016) Natural Language API Sequence Distributed API Search

Gupta et al. (2017) Tokens Code Fix Distributed Code Fixing

6Described in Chapter 4 and Chapter 5.
7Described in Chapter 5.

26
C

hapter2.
B

ackground:P
robabilistic

M
odels

ofS
ource

C
ode

Table 2.3: Research on Representational Models of Source Code (sorted alphabetically). These models have the general form PD(π| f (c)).
References annotated with ∗ are also included in other categories.

Reference Input Code Repre-

sentation

Target Prediction (π) Representation

Type

Application

Iyer et al. (2016) Code Tokens NL Description Distributed Code Summarization

Kremenek et al. (2007) Partial PDG Resource Ownership Graphical Model Pointer Ownership Bugs

Li et al. (2016) Heap Graph Separation Logic Formula Distributed Verification

Maddison & Tarlow (2014)∗ Code Context Language Model (AST) Distributed –

Mangal et al. (2015) Logic Static Analy-

sis + User Feedback

Probabilistic Static Analysis MaxSAT Parametric Program Analy-

sis

Movshovitz-Attias et al. (2013) Code Tokens Source Code Comments Graphical Model Comment Prediction

Mou et al. (2016) AST (no identifiers) Discrete Classification Distributed Coding Assignment Classi-

fication

Nguyen et al. (2016b) API Sequences API Sequences Distributed API Migration

Omar (2013) Syntactic Context Expressions Graphical Model Code Completion

Oh et al. (2015) Features Static Analysis Parameters Static Analysis Parametric Program Analy-

sis

Piech et al. (2015) Program State

+ Source Code

Features

Student Feedback Distributed Student Feedback

2.4.
A

pplications
27

Table 2.3: Research on Representational Models of Source Code (sorted alphabetically). These models have the general form PD(π| f (c)).
References annotated with ∗ are also included in other categories.

Reference Input Code Repre-

sentation

Target Prediction (π) Representation

Type

Application

Proksch et al. (2015) Incomplete Object

Usage

Object Usage Graphical Model Code Completion

Raychev et al. (2015) Dependency Net-

work

Variable Types/Names Graphical Model Type Inference

Wang et al. (2016a) Code Tokens Defect Classification Language Model Bug Detection

White et al. (2015)∗ Tokens & Language

Model (Tokens)

Distributed –

White et al. (2016)∗ Tokens & AST (pattern mining) Distributed Clone Detection

Zaremba & Sutskever (2014) Code Characters Execution Trace Distributed –

28
C

hapter2.
B

ackground:P
robabilistic

M
odels

ofS
ource

C
ode

Table 2.4: Research on Pattern Mining Probabilistic Models of Source Code (sorted alphabetically). These models have the general form

PD(f (c)). References annotated with ∗ are also included in other categories.

Reference Modeled Distribution PD Model Type Application

Allamanis & Sutton (2014)∗8 AST Graphical Model Idiom Mining

Fowkes & Sutton (2015) API Call Sequences Graphical Model API Mining

Movshovitz-Attias & Cohen (2015) Software Ontology/Facts Graphical Model Knowledge-Base Mining

Fowkes et al. (2014) Topic Hierarchy Graphical Model Code Summarization

Wang et al. (2016b) Defect Classification Distributed Defect Prediction

White et al. (2016)∗ Code Patterns Distributed Clone Detection

8Described in Chapter 7.

2.4. Applications 29

2.4 Applications

Probabilistic models of source code have found a wide range of applications in software

engineering and programming language research. In this section, we review common

application areas of those models. Table 2.5 presents a list of areas where probabilistic

models of source code have been applied. Probabilistic models of source code provide

a principled way of resolving uncertainty and ambiguity that is present in some appli-

cations. Such ambiguities arise from underspecified data or from inherently ambiguous

information, such as natural language. A second set of domains that profit from proba-

bilistic source code models are those that can use probabilistic inference to simplify or

speed up an analysis that would otherwise be prohibitively complex to execute.

The aim of this section is not to review the application areas in detail but to explain

the intersection of each areas with this field. For each application, we make an effort to

describe the goals of the area and the interesting and important problems within that

area. Then we focus on why probabilistic, machine learning based methods can be of

use. For each area, we then discuss the existing research of probabilistic source code

modeling and how performance is measured in an automated and quantifiable way.

2.4.1 Recommender Systems

Software engineering recommender systems (Robillard et al., 2010, 2014) are a wide

range of tools that make smart recommendations to assist software engineers. A large

part of those systems employ data mining and machine learning approaches on various

software engineering artifacts. Probabilistic models of source code find application in

source code-based recommender systems (Mens & Lozano, 2014), such as those that

aid developers write or maintain code.

Machine learning-based recommender systems probabilistically reason about the

intentions of the software engineer to aid them write or edit code. This is inherently

“noisy” since it can neither be formulated clearly nor any developer would spend the

time to clearly formulate their intentions before writing any code. Probabilistic source

code model-based recommender systems use information from the context of the code

to probabilistically reason about developer intentions. Although this is a challenging

task, requiring to take into consideration both long and short-range context, machine

learning methods are well fit for this problem providing a framework for probabilistic

reasoning of developer intentions.

The most prominent recommender system and a feature commonly used in inte-

30
C

hapter2.
B

ackground:P
robabilistic

M
odels

ofS
ource

C
ode

Table 2.5: Application Areas of Machine Learning Probabilistic Models of Source Code. The use of a probabilistic method allows to probabilisti-

cally reason about the uncertainty within the modeled domain and data.

Area Modeled Domain Source of Uncertainty Performance Measures

Code Defects Normal vs. anomalous usage of

code constructs.

Sparsity of possible operations, code spec-

ifications.

Correlation with real

faults

Code Migration Mapping between different pro-

gramming languages and APIs.

Multiple possible mappings, subtle differ-

ences in API usage, sparsity.

Functional equivalence,

BLEU score

Code Search Mapping from natural language

and/or other code artifact queries to

real code.

Ambiguities and partial information in

queries. Non-fully resolved source code.

Information Retrieval

Metrics (MRR)

Code Summarization Selection of important aspects of

code and possibly transformation to

an appropriate summary format

Diversity of source code, domain speci-

ficity, uncertainty about code saliency.

Quality of Summary,

BLEU/ROUGE score

(if NL summary)

Code Synthesis Possible programs that comply to

some specification.

Partial or ambiguous (e.g. natural lan-

guage description) information about pro-

gram to be synthesized.

Synthesized program

quality

Coding Conventions Coding conventions (e.g. naming,

formatting, syntactic(used within a

project.

Non-strict usage of conventions within

projects, domain variability, differences in

domains.

Prediction/suggestion

accuracy

2.4.
A

pplications
31

Table 2.5: Application Areas of Machine Learning Probabilistic Models of Source Code. The use of a probabilistic method allows to probabilisti-

cally reason about the uncertainty within the modeled domain and data.

Area Modeled Domain Source of Uncertainty Performance Measures

Documentation Reusable patterns of source code. Sparse and “noisy” usages of APIs and

code constructs

Pattern quality, informa-

tiveness, usefulness

Program Analysis Program properties Partial or ambiguous information about

program behavior during runtime and/or

prohibitive complexity of an exact analy-

sis

Prediction accuracy,

precision, recall, false

positive ratio

Recommender Systems Developer intention when writing

code through current context.

Partial information about developer inten-

tion within the domain of the developed

software, long-distance context.

Suggestion Accuracy,

MRR, Cross Entropy

32 Chapter 2. Background: Probabilistic Models of Source Code

grated development environments (IDEs) is code completion. All widely used IDEs,

such as Eclipse, IntelliJ and Visual Studio, have some code completion features. Ac-

cording to Amann et al. (2016), code completion is the most used feature within an

IDE. However, code completion tools usually return suggestions alphabetically by sort-

ing valid options, without using any predictive models to predict how related each

suggestion is. Statistical code completion aims to improve suggestions accuracy by

learning probabilities over the suggestions and providing to the users a ranked list.

Some systems focus on automatically completing specific constructs (e.g. method calls

and parameters) while others try to complete all code tokens.

Statistical code completion was first studied by Bruch et al. (2009) who extract a set

of features from code context to make predictions but are limited to suggesting method

invocations and constructors. Later, Proksch et al. (2015) used Bayesian networks to

improve suggestion accuracy. A version of this research is integrated into the default

Eclipse IDE under the Eclipse Recommenders team.

Source code language models have implicitly and explicitly been used for code

completion. Hindle et al. (2012) were the first to use a token-level n-gram LM for this

purpose, using the previous n− 1 tokens to represent the completion context at each

location. Later, Tu et al. (2014) used a cache n-gram LM and further improved the

completion performance, showing that a local cache acts as a domain adapted n-gram.

The authors provide an Eclipse plugin using their model (Franks et al., 2015). Nguyen

et al. (2013b) augment the completion context with semantic information, improving

the code completion accuracy of the n-gram LM. Raychev et al. (2014) exploit formal

properties of the code in context to limit incorrect (but statistically probable) API call

suggestions. Their method is the first to depart from simple statistical token completion

towards statistical code synthesis of single statements. Apart from token-level language

models for code completion, Bielik et al. (2016) and Maddison & Tarlow (2014) create

AST level LMs that can be used for suggestion.

In contrast to the previously mentioned work which aims to predict source code,

Movshovitz-Attias et al. (2013) create a recommender system to assist comment com-

pletion given a source code snippet, using a topic-like graphical model to model context

information. Similarly, the work of Allamanis et al. (2014, 2015a, 2016d) can be seen

as a recommender systems for suggesting names for variables, methods and classes,

that uses relevant code tokens as the context.

Evaluation Metrics Research in recommender systems has used various metrics to

quantify code completion performance:

2.4. Applications 33

Accuracy for Rank is the percent of suggestion points where the top x suggestions

contain the correct prediction.

Mean Reciprocal Rank (MRR) is the average reciprocal rank of the correct recom-

mendation at each suggestion point.

Cross Entropy For probabilistic recommender systems, the probability for each sug-

gestion can be computed and therefore cross-entropy. Although cross entropy is

correlated with suggestion accuracy and confidence, small improvements in cross

entropy may not lead to improvements in accuracy.

Keystrokes Saved Computes the number of keystrokes saved by using a code comple-

tion system. This metric usually assumes that code completion suggestions are

continuously presented to the user as she is typing. When the top suggestion is

the target token, the user presses a single key (e.g. return) to complete the rest of

the target token.

Memory and Speed For practical recommender systems, the (memory) size of the

model and the required time for a single recommendation need to be taken into

account. Therefore, the trade-offs between model accuracy, completion speed

and size need to be taken into consideration.

These metrics provide good estimations on the predictive ability of recommender sys-

tems. However, in some cases the evaluations are not entirely representative of the usage

of the systems. For example, one limitation of these metrics used for code completion

recommender systems is that they assume that code is written sequentially, from the

first token to the last one. In practice, however, rarely do developers write code in such

a simplified way (Proksch et al., 2016).

2.4.2 Inferring Coding Conventions

The surface structure of the source code is formed by the coding conventions that the

developers implicitly or explicitly impose during the development process (Allamanis

et al., 2014). The goal of coding conventions is to improve code maintainability by

making the code easy to comprehend. Enforcing coding conventions is also needed

for educational purposes, e.g. in massive, open, online courses (Glassman et al., 2015).

However, enforcing coding conventions — such as formatting and naming — is a te-

dious task and in some cases it cannot be easily codified in rule-based systems. Inferring

34 Chapter 2. Background: Probabilistic Models of Source Code

coding conventions with machine learning solves this problem by learning the conven-

tions directly from a codebase and then enforcing them, in a probabilistic manner. This

can help software teams to enforce coding conventions without the need to define rules

or configure existing convention enforcing tools.

Machine learning models of source code that look at the surface structure (e.g.

tokens, syntax) are inherently well-suited for this task. Using the source code as data,

they can infer the emergent conventions while quantifying any uncertainty over those

decisions. An important challenge in this application domain is the sparsity of the

code constructs, caused by the diverse and non-repeatable form of source code within

projects and domains. Allamanis et al. (2014, 2015a) exploit this fact to learn and

suggest variable, method and class naming conventions, while Allamanis & Sutton

(2014) mine conventional syntactic structures named idioms.

Related to coding conventions, Parr & Vinju (2016) learn a source code formatter

from data by using a set of hand-crafted features from the AST using a k-NN classifier.

White et al. (2016) use autoencoders and recurrent neural networks to detect code

clones by finding snippets of code that share similar distributed representations.

2.4.3 Code Defects and Debugging

Probabilistic models of source code assign high probability to code that appears often

in practice (i.e. is natural). Therefore, when models assign a very low probability to

some code, this may signify a bug, similar to all anomaly detection methods in ma-

chine learning (Chandola et al., 2009). Finding defects is a core problem in software

engineering and programming language research. The challenge in this domain rests

in correctly characterizing source code that contains defects with high precision and

recall. This is especially difficult because of the sparse and extremely diverse nature of

source code.

Some limited work, suggests that the probability assigned by language models may

be related to code defects. Allamanis & Sutton (2013b) suggest that n-gram LMs can

be seen as complexity metrics and Ray et al. (2016) show that buggy code tends to have

lower probability (be less “natural”) than average code.

Wang et al. (2016b) use deep belief networks to learn source code features for code

defect prediction. Fast et al. (2014) and Hsiao et al. (2014) learn statistics from large

amounts of code to detect potentially erroneous code and perform program analyses

while Wang et al. (2016a) learn coarse-grained n-gram language models to detect

2.4. Applications 35

uncommon usages of code. Related to this work, is the work of Campbell et al. (2014)

and Bhatia & Singh (2016) that use source code LMs to identify and correct syntax

errors. Other data-mining based methods (e.g. Wasylkowski et al. (2007)) also exist,

but are out-of-scope from this review.

Liblit et al. (2005); Zheng et al. (2006) present trace-based methods for statistical

bug isolation. These methods aim to isolate the possible bug locations to assist debug-

ging. Kremenek et al. (2007) learn factor graphs to predict resource-specific bugs by

modeling the resource usage specifications.

Although probabilistic models of source code seem to be naturally fitted for finding

defective code, this area has not yet seen much growth or real-life usage, possibly

because of issues that arise from the high dimensionality and sparsity of code data.

2.4.4 Code Migration

Code migration refers to translating source code from one source language (e.g. Java)

to another target language (e.g. C#). Although rule-based, rewriting systems may be

used, it is a tedious process to maintain those rules. Statistical machine translation

models, as described earlier, are well suited for this task, since they probabilistically

learn to convert one language to another. However, because of the probabilistic nature

of these models, they tend to produce invalid code. To restrict these errors during trans-

lation Karaivanov et al. (2014) and Nguyen et al. (2015) add semantic constraints to the

translation process. Although these models learn powerful mappings between different

language constructs such as APIs, they have only been used for translating between

programming languages of similar paradigms and structure. This is an important limita-

tion, requiring novel models to translate between languages of different types (e.g. Java

to Haskell or assembly to C) or even languages of different memory management styles

(e.g. C++ to Java). Evaluation of translation methods is done using BLUE (Papineni

et al., 2002), exact match scores and measure of the syntactic or semantic correctness

of the translated code.

2.4.5 Source Code and Natural Language

Linking natural language to source code has many useful applications, such as code

synthesis, search and summarization. However, the ambiguity of natural language, the

highly diverse and compositional nature of source code, and the layered abstractions

being built in software makes connecting natural language and source code a hard

36 Chapter 2. Background: Probabilistic Models of Source Code

problem. Probabilistic machine learning models of source code, have already been

useful in NLP by probabilistically modeling and resolving ambiguities. The application

of these models to the combination of source code and natural language follows the

same principle. Additionally, the intersection of source code and natural language is

viewed as a way for grounding natural language within the NLP community. Oda et al.

(2015) translate Python code to natural language pseudocode and use the BLEU score to

evaluate their approach. Similarly, Iyer et al. (2016) design a neural attention model that

can generate natural language summaries of source code, using BLEU score to evaluate

their summaries and MRR to evaluate their model as a code search model. Gulwani

& Marron (2014) use natural language to synthesize Excel formulas and evaluate on

the rank of the correctly synthesized program. Movshovitz-Attias et al. (2013) create a

comment-generative model, given some source code and evaluate it on its suggestion

performance. This area is closely related to semantic parsing in NLP, where natural

language is parsed into a program-like structure that is defined by a DSL. These models

are out-of-scope from this review. For related work see Neubig (2016).

Code search — a common activity for software engineers (Sadowski et al., 2015;

Amann et al., 2016) — may also involve searching source code using natural language.

Software engineering researchers have focused on the code search problem using infor-

mation retrieval (IR) methods (Gallardo-Valencia & Elliott Sim, 2009; Holmes et al.,

2005; Thummalapenta & Xie, 2007; Mcmillan et al., 2013). While Niu et al. (2016)

has used learning-to-rank methods but with manually extracted features. Within proba-

bilistic modeling of source code, Gu et al. (2016) train a sequence-to-sequence neural

network to map natural language into API sequences. Allamanis et al. (2015b) learn a

bimodal, generative model of code, conditioned on natural language and use it to rank

code search results. All code search-related methods use rank measures to evaluate

performance.

2.4.6 Program Synthesis

Program synthesis aims to synthesize full or partial programs from some form of spec-

ification. When the specification is in the form of an ambiguous natural language

description these models coincide with semantic parsing (see Subsection 2.4.5). The

program synthesis (e.g. from examples or from a specification) has received great at-

tention in programming language research. The core challenge in this area is searching

the vast area of possible programs to find one that complies to the specification. Proba-

2.4. Applications 37

bilistic machine learning models help by learning probabilities over possible programs

guiding the search process.

Research on programming by example (PBE) has combined machine learning meth-

ods with code synthesis. Liang et al. (2010a) use a graphical model to learn programs

across similar tasks. Menon et al. (2013) learn a parameterized PCFG by using features

from the input to speed up synthesis. Singh & Gulwani (2015) extract features from

the synthesized program to learn a supervised classifier that can predict the correct pro-

gram and use it to re-rank synthesis suggestions. Finally, the code completion work of

Raychev et al. (2014) can be seen as a limited program synthesis of method invocations

within specific locations.

2.4.7 Documentation and Summarization

Documentation is an important artifact within the software development process, allow-

ing software engineers to find information they require when developing code. Software

engineering research has a multitude of related work. Mining common API patterns is

a recurring theme when mining software repositories and there is a large literature of

non-probabilistic models (e.g. frequency-based models) for mining and synthesizing

API patterns (Buse & Weimer, 2012; Xie & Pei, 2006) which are out-of-scope of this

review. Within this literature, there are a few probabilistic source code models that

mine API sequences. Gu et al. (2016) maps natural language to commonly used API

sequences, Allamanis & Sutton (2014) learn fine-grained source code idioms, that may

include APIs. Fowkes & Sutton (2015) uses a graphical model to mine interesting API

sequences.

Documentation is also related to information extraction from (potentially unstruc-

tured) documents. Cerulo et al. (2015) use a language model to detect code “islands” in

free text. Sharma et al. (2015) use a language model over tweets to identify software-

relevant tweets.

2.4.8 Program Analysis

Program analysis is a core research area in programming language research, with the

goal to analyze programs and provide some indications about their properties such as

their correctness. Various challenges arise in this domain. For example, sound analyses

may return unacceptably large amounts of false positives or other analyses may require

to combine multiple ambiguous data. Probabilistic models of source code, aim to use

38 Chapter 2. Background: Probabilistic Models of Source Code

probabilistic reasoning to alleviate these problems.

Raychev et al. (2015) use graphical models to predict the types of variables in

JavaScript by learning usage patterns from existing code and combining ambiguous

information return a probability distribution over variables types. Oh et al. (2015) and

Mangal et al. (2015) use machine learning models to parameterize program analyses to

reduce false positive ratio while maintaining high precision.

2.5 Conclusions

This chapter reviewed probabilistic models of source code. We presented a taxonomy

of probabilistic machine learning source code models and their applications. The reader

may appreciate that most of the research contained in this review was conducted within

the past few years, indicating a growth of interest in this area among the machine

learning, programming languages and software engineering communities. Probabilistic

models of source code raise the exciting opportunity of learning from existing code,

probabilistically reasoning about new source code artifacts and transferring knowledge

between developers and projects.

Obstacles and Challenges Although this field has made considerable progress, many

challenges still need to be overcome. One major obstacle is engineering systems that

efficiently combine the probabilistic world of machine learning with the formal logic-

based world of code analysis. Additionally, although finding a large amount of source

code is relatively easy, it is increasingly hard to retrieve sophisticated representations

of source code. For example, computing semantic properties of code is hard to do

at a truly large scale. Similarly, retrieving representative run-time data from real-life

programs is challenging to do even for a single project. Furthermore, the principle

of reusability in software engineering creates a form of sparsity in the data, where

it is rare to find multiple source code elements that perform exactly the same tasks.

From a machine learning perspective this suggests there are many opportunities for

creating new models and inference methods that are able to handle the structured,

sparse and highly composable nature of source code data. From the perspective of

software engineering, interesting research questions arise on creating usable tools that

exploit the probabilistic reasoning capabilities that these models can offer. Finally,

from a programming language research perspective, novel probabilistic formulations

and representations may allow to revist existing problems and provide probabilistic

bounds on important problems or speed up existing formal methods.

Chapter 3

Background: Coding Conventions

“Programs share some attributes with essays. For

essays, the most important question readers ask is,

"What is it about?". For programs, the main

question is, "What does it do?". In fact, the purpose

should be sufficiently clear that neither question

ever needs to be uttered [...] Both essays and lines

of code are meant —before all else— to be read and

understood by human beings.”
– Beautiful Code: Leading Programmers Explain

How They Think. 2007

To program is to make a series of choices, ranging from design decisions — like how

to decompose a problem into functions — to the choice of identifier names and how to

format the code. Coding conventions is an important aspect of the software development

process. This is attested by the multitude of books — targeted to practitioners — that

have been written about this topic (Martin, 2008; McConnell, 2004; Spinellis, 2003)

and the abundance of coding style guides available online (Rossum et al., 2013; Oracle,

1999; Association et al., 2012; AirBnb, 2015).

A convention is “an equilibrium that everyone expects in interactions that have

more than one equilibrium” (Young, 1996). Coding conventions arise out of the col-

lision of the stylistic choices of programmers. A coding convention is a restriction

not imposed by a programming language’s grammar. Nonetheless, these choices are

important enough that they are enforced by software teams. Indeed, developers enforce

such coding conventions rigorously, with roughly one third of code reviews containing

feedback about following them (Allamanis et al., 2014).

39

40 Chapter 3. Background: Coding Conventions

Like the rules of society at large, coding conventions fall into two broad categories:

laws, explicitly stated and enforced rules, and mores, unspoken common practice that

emerges spontaneously. Mores pose a particular challenge: because they arise sponta-

neously from emergent consensus, they are inherently difficult to codify into a fixed set

of rules, so rule-based formatters cannot enforce them, and even programmers them-

selves have difficulty adhering to all of the implicit mores of a codebase. Furthermore,

popular code changes constantly, and these changes necessarily embody stylistic deci-

sions, sometimes generating new conventions and sometimes changing existing ones.

Conventions are pervasive in software, ranging from preferences about identifier names

to preferences about formatting, object relationships, programming practices and design

patterns.

Coding conventions decisions determine the readability of a program’s source code,

increasing a codebase’s portability, its accessibility to newcomers, its reliability, and

its maintainability (Oracle, 1999, §1.1). “The main reason for using a consistent set of

coding conventions is to standardize the structure and coding style of an application so

that you and others can easily read and understand the code. Good coding conventions

result in precise, readable, and unambiguous source code that is consistent with other

language conventions and as intuitive as possible.”1 Apple’s recent, infamous bug

where a single line was wrongly indented in the SSL certificate handling (Arthur,

2014; Langley, 2014) exemplifies the impact that formatting can have on reliability.

Maintainability is especially important since developers spend the majority (80%) of

their time maintaining code (Bourque et al., 2014, §6).

This section reviews the related research and practice in coding conventions. First,

we discuss naming (Section 3.1) and formatting (Section 3.2) conventions, that are

widely discussed across the majority of the projects. We then focus on code idioms and

design patterns (Section 3.3). Finally in Section 3.4, we review how coding conventions

are used in practice, discussing related tools.

3.1 Naming Coding Conventions

Selecting an appropriate, descriptive name for an identifier is an important problem;

names connect program source to its problem domain (Binkley et al., 2009; Lawrie

et al., 2006b; Liblit et al., 2006; Takang et al., 1996) and appeal to the verbal abilities

1MSDN Documentation https://msdn.microsoft.com/en-us/library/aa733744(v=vs.
60).aspx

https://msdn.microsoft.com/en-us/library/aa733744(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa733744(v=vs.60).aspx

3.1. Naming Coding Conventions 41

of humans (Siegmund et al., 2014). Naming is a particularly active topic of concern

among developers, for example, Allamanis et al. (2015a) found that almost one quarter

of the code reviews contain discussions about naming. Developers constantly rename

identifiers to reflect better reflect their roles (Arnaoudova et al., 2014), a task that 92%

of their participants found “not straightforward”.

Naming in code has achieved a fair amount of research attention. High quality

identifier names lie at the heart of software engineering (Anquetil & Lethbridge, 1999;

Brooks, 1975; Caprile & Tonella, 2000; Deissenboeck & Pizka, 2006; Lawrie et al.,

2007; Soloway & Ehrlich, 1984; Takang et al., 1996; Ohba & Gondow, 2005); they drive

code readability and comprehension (Biggerstaff et al., 1993; Buse & Weimer, 2010;

Caprile & Tonella, 2000; Lawrie et al., 2006a; Liblit et al., 2006; Takang et al., 1996).

According to Broy et al. (2005), identifiers represent the majority (70%) of source code

tokens. Allamanis & Sutton (2013b) found that identifiers is the hardest set of tokens to

be predicted within code. Eshkevari et al. (2011) and Arnaoudova et al. (2014) explored

how identifiers change in code, while Lawrie et al. (2006a) studied the consistency of

identifier namings. Abebe et al. (2011) discuss the importance of naming to concept

location arguing that if the set of tokens used within a software system is relatively low,

removing “lexicon smells” can improve feature location methods. Caprile & Tonella

(2000) propose a framework for restructuring and renaming identifiers based on custom

rules and dictionaries. Gupta et al. (2013) present part-of-speech tagging on split multi-

word identifiers to improve software engineering tools. Because longer names are more

informative (Liblit et al., 2006), these styles share an agglutination mechanism for

creating multi-word names (Anquetil & Lethbridge, 1998; Ratiu & Deißenböck, 2007).

Some programming languages, such as Go, even assign semantic effects to names,

such as visibility. Additionally, several styles exist for engineering consistent identifiers

(Binkley et al., 2009; Caprile & Tonella, 2000; Deissenboeck & Pizka, 2006; Simonyi,

1999).

There has been prior research into identifying poorly named artifacts. Høst &

Østvold (2009) developed a technique for automatically inferring naming rules for

methods based on the return type, control flow, and parameters of methods. Using these

rules they found and reported “naming bugs” by identifying methods whose names

contained rule violations. Naming bugs are mismatches between the map and stemmed

and tagged method names and their predicates in a test set. Arnaoudova et al. (2013)

presented a catalog of “linguistic anti-patterns” in code that lead to developers misun-

derstanding code and built a detector of such anti-patterns. Binkley et al. (2011) used

42 Chapter 3. Background: Coding Conventions

part of speech tagging to find field names that violate accepted patterns, e.g. the field

create_mp4 begins with a verb and implies an action which is a common pattern for a

method rather than a field.

De Lucia et al. (2012) attempted to automatically name source code artifacts using

LSI and LDA and found that this approach doesn’t work as well as simpler methods

such as using words from class and method names. Many studies of naming have also

been conducted giving us insight into its importance. Butler et al. (2010) found that

“flawed” identifier names (those that violate naming conventions or do not follow cod-

ing practice guidelines) are related to certain types of defects, such as the warnings

from the FindBugs static analysis tool. Later they also examined the most frequent

grammatical structures of method names using part of speech tagging (Butler et al.,

2011). Lawrie et al. (2006a) and Takang et al. (1996) both conducted empirical studies

and concluded that the quality of identifier names in code has a profound effect on pro-

gram comprehension and good names are related to a concept mapping of the domain

of the software. Liblit et al. (2006) explored how names in code “combine together

to form larger phrases that convey additional meaning about the code.”. Arnaoudova

et al. (2014) studied identifier renamings, showing that naming is an important part of

software construction. Additionally, in a survey of 94 developers, they found that about

68% of developers think that recommending identifiers would be useful. This is the

problem that Allamanis et al. (2014, 2015a)2 aim to solve. They create a machine learn-

ing framework that learns naming conventions directly from a codebase, without the

need for providing any a priori knowledge about acceptable or unconventional naming

styles.

3.2 Formatting Coding Conventions

Formatting decisions usually capture control flow and are important in facilitating code

understanding (Martin, 2008). Figure 3.1 shows a sample of two different options for

formatting style in Java. Although formatting decisions are highly subjective, maintain-

ing a consistent style within a project is widely accepted. The importance of formatting

conventions and especially indentation is indicated by the fact that some programming

languages (e.g. Python) attach semantic meaning to formatting (e.g. indentation). Badly

formatted code can even introduce bugs, as exemplified by the well-known Apple SSL

bug, where a misleading indentation caused a security vulnerability (Arthur, 2014).

2 Presented in this dissertation in Chapter 4 and Chapter 5.

3.3. Coding Patterns 43

(a) Conventions about including a space after a type cast in Java.

(b) Braces on block openings in new line or the same line.

Figure 3.1: Different formatting coding conventions

Formatting conventions are not widely studied within the academic literature, al-

though are widely enforced by practitioners. Hindle et al. (2009) find that indentation

relates with the readability of the code. Wang et al. (2011) developed a heuristic-based

method to automatically insert blank lines into methods (i.e. vertical spacing) to im-

prove readability. Allamanis et al. (2014) infer the emergent formatting conventions of

a project using an n-gram LM. Finally, Parr & Vinju (2016) create a machine learning-

based formatter that learns to format the code by extracting features from the context

(e.g. parse tree nodes) of each formatting decision point.

3.3 Coding Patterns

Apart from naming and formatting, conventions include the conventional use of various

coding constructs. For example, by conventions the well-known pattern for(i=0;i<N;i++)

is perfected in C when iterating through arrays compared to using a while loop. Dif-

ferent languages and projects have different conventions. Fowler (2009) presents a set

of “code smells” i.e. patterns that should be avoided. Python core developer Raymond

Hettinger, emphasizes how to convert classic coding constructs into more “pythonic”

forms that are more “beautiful and idiomatic” (Hettinger, 2013). For example, instead

of using a temporary variable for swapping the values of two variables var1 and var2

one can use the pythonic assignment

var1, var2 = var2, var1

which is more clear and conventional in Python.

Related to this research, is the work of Allamanis & Sutton (2014)3 who mine

3 Presented in this dissertation in Chapter 7.

44 Chapter 3. Background: Coding Conventions

syntax-level patterns that involve both basic code constructs and APIs. API-specific

patterns can also be viewed as a form of coding conventions. The frequent use of spe-

cific patterns is highly encouraged and has resulted into multiple pieces of work that

aim to mine API patterns (e.g. in sequences or graphs) (Acharya et al., 2007; Holmes

et al., 2006; Zhong et al., 2009; Wang et al., 2013; Fowkes & Sutton, 2015). The perva-

siveness of those patterns, allows a set of (statistical) tools such as API recommenders,

code suggestion and completion systems that aim to help during editing, when a user

may not know the name of an API she needs (Robillard et al., 2010), the parameters

she should pass to the API (Zhang et al., 2012), or that the API call she is making needs

to be preceded by another (Gabel, 2011; Uddin et al.; Wang et al., 2013; Zhong et al.,

2009).

Research in this area has focused mostly on detecting potential API usage errors,

via mining patterns from existing source code. Fast et al. (2014) learns statistics from a

large scale corpus of Ruby to provide statistical linting, flagging uncommon usages of

APIs. Wasylkowski et al. (2007); Gruska et al. (2010) create object usage models and

learn a classifier to detect potentially erroneous code. Mishne et al. (2012) mine tempo-

ral API specifications and track the typestate of each variable. Livshits & Zimmermann

(2005) analyzes source code history to find method calls that are added/removed simul-

taneously and common bug fixes, discovering application-specific coding conventions.

Yang et al. (2006) mine temporal API rules from traces to discover bugs. Nguyen et al.

(2009) mine graphs of API usages and detect anomalies within the code.

Design patterns is a set of coding conventions that discuss architectural patterns

of the code and aim to introduce reusable and easily understandable concepts. Using

those design patterns is a conventional practice, introducing a “vocabulary” that is

well understood among developers (Beck & Cunningham, 1987). Gamma et al. (1995)

introduce design patterns for object oriented programming. Hohpe & Woolf (2004);

Buschmann et al. (2007) extend those patterns. There is a large amount of work around

design patterns that would be impossible to exhaustively discuss here. See Bass (2007)

for a more detailed description. Finally, Dong et al. (2009) present a review of tools for

mining design patterns.

3.4 Enforcing Coding Conventions in Practice

Coding conventions are standard practice (Boogerd & Moonen, 2008; Hatton, 2004)

among practitioners. They facilitate consistent measurement and reduce systematic er-

3.5. Conclusions 45

ror and generate more meaningful commits by eliminating trivial convention enforcing

commits (Wikipedia). Some programming languages like Java and Python suggest

specific coding styles (Oracle, 1999; Rossum et al., 2013), while consortia and compa-

nies publish guidelines for others, like C (Association et al., 2012; Hatton, 2004), C++

(Google, 2010) and JavaScript (AirBnb, 2015).

Many rule-based code convention enforcers (also known as linters) exist but are

usually limited to enforcing formatting, rule-based naming conventions as well as some

best practices and logical errors (i.e. lightweight static analysis tools). The name is due

to lint, one of the first of such tools. Linters aim to flag suspicious language constructs

(e.g. non-portable or non-idiomatic use of constructs) combining this with some static

analysis, thus encoding best practices that are common conventions. Such practices

become a convention throughout each community or a project and the practitioners

most usually correlate them with code readability, maintainability and as a strategy to

avoid erroneous behavior. For example, “W0703: Catching too general exception” of

Pylint is related to the good practice of catching vague exceptions that practitioners

correlate with buggy behavior. Linting tools relate to research on static analyses, al-

though such analyses usually focus on identifying bugs, rather than non-conventional

“bad” practices. Additionally, linters check for rule-based formatting and naming con-

ventions. For example, Pylint checks if names match a simple set of regular expres-

sions (e.g., variable names must be lowercase separated with underscores, if necessary)

and whether a generic exception is caught (i.e. a bad practice); astyle, aspell and

GNU indent4 only format whitespace tokens. gofmt formats the code providing an

authoritative decision on formatting style and “eliminating an entire class of argument”

among developers but provides no guidance for naming or other conventions. In con-

trast to linters that emphasize on style, there is a spectrum of tools that perform static

analysis to find common bugs or bad practices, such as FindBugs (Ayewah et al., 2007),

Coverity (Bessey et al., 2010) and many others. These tools are usually not considered

within the realm of coding conventions

3.5 Conclusions

In this chapter, we presented work related to coding conventions in research and in

practice. These conventions are important for software engineers since they help them

maintain a consistent and maintainable codebase. The necessity for conventions arises

4http://astyle.sourceforge.net/ and http://www.gnu.org/software/indent/

http://www.pylint.org/
http://www.pylint.org/
http://talks.golang.org/2012/splash.slide
http://astyle.sourceforge.net/
http://www.gnu.org/software/indent/

46 Chapter 3. Background: Coding Conventions

from the unconstrained nature of programming languages that allows a multitude of

stylistic choices for expressing identical code semantics. Coding conventions constrain

this space and provide a simplified and unified language that helps developers commu-

nicate through code. The pervasiveness of coding conventions among practitioners and

the multitude of available tools suggest that there are many open research challenges

that touch both software engineering and programming language research one of which

this thesis tackles.

Chapter 4

Learning Variable Naming

Conventions

“Programs must be written for people to read, and

only incidentally for machines to execute.”
– Abelson & Sussman, “Structure and Interpretation

of Computer Programs”

This chapter introduces NATURALIZE, a framework that addresses the coding con-

vention inference problem for local conventions, offering suggestions to increase the

stylistic consistency of a codebase. NATURALIZE is descriptive, not prescriptive1: it

learns what programmers actually do. When a codebase does not reflect consensus on

a convention, NATURALIZE recommends nothing, because it has not learned anything

with sufficient confidence to make recommendations. The naturalness insight of Hindle

et al. (2012), building on Gabel & Su (2010), is that most short code utterances, like

natural language utterances, are simple and repetitive. Large corpus statistical inference

can discover and exploit this naturalness to improve developer productivity and code

robustness. We show that coding conventions are natural in this sense.

Learning from local context allows NATURALIZE to learn syntactic restrictions, or

sub-grammars, on identifier names like camelcase or underscore, and to statistically

group together contexts where a name is used, something that rule-based code for-

matters simply cannot do. NATURALIZE is unique in that it does not require upfront

agreement on hard rules but learns soft rules that are implicit in a codebase.

1Prescriptivism is the attempt to specify rules for correct style in language, e.g., Strunk Jr & White
(1979). Modern linguists studiously avoid prescriptivist accounts, observing that many such rules are
routinely violated by noted writers.

47

48 Chapter 4. Learning Variable Naming Conventions

Intuitively, NATURALIZE works by identifying identifier names that are surprising

according to a probability distribution over code text. When surprised, NATURALIZE

determines if it is sufficiently confident to suggest a renaming that is less surprising;

it unifies the surprising choice with one that is preferred in similar contexts elsewhere

in its training set. NATURALIZE is not automatic; it assists a developer, since its sug-

gestions, are potentially semantically disruptive and must be considered and approved.

NATURALIZE’s suggestions enable a range of new tools to improve developer produc-

tivity and code quality: 1) A pre-commit script that rejects commits that excessively

disrupt a codebase’s conventions; 2) An Eclipse plugin that a developer can use to

check whether her changes are unconventional; and 3) A style profiler that highlights

the stylistic inconsistencies of a code snippet for a code reviewer.

NATURALIZE draws upon a rich body of tools from statistical natural language

processing (NLP), but applies these techniques to a different kind of problem. NLP

focuses on understanding and generating language, but does not ordinarily consider

the problem of improving existing text. The closest analog is spelling correction, but

that problem is easier because we have strong prior knowledge about common types

of spelling mistakes. An important conceptual dimension of our suggestion problems

also sets our work apart from mainstream NLP. In code, rare names often usefully

signify unusual functionality, and need to be preserved. We call this the sympathetic

uniqueness principle (SUP): unusual names should be preserved when they appear in

unusual contexts. We achieve this by exploiting a special token UNK that is often used

to represent rare words that do not appear in the training set. Our method incorporates

SUP through a clean, straightforward modification to the handling of UNK. Because of

the Zipfian nature of language, UNK appears in unusual contexts and identifies unusual

tokens that should be preserved. Section 4.4 demonstrates the effectiveness of this

method at preserving such names.

As NATURALIZE detects identifiers that violate code conventions and assists in

renaming — the most common refactoring (Murphy-Hill et al., 2012) — it is the first

tool we are aware of that uses NLP techniques to aid refactoring.

The techniques that underlie NATURALIZE are language independent and require

only identifying identifiers, keywords, and operators, a much easier task than specifying

grammatical structure. Thus, NATURALIZE is well-positioned to be useful for domain-

specific or esoteric languages for which no convention enforcing tools exist or the

increasing number of multi-language software projects such as web applications that

intermix Java, css, html, and JavaScript.

4.1. Motivating Example 49

To the best of our knowledge, this work is the first to address the coding convention

inference problem, to suggest names to increase the stylistic coherence of code, and to

provide tooling to that end.

The machine learning perspective Learning to predict the name of a variable is not

just an interesting problem for software engineering, but a problem with deep implica-

tions in machine learning and artificial intelligence. Predicting the name of a variable

requires some understanding of the role and function of the variable within its context.

All names — including variable names — carry semantic meaning and since good vari-

able names help humans understand code, learning to name variables should be helpful

for machine learning models that want to “understand” code.

The main contributions of this chapter are:

• We built NATURALIZE, the first framework to address the variable naming con-

vention inference problem and suggests changes to increase a codebase’s adher-

ence to its own conventions;

• We present two machine learning-based methods that are able to learn coding

conventions. We first present a simple n-gram language model and then a neural

log-bilinear context model that we design specifically for the variable naming.

The log-bilinear model can further suggest subtoken naming conventions.

• We offer three tools, built on NATURALIZE, all focused on release management,

an under-tooled phase of the development process.

• NATURALIZE achieves 94% accuracy in its top suggestions for variable names.

Tools are available at groups.inf.ed.ac.uk/naturalize.

4.1 Motivating Example

Both industrial and open-source developers often submit their code for review prior to

check-in (Rigby & Bird, 2013). Consider the example of the class shown in Figure 4.1

which is part of a change submitted for review by a Microsoft developer on February

17th, 2014. While there is nothing functionally wrong with the class, it violates the

coding conventions of the team. A second developer reviewed the change and suggested

that res and str do not convey parameter meaning well enough, the constructor line is

too long and should be wrapped. In the checked-in change, all of these were addressed,

with the parameter names changed to queryResults and queryStrings.

http://groups.inf.ed.ac.uk/naturalize

50 Chapter 4. Learning Variable Naming Conventions

1 public class ExecutionQueryResponse

2 : ExecutionQueryResponseBasic<QueryResults>

3 {

4 public ExecutionQueryResponse(QueryResults res,

5 IReadOnlyCollection<string> str,

6 ExecutionStepMetrics metrics) : base(res, str, metrics) { }

7 }

Figure 4.1: A C# class added by a Microsoft developer that was modified due to requests

by a reviewer before it was checked in. Formatting of the snippet has been changed to

fit the page

Consider a scenario in which the author had access to NATURALIZE. The author

might highlight the parameter names and ask NATURALIZE to evaluate them. At that

point it would have not only identified res and str as names that are inconsistent with

the naming conventions of parameters in the codebase, but would also have suggested

better names. After querying NATURALIZE about her stylistic choices, the author can

then be confident that her change is consistent with the norms of the team and is more

likely to be approved during review. Furthermore, by leveraging NATURALIZE, fellow

project members would not need to be bothered by questions about conventions, nor

would they need to provide feedback about conventions during review. We have ob-

served that such scenarios frequently occur in code reviews (Allamanis et al., 2014). In

Microsoft-internal code reviews about 38% of them discuss coding conventions while

most of them (24% of the reviews) are just about naming. Similar results were also

found on open-source projects.

4.1.1 Use Cases and Tools

Coding conventions are an important aspect of software development (Chapter 3) and

teams of developers strive to maintain a single, consistent coding style throughout each

codebase. However, as the teams grow larger or new developers join, maintaining a

single style becomes harder. In some cases, formal rules can be written, although this

is not always possible. Our use cases aim to support new and existing members of

software development teams to maintain a consistent style of a codebase.

This leads us to target three use cases: 1) a developer preparing an individual com-

mit or branch for review or promotion; 2) a release engineer while preparing a new

4.1. Motivating Example 51

(a) The user right-clicks on the selected variable in the IDE and asks devstyle for suggestions.

(b) Once the user has requested NATURALIZE for suggestions a list of alternate names is shown.

In the screenshot more conventional alternatives to the each parameter are presented.

(c) Users of devstyle can also select a range of code to get suggestions for all the variables

within the selected code.

Figure 4.2: Screenshots of the devstyle Eclipse plugin. The plugin uses the NATU-

RALIZE framework to suggest on-demand conventional alternative names to users. The

plugin can be downloaded from the project website.

52 Chapter 4. Learning Variable Naming Conventions

release trying to remove needless stylistic introduced by the new changes; and 3) a

code reviewer wishing to consider how well a patch or branch obeys the project’s

norms.

Any code modification has a possibility of introducing bugs (Adams, 1984; Na-

gappan & Ball, 2007). This is certainly true of a system, like NATURALIZE, that is

based on statistical inference, even when (as we always assume) all of NATURALIZE’s

suggestions are approved by a human. Because of this risk, the gain from making a

change must be worth its cost. For this reason, our use cases focus on times when the

code is already being changed. To support our use cases, we have built four tools:

devstyle A plugin for the Eclipse IDE that gives suggestions for identifier renaming

both for a single identifier and for the identifiers in a selection of code.

styleprofile A code review assistant that produces a profile that summarizes the

adherence of a code snippet to the coding conventions of a codebase and sug-

gests renaming changes to make that snippet more stylistically consistent with a

project.

stylish? A high precision pre-commit script for Git that rejects commits that have

highly inconsistent and unnatural naming within a project.

Below we detail the use cases and the interactions in some more detail.

devstyle is an “intelligent” code assistant (akin to the “observer” role in pair

programming). The IDE plugin offers two types of suggestions, single point suggestion

under the mouse pointer and multiple point suggestion via right-clicking a selection.

Screenshots from devstyle are shown in Figure 4.2. For single point suggestions,

the user selects the variable where she requires a suggestion and devstyle displays

a ranked list of alternatives to the selected name. If devstyle has no suggestions, it

simply flashes the current name. If the user finds one of the suggestions useful, she

selects it and devstyle renames the variable (α renaming). The user may also select

a range (Figure 4.2c) and ask devstyle for suggestions for all the variables within

the selected range (“multiple point suggestion”). This presents to the user suggestions

for all the names of all the variables that appear at least once in the selected snippet.

By default, for each variable, devstyle returns a list of the top k suggestions. By

default, k = 5 based on usability considerations (Cowan, 2001; Miller, 1956). To accept

a suggestion here, the user must first select a variable to modify, then select an option

from its top alternatives.

styleprofile is a code review assistant that can help the author of a commit under

review and the reviewers select more conventional variable names for the changed code.

4.1. Motivating Example 53

Figure 4.3: Mock-up of styleprofile within GitHub. The user has submitted a code

review that contains the change shown in the diff. A styleprofile bot looks at the

changed code and makes suggestions for alternatives only when the suggestion’s confi-

dence is above a threshold.

The use case assumes that the author of the change has asked for a code review. For

example, this may be a pull request in GitHub, a code review in Gerrit or another code

review tool. A styleprofile bot is notified about the submission of a code review. It

then retrieves the change and computes all suggestions only in the changed code. This

makes sure that no irrelevant renaming suggestion is made. Whenever styleprofile

is confident enough for a given variable, it automatically posts a comment suggesting

alternative names for that variable. Figure 4.3 shows a mock-up of this use case within

GitHub.

stylish? In some development environments, the suggestions of styleprofile

could have been useful earlier, i.e. before the pull request was submitted. To achieve

this, styleprofile can work as a pre-commit script, i.e. when the developer is about

to commit some changes it draws the attention of the developer to variables within the

changed code that could be renamed to a more conventional name. The developer can

then decide whether to accept any of the suggestions or to ignore them.

NATURALIZE uses an existing codebase, called a training corpus, as a reference

from which to learn conventions. Commonly, the training corpus will be the current

codebase, so that NATURALIZE learns domain-specific conventions related to the cur-

rent project. Alternatively, NATURALIZE comes with a pre-packaged suggestion model,

trained on a corpus of popular, vibrant projects that presumably embody good coding

conventions. Developers can use this engine if they wish to increase their codebase’s

adherence to a larger community’s consensus on best practice. Projects that are just

54 Chapter 4. Learning Variable Naming Conventions

Training Corpus
 (other code from project)

Code
for Review Candidates

Top Suggestions

Scoring
Function

(ngram
language

model, SVM)

Proposers
(rename

identifiers,
add formatting)

public void testRunReturnsResult() {
 PrintStream oldOut = System.out;
 System.setOut(new PrintStream(
 new OutputStream() {
 @Override
 public void write(int arg0) throws IOException {
 }
 }
));
 try {
 TestResult result = junit.textui.TestRunner.run(new TestSuite());
 assertTrue(result.wasSuccessful());
 } finally {
 System.setOut(oldOut);
 }
}

public void testRunReturnsResult() {
 PrintStream oldOut = System.out;
 System.setOut(new PrintStream(
 new OutputStream() {
 @Override
 public void write(int arg0) throws IOException {
 }
 }
));
 try {
 TestResult result = junit.textui.TestRunner.run(new TestSuite());
 assertTrue(result.wasSuccessful());
 } finally {
 System.setOut(oldOut);
 }
}

public void testRunReturnsResult() {
 PrintStream oldOut = System.out;
 System.setOut(new PrintStream(
 new OutputStream() {
 @Override
 public void write(int arg0) throws IOException {
 }
 }
));
 try {
 TestResult result = junit.textui.TestRunner.run(new TestSuite());
 assertTrue(result.wasSuccessful());
 } finally {
 System.setOut(oldOut);
 }
}

public void testRunReturnsResult() {
 PrintStream oldOut = System.out;
 System.setOut(new PrintStream(
 new OutputStream() {
 @Override
 public void write(int arg0) throws IOException {
 }
 }
));
 try {
 TestResult result = junit.textui.TestRunner.run(new TestSuite());
 assertTrue(result.wasSuccessful());
 } finally {
 System.setOut(oldOut);
 }
}

public void testRunReturnsResult() {
 PrintStream oldOut = System.out;
 System.setOut(new PrintStream(
 new OutputStream() {
 @Override
 public void write(int arg0) throws IOException {
 }
 }
));
 try {
 TestResult result = junit.textui.TestRunner.run(new TestSuite());
 assertTrue(result.wasSuccessful());
 } finally {
 System.setOut(oldOut);
 }
}

public void testRunReturnsResult() {
 PrintStream oldOut = System.out;
 System.setOut(new PrintStream(
 new OutputStream() {
 @Override
 public void write(int arg0) throws IOException {
 }
 }
));
 try {
 TestResult result = junit.textui.TestRunner.run(new TestSuite());
 assertTrue(result.wasSuccessful());
 } finally {
 System.setOut(oldOut);
 }
}public void testRunReturnsResult() { PrintStream oldOut = System.out;
 System.setOut(new PrintStream(
 new OutputStream() {
 @Override
 public void write(int arg0) throws IOException {
 }
 }
));
 try {
 TestResult result = junit.textui.TestRunner.run(new TestSuite());
 assertTrue(result.wasSuccessful());
 } finally {
 System.setOut(oldOut);
 }
}

Figure 4.4: The architecture of NATURALIZE: a framework for learning coding conven-

tions. A contiguous snippet of code is selected for review through the user interface. A

set of proposers returns a set of candidates, which are modified versions of the snippet,

e.g. with one local variable renamed. The candidates are ranked by a scoring function,

such as an n-gram language model, which returns a small list of top suggestions to the

interface, sorted by naturalness.

starting and have little or no code written can also use as the training corpus a pre-

existing codebase, for example another project in the same organization, whose con-

ventions the developers wish to adopt. Here, again, we avoid normative comparison

of coding conventions, and do not force the user to specify their desired conventions

explicitly. Instead, the user specifies a training corpus, and this is used as an implicit

source of desired conventions. The NATURALIZE framework and tools are available at

groups.inf.ed.ac.uk/naturalize.

4.2 The NATURALIZE Framework

In this section, we introduce the generic architecture of NATURALIZE, which can be

applied to a wide variety of different types of conventions and is language independent.

NATURALIZE is general and can be applied to any language for which a lexer and a

parser exist, as token sequences and variable bindings (ASTs) are used during analysis.

Figure 4.4 illustrates its architecture. The input is a code snippet to be naturalized. This

snippet is selected based on the user input, in a way that depends on the particular tool

in question. For example, in devstyle, if a user selects a local variable for renaming,

the input snippet would contain all API nodes that reference that variable. The output

of NATURALIZE is a short list of suggestions, which can be filtered, then presented to

the programmer. In general, a suggestion is a set of snippets that may replace the input

snippet. The list is ranked by a naturalness score that is defined below. Alternately, the

system can return a binary value indicating whether the code is natural, so as to support

http://groups.inf.ed.ac.uk/naturalize

4.2. The NATURALIZE Framework 55

applications such as stylish?. The system makes no suggestion if it deems the input

snippet to be sufficiently natural, or is unable to find good alternatives. This reduces the

“Clippy effect” where users ignore a system that makes too many bad suggestions. In

the next section, we describe each element in the architecture in more detail.

4.2.1 The Core of NATURALIZE

The architecture contains two main elements: proposers and the scoring function. The

proposers modify the input code snippet to produce a list of suggestion candidates

that can replace the input snippet. In the example from Figure 4.1, each candidate re-

places all occurrences of res with a different name used in similar contexts elsewhere

in the project, such as results or queryResults. In principle, many implausible sugges-

tions could ensue, so, in practice, proposers may contain filtering logic to speed up the

suggestion process.

A scoring function sorts these candidates according to a measure of naturalness.

Its input is a candidate snippet, and it returns a real number measuring naturalness.

Naturalness is measured with respect to a training corpus that is provided to NATU-

RALIZE — thus allowing us to follow our guiding principle that naturalness must be

measured with respect to a particular codebase. For example, the training corpus might

be the set of source files A from the current application. A powerful way to measure

the naturalness of a snippet is provided by probabilistic model of source code. We use

PA(y) to indicate the probability that the model P, which has been trained on the corpus

A, assigns to the code snippet y. The key intuition is that PA is trained so that it assigns

high probability to code in the training corpus, i.e., snippets with higher probability

are more like the training corpus, and presumably more natural. There are several key

reasons why probabilistic models of source code are a powerful approach for modeling

coding conventions. First, probability distributions provide an easy way to represent

soft constraints about conventions. This allows us to avoid many of the pitfalls of in-

flexible, rule-based approaches. Second, because they are based on a learning approach,

these models can flexibly adapt to and generalize from the conventions in an existing

project. Intuitively, because PA assigns high probability to variables that occur in the

training corpus, it also assigns high probability to variables that are similar to those

in the corpus. So the scoring function s tends to favor snippets that are stylistically

consistent with the training corpus.

We score the naturalness of a snippet y with the probabilistic model PA such that

56 Chapter 4. Learning Variable Naming Conventions

s(y,PA) = logPA(y) where s(x,PA)> s(y,PA) implies x is more “natural” than y. Where

it creates no confusion, we write s(y), eliding the second argument. When choosing

between competing candidate snippets y and z, we need to know not only which candi-

date the model prefers, but how “confident” it is. We measure this by a gap function g,

which is the difference in scores

g(y,z,P) = s(y,P)− s(z,P). (4.1)

Because s is a log probability, g is the log ratio of probabilities between y and z. For

example, when g(y,z)> 0 the snippet y is more natural — i.e., less surprising according

to the model — and thus is a better suggestion candidate than z. If g(y,z) = 0 then both

snippets are equally natural.

Now we define the function suggest(x,C,k, t) that returns the top candidates ac-

cording to the scoring function. This function returns a list of top candidates, or the

empty list if no candidates are sufficiently natural. The function takes four parameters:

the input snippet x, the list C = (c1,c2, . . .cr) of candidate snippets, and two thresholds:

k ∈N, the maximum number of suggestions to return, and t ∈ R, a minimum confidence

value. The parameter k controls the size of the ranked list that is returned to the user,

while t controls the suggestion frequency, that is, how confident NATURALIZE needs to

be before it presents any suggestions to the user. Appropriately setting t allows NATU-

RALIZE to avoid the Clippy effect by making no suggestion rather than a low quality

one. Below, we present an automated method for selecting t.

The suggest function first sorts C = (c1,c2, . . .cr), the candidate list, according to

s, so s(c1) ≥ s(c2) ≥ . . . ≥ s(cr). Then, it trims the list to avoid overburdening the

user: it truncates C to include only the top k elements, so that length(C) = min{k,r}.
and removes candidates ci ∈C that are not sufficiently more natural than the original

snippet; formally, it removes all ci from C where g(ci,x) < t. Finally, if the original

input snippet x is the highest ranked in C, i.e., if c1 = x, suggest ignores the other

suggestions, sets C =∅ to decline to make a suggestion, and returns C.

Binary Decision If an accept/reject decision on the input x is required, e.g., as in

stylish?, NATURALIZE must collectively consider all of the locations in x at which

it could make suggestions. We propose a score function for this binary decision that

measures how good is the best possible improvement that NATURALIZE is able to

make. Formally, let L be the set of locations in x at which NATURALIZE is able to make

suggestions, and for each `∈ L, let C` be the system’s set of suggestions at `. In general,

C` contains name suggestions. Recall that P is the probabilistic model of source code.

4.2. The NATURALIZE Framework 57

We define the score

G(x,P) = max
`∈L

max
c∈C`

g(c,x). (4.2)

If G(x,P) > T , then NATURALIZE rejects the snippet as being excessively unnatural.

The threshold T controls the sensitivity of NATURALIZE to unnatural names and format-

ting. As T increases, fewer input snippets will be rejected, so some unnatural snippets

will slip through, but as compensation the test is less likely to reject snippets that are in

fact well-written.

Setting the Confidence Threshold The thresholds t in the suggest function and T in

the binary decision function are on log probabilities of code, which can be difficult for

users to interpret. Fortunately, these can be set automatically using the false positive

rate (FPR), i.e. the proportion of snippets x that in fact follow convention but that the

system erroneously rejects. We would like the FPR to be as small as possible, but,

unless we wish the system to make no suggestions at all, we must accept some false

positives. So we set a maximum acceptable FPR α, and search for a threshold t or T

that ensures that NATURALIZE’s FPR is at most α. The principle is similar to statistical

hypothesis testing. To make this work, we estimate the FPR for a given t or T . To do

so, we select a random set of snippets from the training corpus, e.g., random method

bodies, and compute the proportion of these snippets that are rejected using T . Again

leveraging our assumption that our training corpus contains natural code, this proportion

estimates the FPR. We use a grid search to find the greatest value of T < α (t < α),

the user-specified acceptable FPR bound. In principle, one could use this procedure to

re-calibrate the threshold whenever the user changes the training corpus, although in

practice we have found that a single threshold tends to yield similar FPR across our

evaluation projects.

Suggesting Natural Names We now instantiate the core NATURALIZE framework

for the task of suggesting natural identifier names. An instantiation of the framework

for formatting conventions can be found in the published work of Allamanis et al.

(2014). We start by describing the single suggestion setting. For concreteness, imagine

a user of the devstyle plugin, who selects an identifier and asks devstyle for its

top suggestions. It should be easy to see how this discussion can be generalized to

the other use cases described in Subsection 4.1.1. Let v be the lexeme selected by the

programmer. This lexeme could denote a variable, a method call, or a type, but in this

chapter we are solely concerned with variables.

When a programmer binds a name to an identifier and then uses it, she implicitly

58 Chapter 4. Learning Variable Naming Conventions

links together all the locations in which that name appears. Let L denote this set of

locations, that is, the set of locations in the current scope in which the lexeme v is

used. For example, if v denotes a local variable, then Lv would be the set of locations

in which that local is used. Now, the input snippet is constructed by finding a snippet

that subsumes all of the locations in Lv. Specifically, the input snippet is constructed by

taking the lowest common ancestor in AST of the nodes in Lv. The proposers for this

task retrieve a set of alternative names to v, which we denote Av.

An interesting subtlety involves names that actually should be unique. Identifier

names have a long tail, meaning that most names are individually uncommon. It would

be undesirable to replace every rare name with common ones, as this would violate

the sympathetic uniqueness principle. Fortunately, we can handle this issue in a subtle

way: we convert rare names into the special UNK token. When we do this, UNK exists

as a token in the LM, just like any other name. We simply allow NATURALIZE to

return UNK as a suggestion, just like any other name. Returning UNK as a suggestion

means that the model expects that it would be natural to use a rare name in the current

context. The reason that this preserves rare identifiers is that the UNK token occurs in

the training corpus specifically in unusual contexts where more common names were

not used. Thus, if the input lexeme v occurs in an unusual context, this context is more

likely to match that of UNK than of any of the more common tokens.

Multiple Point Suggestion It is easy to adapt the system above to the multiple

point suggestion task. Recall (see Subsection 4.1.1) that this task is to consider the set

of identifiers that occur in a region x of code selected by the user, and highlight the

lexemes that are least natural in context. For single point suggestion, the problem is

to rank different alternatives, e.g., different variable names, for the same code location,

whereas for multiple point suggestion, the problem is to rank different code locations

against each other according to how much they would benefit from improvement. In

principle, a score function could be good at the single source problem but bad at the

multiple source problem, e.g. if the score values have a different dynamic range when

applied at different locations.

We adapt NATURALIZE slightly to address the multiple point setting. For all iden-

tifier names v that occur in x, we first compute the candidate suggestions Sv as in the

single suggestion case. Then the full candidate list for the multiple point suggestion is

S = ∪v∈xSv; each candidate arises from proposing a change to one name in x. For the

scoring function, we need to address the fact that some names occur more commonly

in x than others, and we do not want to penalize names solely because they occur more

4.3. Choices of Scoring Function 59

often. So we normalize the score according to how many times a name occurs. Formally,

a candidate c ∈ S that has been generated by changing a name v in the locations Lv, we

use the score function s′(c) = |Lv|−1s(c).

4.3 Choices of Scoring Function

The generic framework described in Section 4.2 can, in principle, employ a wide variety

of machine learning or NLP methods for its scoring function. Indeed, a large portion

of the statistical and deep learning-based NLP literature focuses on probability distribu-

tions over text, including language models, probabilistic grammars, topic models and

distributed representations. We choose to use two probabilistic models. As a baseline

model we use the n-gram language models, because previous work of Hindle et al.

(2012) has shown that they are particularly able to capture the naturalness of code. We

also design a novel neural probabilistic log-bilinear context model that takes advantage

of the success of log-bilinear language models (Mnih & Teh, 2012) and is specifically

tailored for source code.

4.3.1 Using the n-gram Language Model

One of the most effective practical LMs is the n-gram language model (see subsubsec-

tion 2.3.1.1). In this work, we use the n-gram LM with the stupid backoff smoothing

(Brants et al., 2007). For our purposes and in our initial experiments stupid backoff

performs as well as other more sophisticated smoothing methods and gives a speedup

necessary for real-time training and use.

Implementation When we use an n-gram model, we can compute the gap function

g(y,z) very efficiently. This is because when g is used within suggest, ordinarily the

code snippets y and z will be similar, i.e., the input snippet and a candidate revision

differ only on the suggested tokens that are renamed. The key insight is that in an

n-gram model, the probability P(y) of a snippet y = (y1y2 . . .yN) depends only on the

multiset of n-grams that occur in y, that is,

NG(y) = {yiyi+1 . . .yi+n−1 |0≤ i≤ N− (n−1)}. (4.3)

An equivalent way to write a n-gram model is

P(y) = ∏
a1a2...an∈NG(y)

P(an|a1,a2, . . .an−1). (4.4)

60 Chapter 4. Learning Variable Naming Conventions

Since the gap function is g(y,z) = log[P(y)/P(z)], any n-grams that are members both

of NG(y) and NG(z) cancel, so to compute g, we only need to consider those n-grams

not in NG(y)∩NG(z). Intuitively, this means that, to compute the gap function g(y,z),

we need to examine the n-grams containing the locations where the snippets y and z

differ. This is a very useful optimization if y and z are long snippets that differ in only

a few locations.

When training an LM, we take measures to deal with rare lexemes, since, by defini-

tion, we do not have much data about them. We use a preprocessing step — a common

strategy in language modeling — that builds a vocabulary with all the identifiers that

appear more than once in the training corpus. Let count(v,b) return the number of ap-

pearances of token v in the codebase b. Then, if a token has count(v,b)≤ 1 we convert

it to a special token, which we denote UNK. Then we train the n-gram model as usual.

The effect is that the UNK token becomes a catchall that means the model expects to

see a rare token, even though it cannot be sure which one.

Proposing Alternative Names One strategy for proposing alternative names is to

suggest all possible tokens in the vocabulary of the n-gram LM. However, we found this

approach to be relatively slow. To reduce the number of candidates, for every location

` ∈ Lv in the snippet x, we take a moving window of length m≤ n around ` and copy

all the m-grams wi that contain that token. Call this set Cv the context set, i.e., the set

of m-grams wi of x that contain the token v. Now we find all m-grams in the training

set that are similar to an m-gram in Cv but that have some other lexemes substituted for

v. Formally, we set Av as the set of all lexemes v′ for which αvβ ∈Cv and αv′β occurs

in the training set. This guarantees that if we have seen a lexeme in at least one similar

context, we place it in the alternatives list. Additionally, we add to Av the special UNK

token and remove all tokens that are not valid identifier names (e.g. reserved keywords,

operators, etc.). Once we have constructed the set of alternative names, the candidates

are a list Sv of snippets, one for each v′ ∈ Av, in which all occurrences of v in x are

replaced with v′.

An n-gram model works well because, intuitively, it favors names that are common

in the context of the input snippet. As we demonstrate in Section 4.4, this does not

reduce to simply suggesting the most common names, such as i and j. For example,

suppose that the system is asked to propose a name for res in line 3 of Figure 4.1.

The n-gram model is highly unlikely to suggest i, because even though the name i is

common it rarely appears in the contexts such as “QueryResults i ,”.

4.3. Choices of Scoring Function 61

4.3.2 Log-bilinear Context Models of Code

As an alternative model we present a neural log-bilinear context model for code, inspired

by neural probabilistic language models for natural language, which have seen many

recent successes (Mnih & Hinton, 2007; Kiros et al., 2013; Mikolov et al., 2013a;

Maddison & Tarlow, 2014). A particularly impressive success of these models has been

that they assign words to continuous vectors that support analogical reasoning. For

example, vector(’king’) - vector(’man’) + vector(’woman’) results in a vector close to

vector(’queen’) (Mikolov et al., 2013a,b). Although many of the basic ideas have a long

history (Bengio et al., 2003), this class of model is receiving increasing interest because

of higher computational power from graphical processing units (GPUs) and because

of more efficient learning algorithms such as noise contrastive estimation (Gutmann &

Hyvärinen, 2012; Mnih & Teh, 2012).

Intuitively, our model assigns to every identifier name used in a project a continuous

vector in a high dimensional space, in such a way that identifiers with similar vectors,

or “embeddings”, tend to appear in similar contexts. Then, to name a variable, we select

the name that is most similar in this embedding space to an embedding computed from

its context. In this way, our model realizes Firth’s famous dictum, “You shall know a

word by the company it keeps”. This slogan encapsulates the distributional hypothesis

(Jurafsky, 2000), that semantically similar words tend to co-occur with the same other

words. Two words are distributionally similar if they have similar distributions over

surrounding words. For example, even if the words “hot” and “cold” never appear

in the same sentence, they will be distributionally similar if they both often co-occur

with words like “weather” and “tea”. The distributional hypothesis is a cornerstone

of much work in computational linguistics, but we are unaware of previous work that

explores whether this hypothesis holds in source code. Earlier work on the naturalness

of code (Hindle et al., 2012) found that code tends to repeat constructs and exploited this

repetition for prediction, but did not consider the semantics of tokens. In contrast, the

distributional hypothesis states that semantically similar tokens are recognized because

they tend to be distributionally similar.

Indeed, we qualitatively show in Section 4.5 that our context model produces embed-

dings that demonstrate implicit semantic knowledge about the similarity of identifiers.

For instance, it successfully discovers matching components of names, which we call

subtokens, like min and max, and height and width. We later use the same model in

Chapter 5 and show that it distinguishes getters and setters, assigns function names

62 Chapter 4. Learning Variable Naming Conventions

with similar functionality (like grow and resize) to similar locations.

Furthermore, to allow us to suggest neologisms, we introduce a new subtoken con-

text model that exploits the internal structure of identifier names. In this model, we pre-

dict names by breaking them into parts, which we call subtokens, such as get, create,

and Height, and then predicting names one subtoken at a time. The subtoken model

automatically infers conventions about the internal structure of identifier names, such

as “an exception variable ends with an Exception”, or “an boolean variable or method

name starts with is”.

Log-bilinear models Here we briefly describe the necessary background for neural

log-bilinear models that are widely used for neural LMs (Bengio et al., 2003). These

models predict the next token ym using a neural network that takes the previous tokens

(i.e. the context of the current prediction) as input. This allows the network to flexibly

learn which tokens provide much information about the immediately following token,

and which tokens provide very little. Unlike an n-gram model, a neural LM makes

it easy to add general long-distance features of the context into the prediction — we

simply add them as additional inputs to the neural network. In our work, we focus on a

simple type of neural LM that has been effective in practice, namely, the log-bilinear

(LBL) LM (Mnih & Hinton, 2007). We start with a general treatment of log-linear

models considering models of the form

P(t|c) = exp(sθ(t,c))
∑t ′ exp(sθ(t ′,c))

(4.5)

where t is the target predicted quantity (the name of a variable for our purposes) and c is

the information (i.e. the “context”) that is used to predict t. Intuitively, sθ is a function

that indicates how much the model likes to see both t and c together, the exp() maps

this to be always positive, and the denominator ensures that the result is a probability

distribution. This choice is very general. For example, if sθ is a linear function of the

features in c, then the discriminative model is simply a logistic regression.

Log-bilinear models learn a map from every possible target t to a vector qt ∈RD, and

from each context c to a vector r̂c ∈ RD. We interpret these as locations of each context

and each target t in a D-dimensional space; these locations are called embeddings or

distributed vector representations. The model predicts that the target t is more likely to

appear in context c if the embedding qt of the target is similar to that r̂c of the context.

To encode this in the model, we choose

sθ(t,c) = r̂>c qt +bt , (4.6)

4.3. Choices of Scoring Function 63

where bt is a scalar bias which represents how commonly t occurs regardless of the

context. To understand this equation intuitively, note that, if the vectors r̂c and qt had

norm 1, then their dot product is simply the cosine of the angle between them. So sθ,

and hence P(t|c), is larger if either vector has a large norm, if bt is large, or if r̂c and

qt have a small angle between them, that is, if they are more similar according to the

cosine similarity metric.

To complete this description, we define the maps t 7→ qt and c 7→ r̂c. For the targets

t, the most common choice is to simply include the vector qt for every t as a parameter

of the model. That is, the training procedure has the freedom to learn an arbitrary map

between t and qt . For the contexts c, this choice is not possible, as there are too many

possible contexts. Instead, a common choice (Maddison & Tarlow, 2014; Mnih & Teh,

2012) is to represent the embedding r̂c of a context as the sum of embeddings of the

elements ci within it, that is,

r̂c =
|c|
∑
i=1

Circi, (4.7)

where rci ∈ RD is a vector for each element in the context that is included in the model

parameters. The variable i indexes every element in the context c, so if the same element

occurs multiple times in c, then it appears multiple times in the sum. The matrix Ci is a

diagonal matrix that serves as a scaling factor depending on the position of a element

within the context. The values in Ci for each i are also included in the learned model

parameters.

To summarize, log-bilinear models make the assumption that every target and every

context can be mapped in a D-dimensional space. There are two kinds of embedding

vectors: those directly learned (i.e. the parameters of the model) and those computed

from the parameters of the model. To indicate this distinction, we place a hat on r̂c to

indicate that it is computed from the model parameters, whereas we write qt without

a hat to indicate that it is a parameter vector that is learned directly by the training

procedure. These models can also be viewed as a three-layer neural network, in which

the input layer encodes all of the elements in c using a 1-of-V encoding, the hidden layer

outputs the vectors rci for each element in the context, and the output layer computes

the score functions sθ(t,c) and passes them to a softmax nonlinearity. For details on

the neural network representation, see Bengio et al. (2003).

To learn these parameters, it has recently been shown (Mnih & Teh, 2012) that

an alternative to the maximum likelihood method called noise contrastive estimation

(NCE) (Gutmann & Hyvärinen, 2012) is effective. NCE allows us to train the model

64 Chapter 4. Learning Variable Naming Conventions

while avoiding the need to explicitly compute the normalization constant, which is a

computationally costly process, especially on large sizes of vocabulary. NCE measures

how well the model P(t|c) can distinguish the real data in the training set from “fantasy

data” that is generated from a simple noise distribution. At a high level, this can be

viewed as a black box alternative to maximum likelihood that measures how well the

model fits the training data and in the limit of infinite fantasy data, the method converges

to maximum likelihood. We optimize the model parameters using stochastic gradient

descent.

Model Description Now we present a neural network, a novel log-bilinear (LBL)

LM for code, which we call a log-bilinear context model. The key idea is that log-

bilinear models make it especially easy to exploit long-distance information; e.g. when

predicting the name of a variable, it is useful to take into account all of the name of

the including method. We model long-distance context via a set of feature functions,

such as “Whether the method where the variable is located contains the subtoken add”,

“Whether the return type of the current method is int,” and so on. The log-bilinear

context model combines these features with the local context.

Suppose that we are trying to predict a code token t given some context c. The

selection of c is a design decision and it could be any ordered set of elements. Fol-

lowing, log-bilinear language models, we define c as a sequence of context tokens

c = (c0,c1, . . . ,cN). We assume that c contains all of the other tokens in the file that are

relevant for predicting t; e.g. tokens from the body of the method where t is defined

and used. A common design decision is that tokens in c that are nearest to the target t

are treated specially. Suppose that t occurs in position i of the file, that is, if the file is

the token sequence t1, t2, . . ., then t = ti. Then the local context is the set of tokens that

occur within K positions of t, that is, the set {ti+k} for −K ≤ k ≤ K,k 6= 0. Therefore,

the local context includes tokens that occur both before and after t.

The overall form of the context model will follow the generic form in Equation 4.5

and Equation 4.6, except that the context representation r̂c is defined differently. In the

context model, we define r̂c using two different types of context: local and global. First,

the local context is handled in a very similar way to the log-bilinear LM. Each possible

lexeme v is assigned to a vector rv ∈ RD, and, for each token tk that occurs within K

tokens of t in the file, we add its representation rtk into the context representation.

The global context is handled using a set of features. Each feature is a binary

function based on the context tokens c, such as the examples described at the beginning

of this section. Formally, each feature f maps a c value to either 0 or 1. Maddison &

4.3. Choices of Scoring Function 65

Contexts:

final boolean isDone = false ;

C−2rfinal + C−1rboolean + C1r= + C2rfalse

while (! isDone) {

C−2r(+ C−1r! + C1r) + C2r}

Features:

boolean , in:MethodBody , final

rboolean + rin:MethodBody + rfinal

r̂context = ∑
f∈Fc

r f +
1
|It |∑i∈It

∑
∀k:K≥|k|>0

Ckrti+k

Variable: isDone

qisDone

r̂context

RD
sθ(.) = r̂>contextqisDone+bisDone

Figure 4.5: Visual explanation of the representation and computation of context in the D-

dimensional space as defined in Equation 4.8; Subsection 4.3.2 explains the sum over

the It locations. Each source code token and feature maps to a learned D-dimensional

vector in continuous space. The token-vectors are multiplied with the position-dependent

context matrix Ci and summed, then added to the sum of all the feature-vectors. The

resulting vector is the D-dimensional representation of the current source code identifier.

Finally, the inner product of the context and the identifier vectors is added to a scalar bias

b, producing a score for each identifier. This neural network is implemented by mapping

its equations into code.

66 Chapter 4. Learning Variable Naming Conventions

Tarlow (2014) use a similar idea to represent features of a syntactic context, that is, a

node in an AST. Here, we extend this idea to incorporate arbitrary features of long-

distance context tokens c. The first column of Table 4.2 presents the full list of features

that we use.

To learn an embedding, we assign each feature function to a single vector in the

continuous space, in the same way as we did for tokens. Mathematically, let F be the

set of all features in the model, and let Fc, for a context c, be the set of all features f ∈ F

with f (c) = 1 (i.e. are active). For each feature f ∈ F , we learn an embedding r f ∈ RD,

which is included as a parameter to the model in exactly the same way that rt was for

the language modeling case.

Now, we can formally define a context model of code as a probability distribution

P(t|c) that follows the form (4.5) and (4.6), where r̂c = r̂context , where r̂context is

r̂context = ∑
f∈Fc

r f + ∑
∀k:K≥|k|>0

Ckrti+k , (4.8)

where, as before, Ck is a position-dependent D×D diagonal context matrix that is also

learned during training2. Intuitively, this equation sums the embeddings of each token

tk that occurs near t in the file, and sums the embeddings of each feature function f that

returns true (i.e., 1) for the context c. Once we have this vector r̂context , just as before,

we can select a token t such that the probability P(t|c) is high, which happens exactly

when r̂>contextqt is high — in other words, when the embedding qt of the proposed target

t is close to the embedding r̂context of the context.

Figure 4.5 gives a visual explanation of the probabilistic model. This figure depicts

how the model assigns probability to the variable isDone if the preceding two tokens

are final boolean and the succeeding two are = false. Reading from top to bottom,

the figure describes how the continuous embedding of the context is computed. Fol-

lowing the dashed (pink) arrows, the tokens in the local context are each assigned to

D-dimensional vectors rfinal, rboolean, and so on, which are added together (after

multiplication by the C−k matrices that model the effect of distance), to obtain the effect

of the local context on the embedding r̂context . The solid (blue) arrows represent the

global context, pointing from the names of the feature functions that return true to the

continuous embeddings of those features. Adding the feature embeddings to the local

context embeddings yields the final context embedding r̂context . The similarity between

this vector and embedding of the target vector qisDone is computed using a dot product,

2Note that k can be positive or negative, so that in general C−2 6=C2.

4.3. Choices of Scoring Function 67

which yields the value of sθ(isDone,c) which is necessary for computing the probability

P(isDone|c) via Equation 4.5. We employ NCE for our log-bilinear model.

Multiple Target Tokens Up to now, we have presented the model in the case where

we are renaming a target token t that occurs at only one location. In practical cases,

when suggesting variable names, we need to take all of the occurrences of a name into

account, as when we used the n-gram LM. When a token t appears at a set of locations

Lt , we compute the context vectors r̂context separately for each token ti, for i ∈ Lt , then

average them, i.e.

r̂context = ∑
f∈Fc

r f +
1
|Lt | ∑i∈Lt

∑
∀k:K≥|k|>0

Ckrti+k (4.9)

When we do this, we carefully rename all occurrences of t to a special token called

SELF to remove t from its own context.

Proposing Alternative Names Similar to the n-gram LM we need a method for

proposing alternative names. For the LBL model, we simply use the whole vocabulary

(i.e. all variable names in the training set). This does not incur any extra costs since the

model always computes the probability of all tokens in the last (softmax) step.

4.3.3 Subtoken Context Models of Code

A limitation of all of the previous models is that they are unable to predict neologisms,

that is, unseen identifier names that have not been used in the training set. The reason

for this is that we allow the map from a lexeme v to its embedding qv to be arbitrary (i.e.

without learning a functional form for the relationship), so we have no basis to assign

continuous vectors to identifier names that have not been observed. In this section, we

sidestep this problem by exploiting the internal structure of identifier names, resulting

in a new model which we call a subtoken context model.

The subtoken context model exploits the fact that identifier names are often formed

by concatenating words in a phrase, such as elementList or isDone. We call each of the

smaller words in an identifier a subtoken. We split identifier names into subtokens based

on camel case and underscores, resulting in a set of subtokens that we use to compose

new identifiers. To do this, we exploit the summation trick we used in r̂context . Recall

that we constructed this vector as a sum of embedding vectors for particular features

in the context. Here, we define the embedding of a target vector to be the sum of the

embeddings of its subtokens.

68 Chapter 4. Learning Variable Naming Conventions

Let t be the token that we are trying to predict from a context c. As in the context

model, c can contain tokens before and after t, and tokens from the global context.

In the subtoken model, we additionally suppose that t is split up into a sequence of

M subtokens, that is, t = s1s2 . . .sM, where sM is always a special END subtoken that

signifies the end of the subtoken sequence and s1 is special START token. That is, the

context model now needs to predict a sequence of subtokens in order to predict a full

identifier. We begin by breaking up the prediction one subtoken at a time, using the

chain rule of probability: P(s1s2 . . .sM|c) = ∏
M
m=1 P(sm|s1 . . .sm−1,c). Then, we model

the probability P(sm|s1 . . .sm−1,c) of the next subtoken sm given all of the previous ones

and the context. Since preliminary experiments with an n-gram version of a subtoken

model showed that n-grams did not yield good results, we employ a log-bilinear model

P(sm|s1 . . .sm−1,c) =
exp{sθ(sm,s1 . . .sm−1,c)}

∑s′ exp{sθ(s′,s1 . . .sm−1,c)}
. (4.10)

As before, sθ(sm,s1 . . .sm−1,c) can be interpreted as a score, which can be positive or

negative and indicates how much the model “likes” to see the subtoken sm, given the

previous subtokens and the context. The exponential functions and the denominator are

a mathematical device to convert the score into a probability distribution.

We choose a bilinear form for sθ, with the difference being that in addition to tokens

having embedding vectors, subtokens have embeddings as well. Mathematically, we

define the score as

sθ(sm,s1 . . .sm−1,c) = r̂>SUBC
qsm +bsm, (4.11)

where qsm ∈RD is an embedding for the subtoken sm, and r̂SUBC is a continuous vector that

represents the previous subtokens and the context. To define a continuous representation

r̂SUBC of the context, we break this down further into a sum of other embedding features

as

r̂SUBC = r̂context + r̂SUBC-TOK. (4.12)

In other words, the continuous representation of the context breaks down into a sum

of two vectors: the first term r̂context represents the effect of the surrounding tokens —

both local and global — and is defined exactly as in the context model via (4.8).

The new aspect is how we model the effect of the previous subtokens s1 . . .sm−1 in

the second term r̂SUBC-TOK. We handle this by assigning each subtoken s a second embed-

ding vector rs ∈ RD that represents its influence when used as a previous subtoken; we

call this a history embedding. We weight these vectors by a diagonal matrix CSUBC

−k , to

4.3. Choices of Scoring Function 69

allow the model to learn that subtokens have decaying influence the farther that they

are from the token that is being predicted. Putting this all together, we define

r̂SUBC-TOK =
M

∑
i=1

CSUBC

−i rsm−i. (4.13)

This completes the definition of the subtoken context model. To sum up, the parameters

of the subtoken context model are (a) the target embeddings qs for each subtoken s that

occurs in the data, (b) the history embeddings rs for each subtoken s, (c) the diagonal

weight matrices CSUBC

−m for m = 1,2, . . . ,M that represent the effect of distance on the

subtoken history (we use M = 3, yielding a 4-gram-like model on subtokens) and

the parameters that we carried over from the log-bilinear context model: (d) the local

context embeddings rt for each token t that appears in the context, (e) the local context

weight matrices C−k and Ck for −K ≤ k ≤ K,k 6= 0, and (f) the feature embeddings r f

for each feature f ∈ F of the global context. We estimate all of these parameters from

the training corpus.

Although this may seem a large number of parameters, this is typical for language

models, e.g., consider the V 5 parameters, if V is the number of lexemes, required by a

5-gram language model.

Generating Neologisms A final question is “Given the context c, how do we find the

lexeme t that maximizes P(t|c)?”. Previous models could answer this question simply

by looping over all possible lexemes in the model, but this is impossible for a subtoken

model, because there are infinitely many possible neologisms. So we employ beam

search (see Russell & Norvig (1995) for details) to find the B tokens (i.e. subtoken

sequences) with the highest probability.

4.3.4 Source Code Features for Context Models

Finally, we describe the features we use to capture global context. Identifying software

measures and features that effectively capture semantic properties like comprehensibil-

ity or bug-proneness is a seminal software engineering problem that we do not tackle in

this work. Here, we have selected measures and features heavily used in the literature

and industry. The first column of Table 4.2 defines the features we used. In more detail,

“Variable Type” tracks whether the type is generic, its type after erasure, and, if the

type is an array, its size. “AST Ancestors” tracks the AST ancestors nodes of the loca-

tion of the variable declaration, “Declaration Modifiers” includes any modifiers of the

variable declaration (e.g. final, volatile, etc.). Finally, the method, class, superclass

70 Chapter 4. Learning Variable Naming Conventions

and interface name subtokens include all the subtokens in the names of the containing

method, containing class and the names of the implemented interfaces and inherited

superclasses.

The features of a target variable name are its global features; we assign a r f vector

to each of them; this vector is added in the left summation of Equation 4.8 if a feature’s

indicator function f returns 1 for a particular variable (i.e. if f ∈ Fc). Although features

are binary, we describe some — like the modifiers of a declaration, the node type of a

AST, etc. — as categorical. All categorical features are converted into binary using a

1-of-K encoding.

4.4 Evaluation

Data We picked the top active Java GitHub projects on January 22nd 2015. We

obtained the most popular projects by taking the sum of the z-scores of the number of

watchers and forks of each project, using the GitHub Archive. Starting from the top

project, we selected the top 20 projects excluding projects that were in a domain that

was previously selected. We also included only projects with more than 50 collaborators

and more than 500 commits. The projects along with short descriptions are shown in

Table 4.1. We used this procedure to select a mature, active, and diverse corpus with

large development teams. Finally, we split the files uniformly into a training (70%) and

a test (30%) set.

Methodology We train all models on each of the training sets formed over the files

of each project, retrieving one trained log-bilinear model per project. To evaluate the

models, for each of the test files and for each variable (all identifiers that resolve to

the same symbol), we compute the global features and local context of the location of

the identifier and ask the model to predict the actual target token the developer used

(which is unknown to the model). Due to the use cases we consider (Subsection 4.1.1),

models that are deployed with a “confidence filter”, that is, the model will only present

a suggestion to the user when the probability of the top ranked name is above some

threshold. This is to avoid annoying the user with low-quality suggestions. To reflect

this in our evaluation, we measure the degree to which the quality of the results changes

as a function of the threshold. Rather than reporting the threshold, which is not directly

interpretable, we instead report the suggestion frequency, which is the percentage of

names in the test set for which the model decides to make a prediction for a given

threshold.

https://www.githubarchive.org/

4.4. Evaluation 71

Table 4.1: Java Evaluation Projects from GitHub. Ordered by popularity.

Name Git SHA Description

elasticsearch d3e10f9 REST Search Engine

Android-Universal-Image-Loader 19ce389 Android Library

spring-framework 2bf6b41 Application Framework

libgdx 789aa0b Game Development Framework

storm bc54e8e Distributed Computation

zxing 71d8395 Barcode image processing

netty 3b1f15e Network App Framework

platform_frameworks_base f19176f Android Base Framework

bigbluebutton 02bc78c Web Conferencing

junit c730003 Testing Framework

rxjava cf5ae70 Reactive JVM extensions

retrofit afd00fd REST client

clojure f437b85 Programming Language

dropwizard 741a161 RESTful web server

okhttp 0a19746 HTTP+SPDY client

presto 6005478 Distributed SQL engine

metrics 4984fb6 Metrics Framework

spring-boot b542aa3 App Framework Wrapper

bukkit f210234 Minecraft Mod API

nokgiri a93cde6 HTML/XML/CSS parser

https://github.com

72 Chapter 4. Learning Variable Naming Conventions

To measure the quality of a suggestion, we compute the F1 score and the accuracy

for the retrieval over the subtokens of each correct token. Thus, all methods are given

partial credit if the predicted name is not an exact match but shares subtokens with

the correct name. F1 is the harmonic mean of precision and recall and is a standard

measure (Manning et al., 2008) because it is conservative: as a harmonic mean, its value

is influenced most by the lowest of precision and recall. We also compute the accuracy

of each prediction: a prediction is correct when the model predicts exactly (exact match)

the actual token. When computing the F1 score for suggestion rank k > 1, we pick the

precision, recall, and F1 of the rank l ≤ k that results in the highest F1 score.

Because this evaluation focuses on popular projects, the results may not reflect

performance on a low quality project in which many names are poor. For such projects,

we recommend training on a different project that has high quality names, but leave

evaluating this approach to future work. Alternatively, one could argue that, because we

measure whether the model can reproduce existing names, the evaluation is too harsh:

if a predicted name does not match the existing name, it could be equally good, or even

an improvement. Nonetheless, matching existing names in high quality projects, as we

do, still provides evidence of overall suggestion quality, and, compared to a user study,

an automatic evaluation has the great advantage that it allows efficient comparison of a

larger number of different methods.

Finally, during training, we substitute rare identifiers, subtokens and features (i.e.

those seen less than two times in the training data) with a special UNK token. During

testing, when any of the models suggests the UNK token, we do not make any sug-

gestions; that is, the UNK token indicates that the model expects a neologism that it

cannot predict. For the subtoken model, during testing, we may produce suggestions

that contain UNK subtokens, which are ignored in the evaluation. In the unlikely case

that a context token ti+k = ti (i.e. is the same token), we replace ti+k with a special SELF

token. This makes sure that the context of the model includes no information about the

target token.

Training Parameters For the n-gram LM we use n = 5 and prune all tokens that

appear only once in our dataset. We use stupid backoff (Brants et al., 2007) for smooth-

ing. For the log-bilinear model, we used learning rate 0.07, D = 50, minibatch size

100, dropout 20% (Srivastava et al., 2014), generated 10 distractors for each sample

for each epoch in NCE and trained for a maximum of 25 epochs picking the param-

eters that achieved the maximum likelihood in a held out validation set (the 10% of

the training data). The context size was set to K = 6 and subtoken context size was

4.4. Evaluation 73

set to M = 3. Before the training started, parameters were initialized around 0 with

uniform additive noise (scaled by 10−4). The bias parameters b were initialized such

that P(t|c) matches the empirical (unigram) distribution of the tokens (or subtokens for

the subtoken model). All the hyperparameters except for D were tuned using Bayesian

optimization on bigbluebutton. The parameter D is special in that as we increase it,

the performance of each model increases monotonically (assuming a good validation

set and no overfitting), with diminishing returns. Also, an increase in D increases the

computational complexity of training and testing each model. We picked D = 50 that

resulted in a good trade-off of the computational complexity vs. performance.

4.4.1 Quantitative Evaluation

Single Point Variable Naming Figure 4.6 shows the performance of the baseline

n-gram model along with the performance of the other neural models for variable

names. For low frequency of suggestions (high confidence decisions), the neural models

overperform the n-gram-based suggestions. This is expected since such models perform

better than plain n-gram models in NLP (Mnih & Teh, 2012). Additionally, the features

give a substantial performance increase over the models that lack features.

The subtoken model performs worse compared to the token-level LBL model for

suggestion frequencies higher than 6%. This is to be expected, since the subtoken

model has to make a sequence of increasingly uncertain decisions, predicting each

subtoken sequentially, increasing the possibility of making a mistake at some point.

For suggestion frequencies lower than 6% the performance of the subtoken model is

slightly better compared to the token-level model, thanks to its ability to generate novel

identifiers.

It should be noted that Figure 4.6 presents the results when using the suggestion

filtering that includes UNK suggestions. Essentially, the models are able to predict UNK

in rare contexts when they have sufficient indication that a rare or surprising token

should be used. This explains why the curves stop after some suggestion frequency

where no more non-UNK suggestions can be made. In Figure 4.7, we plot the same

statistic ignoring UNK suggestions and forcing the models to always make a suggestion.

The results now differ, showing that the subtoken model performs better for suggestions

frequencies that are less than 20%, while the n-gram LM performs reasonably well. The

difference between Figure 4.6 and Figure 4.7 suggests that the LBL models are more

“conservative”, assigning higher probabilities to UNK and making fewer suggestions.

74 Chapter 4. Learning Variable Naming Conventions

0.0 0.2 0.4 0.6 0.8 1.0
Suggestion Frequency

0.0

0.2

0.4

0.6

0.8

1.0

Su
gg

es
ti

on
F

1

ngram
lbl-subtoken
lbl

(a) Rank 1

0.0 0.2 0.4 0.6 0.8 1.0
Suggestion Frequency

0.0

0.2

0.4

0.6

0.8

1.0

Su
gg

es
ti

on
F

1

ngram
lbl-subtoken
lbl

(b) Rank 5

Figure 4.6: Single point suggestion for evaluation projects. Here we show the perfor-

mance of the methods, when using the suggestion filtering method. The lines stop when

there are no more confident suggestions to be made.

This will be also illustrated from the stylish? evaluation later in this section. One

many note that the LBL models at high suggestion frequencies improve their perfor-

mance. This suggests that these models tend to underestimate the confidence of some

suggestions, although they are correct. This could have to do with variable names that

appear in rarer contexts. In the future, better estimation of the confidence and its vari-

ance is needed. In addition, when we ignore UNK suggestions (Figure 4.7) the subtoken

LBL model achieves better performance because it able to get good partial credit for

correct subtokens. This suggests that the subtoken model has learned successfully subto-

ken conventions of variable names (e.g. that a member field name may by-convention

start with the m_ prefix).

A natural question is how the features improve upon the performance of the LBL

model. In Table 4.2 we show the absolute performance increase over a model that con-

tains no features. We computed Table 4.2 over only three classes because of the cost of

retraining the model one feature at a time. Looking at Table 4.2 one may see how each

feature affects the performance of the models over the baseline neural model with no

features at rank k = 5. First, we observe that the features help mostly at high suggestion

frequencies. This is due to the fact that for high-confidence (low suggestion frequency)

decision the models are already good at predicting those names. Additionally, combin-

ing all the features yields a performance increase, suggesting that for variable names,

only the combination of the features gives sufficiently better information about variable

naming.

4.4. Evaluation 75

Table 4.2: Absolute increase in performance for each type of feature compared to the

normal and subtoken models with no features at 5% suggestion frequency and at 20%

suggestion frequency for rank k = 5. Averages from clojure, elasticsearch and libgdx,

chosen uniformly at random from all projects in our corpus.

Feature

Absolute F1 Increase (%) Absolute Accuracy Increase (%)

Simple Subtoken Simple Subtoken

@5% @20% @5% @20% @5% @20% @5% @20%

AST Ancestors -0.3 -1.0 0.9 2.6 2.0 0.7 0.8 2.5

One feature per parent and grand-

parent AST nodes of declaration

Method, Class, Superclass

and Interface Subtokens

-1.2 0.1 0.0 1.0 1.1 1.8 0.1 0.8

One feature for common identifiers

subtokens

Declaration Modifiers -0.1 -0.1 0.7 1.9 2.2 0.7 0.2 1.4

one feature per modifier

Variable Type -0.2 -0.3 0.6 3.8 2.1 1.5 0.3 3.3

one feature for each type and fea-

tures denoting if the type is generic,

array, etc.

All 1.2 4.8 -0.8 5.8 2.1 5.0 -0.9 5.7

76 Chapter 4. Learning Variable Naming Conventions

0.0 0.2 0.4 0.6 0.8 1.0
Suggestion Frequency

0.0

0.2

0.4

0.6

0.8

1.0

Su
gg

es
ti

on
F

1

ngram
lbl-subtoken
lbl

(a) Rank 1

0.0 0.2 0.4 0.6 0.8 1.0
Suggestion Frequency

0.0

0.2

0.4

0.6

0.8

1.0

Su
gg

es
ti

on
F

1

ngram
lbl-subtoken
lbl

(b) Rank 5

Figure 4.7: Single point suggestion for evaluation projects. Here we show the perfor-

mance of the methods, without using the suggestion filtering method. This forces the

models to make suggestions even when UNK is of higher probability.

Rejection Script Evaluation Now we evaluate the ability of stylish? to discrimi-

nate between code selections that follow conventions well from those that do not, by

mimicking commits that contain unconventional variable names. Uniformly at random,

we selected all methods from each project that contain at least one variable identifier,

then uniformly (50%), we either made no changes or perturbed one identifier to UNK.

This method for mimicking commits is a worst case scenario for stylish?. The mod-

els view the UNK just as an unseen name, rather as a name that is already known for

the “preferences” of its context. For example, perturbing a variable named color to i is

significantly more unconventional (and thus easy to detect by stylish?) compared to

the generic UNK name.

We run stylish? and record whether the perturbed snippet is rejected because

of its names. stylish? is unaware of the perturbation (if any) made to the snippet.

Figure 4.8 reports NATURALIZE’s rejection performance as ROC curves. In each curve,

each point corresponds to a different choice of threshold T , and the x-axis shows false

positive rate (FPR), and the y-axis shows true positive rate (TPR), the proportion of the

perturbed snippets that we correctly rejected. NATURALIZE achieves high precision for

low recall, making it suitable for use as a filtering pre-commit script. When the false

positive rate (FPR) is at most 0.05, we are able to correctly reject 17% of the snippets,

using our LBL model. However, the performance is lower for higher FPR suggesting

that future work is needed to improve performance.

Junk Names A junk name is a semantically uninformative name used in disparate

4.4. Evaluation 77

0.0 0.2 0.4 0.6 0.8 1.0
FPR

0.0

0.2

0.4

0.6

0.8

1.0

T
P

R

ngram
lbl
lbl-subtoken

(a) Full range

0.00 0.05 0.10 0.15 0.20
FPR

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

T
P

R

ngram
lbl
lbl-subtoken

(b) Zoomed on TPR<20%

Figure 4.8: Receiver Operating Curve (ROC) for rejection script. Given a random code

snippet, with probability 50% we perturbing a variable to UNK or leave everything un-

changed. We then ask stylish? to either reject or accept the given snippet. The graph

shows for a given FPR that a developer can tolerate the percent of the of perturbed

snippets that stylish? correctly reject.

contexts. It is difficult to formalize this concept: for instance, in almost all cases, foo

and bar are junk names, while i and j, when used as loop counters, are semantically

informative and therefore not junk. Despite this, most developers “know it when they

see it.”

One might at first be concerned that NATURALIZE would often suggest junk names,

because junk names appear in many different n-grams in the training set. We argue,

however, that in fact the opposite is the case: NATURALIZE actually resists suggesting

junk names. This is because if a name appears in too many contexts, it will be impossible

to predict a unsurprising follow-up, and so code containing junk names will have lower

probability, and therefore worse score.

To evaluate this claim, we randomly rename variables to junk names in each project

to simulate a low quality project. Notice that we are simulating a low quality training set,

which should be the worst case for NATURALIZE. We measure how our suggestions are

affected by the proportion of junk names in the training set. To generate junk variables

we use a discrete Zipf’s law with slope s = 1.08, the slope empirically measured for

all identifiers in our evaluation corpus. We verified the Zipfian assumption in previous

work (Allamanis & Sutton, 2013b). Figure 4.9 shows the effect on our suggestions as

the evaluation projects are gradually infected with more junk names. The framework

successfully avoids suggesting junk names, proposing them at a lower frequency than

they exist in the perturbed codebase.

78 Chapter 4. Learning Variable Naming Conventions

10−2 10−1

Percent of junk identifiers introduced in corpus

10−3

10−2

10−1

Pe
rc

en
t

of
id

en
ti

fie
rs

re
na

m
ed

to
ju

nk
na

m
es

Figure 4.9: Is NATURALIZE robust to low-quality corpora? The x-axis shows percentage

of identifiers perturbed to junk names to simulate low quality corpus. The y-axis is

percentage of resulting low quality suggestions. Note log-log scale. The dotted line

shows y = x. The boxplots are across the 10 evaluation projects.

2 4 6 8 10
Threshold t

0.2

0.4

0.6

0.8

1.0

%
su

rp
ri

si
ng

na
m

es
pr

es
er

ve
d

Figure 4.10: NATURALIZE does not cause the “heat death” of a codebase: we evaluate

the percent of single suggestions made on UNK identifiers that preserve the surprising

name. The threshold t on the x-axis controls the suggestion frequency of suggest; lower

t gives suggest less freedom to decline to make low-quality suggestions.

4.5. Learned Representations 79

4.4.2 Suggestions Accepted by Projects

Using NATURALIZE’s styleprofile, we identified high confidence renamings and

submitted 18 of them as patches to the 5 evaluation projects that actively use GitHub.

Four projects merged our pull requests (14 of 15 commits); the last ignored them with-

out comment. Developers in the projects that accepted NATURALIZE’s patches found

the NATURALIZE useful: one said “Wow, that’s a pretty cool tool!”. JUNIT did not

accept two of the suggested renamings as-is. Instead, the patches sparked a discussion.

Its developers concluded that another name was more meaningful in one case and that

the suggested renaming of another violated the project’s explicit naming convention:

“Renaming e to t is no improvement, because we should consistently use e.”. We then

pointed them to the code locations that supported NATURALIZE’s suggestion. This

triggered them to change all the names that had caused the suggestion in the first place

— NATURALIZE pointed out an inconsistency, previously unnoticed, that improved the

naming in the project. Our project webpage has links to these discussions and they are

also included in Appendix B. This suggests that NATURALIZE can be useful to develop-

ers and provide good suggestions that improve the stylistic consistency. A large-scale

user study is future work.

4.5 Learned Representations

In this section, we evaluate the log-bilinear model qualitatively, by visualizing the

learned embeddings. All of the LBL models that we have described assign tokens, fea-

tures, and subtokens to embeddings, which are locations in a D-dimensional continuous

space. These locations have been selected by the training procedure to explain statistical

properties of tokens, but it does not necessarily follow that the embeddings capture any-

thing about the semantics of names. To explore this question, we examine qualitatively

whether names that appear semantically similar to us are assigned to similar embed-

dings, by visualizing the continuous embeddings assigned to names from a few projects.

This raises the immediate difficulty of how to visualize vectors in a D = 50 dimensional

space. Fortunately, there is a rich literature in statistics and machine learning about di-

mensionality reduction methods that map high dimensional vectors to two-dimensional

vectors while preserving important properties of the original space. There are various

ideas behind such techniques, such as preserving distances or angles between nearby

points, or minimizing the distance between each point and its image in the 2D space.

https://github.org
https://github.com/libgdx/libgdx/pull/1400
https://github.com/junit-team/junit4/pull/834
http://groups.inf.ed.ac.uk/naturalize/

80 Chapter 4. Learning Variable Naming Conventions

10 15 20 25 30 35

10

5

0

5

10

15

LOG

declarer

td

_fieldName

oprot

byName

fieldId
thriftId

iprot

field

STRUCT_DESC

tmpMap setField

MSG_FIELD_DESC

_nodes

spoutTaskId

pd

ID_FIELD_DESC
NAME_FIELD_DESC

COMMON_FIELD_DESC

JSON_CONF_FIELD_DESC

nodesFound

topId

origRequest

lesserPools

slotsRequested
slotsUsed

nodesNeeded

slotsToUse

slotsFree
slotsNeeded

sortedNodes
OPTIONS_FIELD_DESC

foundallNodes

(a) Variable embeddings visualization for the strom project. The plot shows that similar variable

names are embedded nearby in the space. For example, the field descriptors ending in _DESC

are grouped together and the slot related collections are also close together.

10 15 20 25 30 35

20

25

30

35

40

45

Descriptor

Val

Loader

end

CharLong

Value

Argument

Depth

Index

Position

last

Length

collection oname

profile

Writer

Tag Object

converter

Modified

Escape

LiteralEndStart

Output
Input

node
Entry

Wrapper

colon
Idx

Requiring

Expected

Notification

classfile

approximable

Relative

Descriptors

Numbers

VisitorLen

Arguments

Paren

stripped

12

Pos

Converted

coll

canonical
pce

Slashed

BeingRedefined
protection

Dot

convertible

BoundsGenerics

Subtype

Generated

Plus

Minute

CriteriaCharacter Eval

Closing

Node

Profile

(b) Variable subtoken embeddings visualization for the spring-framework. The log-bilinear model

learns embeddings for each subtoken, relating implicitly similar tokens. For example, the tokens

profile and Profile are close together, although the model has no knowledge of their textual

similarity. Similarly, Len and Length, coll and collection are also grouped together. The

model also groups semantically similar words e.g. Input and Output together.

Figure 4.11: Variable tokens and subtokens embeddings visualization using t-SNE

(van der Maaten & Hinton). t-SNE preserves distances but not angles. Note that dif-

ferent executions of t-SNE would return potentially different visualizations.

Classical techniques for dimensionality reduction include principal components analy-

sis (PCA) and multidimensional scaling. We will also employ a more modern method

called t-SNE (van der Maaten & Hinton).

Figure 4.11 shows two hand-picked visualizations of the 50-dimensional embed-

dings learned by the neural model. The 50 dimensional embeddings are projected

onto the two-dimensional space using t-SNE. The graphs presented in Figure 4.11

are necessarily hand-picked examples from a much larger space. Additionally, since

t-SNE has a stochastic behavior, the visualizations are also only one possible 2D pro-

jection of the 50-dimensional space. The models learn to place semantically similar

(sub)tokens close together. This is true for names that are lexicographically close (e.g.

4.5. Learned Representations 81

action

value

values

points

offset
count flag

contact

joystick

shader
texture

descriptor path file

parameter

name

region

color

arg

args

vec

array

shape

point

result

bounds

button

actor

model

id

node

meshPart
disposable

material

attributes

test

position

config

hints
asset

object

line

buffer

item
items

mode

emitter

instance
instances

assets

lights

val

key

listener
listeners

runnable

filesrunnables

renderables

cache

cell

tile

vectors

charactereffect

colors
row

emitters

flags

handle

vals

pages

glyphs

params
face

annotation

field

annotations

caches

layers
controllers

sprite

sprites
triangle

modes

processor

hint

frame

touchEvents

keyframes

constraints
image

regions

page

method

textures

controller
viewports

names

viewport

handles

contentcontacts

models

constraint

framebuffer

param
location

pixels

units
attachment

rect

extension

frames

extensions

keys
actors

columns

columnpad
shapes

rows

results

vector

renderable

shaders
attribute

framebuffers

renderbuffers

buffers

positions

attachments

samplersarrays

unit

sampler

layer

nodes

contents

descriptors
parts

methods
fields

resourcetilesets

resources

locations

objects

counts

buttons

keyEvents

bit

effectsmeshParts

keyframe animation
materials

partanimations

disposables
tiles

tokens

tokenpaths
glyph

loader

pads

rects

keyEvent

touchEvent

parameters

offsets

tests

section
vecs
sections

processors

loaders

bound

images

actions

lines

tileset

configs

pixel

light

joysticks

triangles

faces

bits

characters

Figure 4.12: A 2D linear projection, using PCA, of the embeddings of singular and

plural names in libgdx. Pairs are connected with a dotted line. The embeddings mostly

separate singular and plural names. We expect most of the plural variables to refer to

Collections of objects whose names appear in singular.

profile and Profile), but also for more semantically related names (e.g. nodesNeeded

and slotsNeeded).

Additionally we examine the nearest neighbors of tokens in the D-dimensional

space. This type of analysis avoids the risk, inherent in any dimensionality reduction

method, that important information is lost in the projection from D dimensions to 2D.

Table 4.3 shows some identifiers on a different project, clojure, for each identifier giving

a list of other identifiers that are nearest in the continuous space. The nearest neighbors

of a token t are those tokens v such that the inner product of the embeddings, that

is, q>t qv, is maximized. We choose this measure because it most closely matches the

notion of similarity in the model. Again, we are using the log-bilinear context model

without subtoken information. We again see that the nearest neighbors in the continuous

space seem to have similar semantic function such as the triple fieldName, methodName,

82 Chapter 4. Learning Variable Naming Conventions

Table 4.3: Examples of nearest neighbors in the continuous space for variable names in

clojure. Ordered by higher inner product q>t1 qt2 where t1 is in the first column and t2 in

the second.

Identifier Nearest Neighbors (ordered by distance)

fieldName className, methodName, target, method, methods

returnType sb, typ, type, methodName, t

keyvals items, seq, form, rest, valOrNode

params paramType, ctor, methodName, args, arg

Table 4.4: Closely related (sub-)tokens for libgdx variables. The top 10 pairs that have

the highest q>t1 qt2 are shown. For the subtoken model some numeral pairs (e.g. 9–8)

are omitted.

LBL Model LBL–Subtoken Model

camera – cam 6 – 5

padBottom – padLeft Height – Width

dataOut – dataIn swig – class

localAnchorA – localAnchorB Min – Max

bodyA – bodyB shape – collision

framebuffers – buffers Left – Right

worldWidth – worldHeight camera – cam

padRight – padLeft TOUCH – KEY

jarg7 – jarg6_ end – start

spriteBatch – batch loc – location

4.5. Learned Representations 83

and className or the names returnType, typ, and type.

Table 4.4 takes this analysis a bit further. This table shows the “nearest nearest

neighbors”: those pairs of tokens or subtokens that are closest in the embedding space

out of all possible pairs of tokens. On the left column, we see pairs of close neighbors

from the feature-based log-bilinear context model without subtokens. These have many

similar pairs, such as width and height. It is striking how many of these pairs contain

similar subtokens even though this model does not contain subtokens. Moving to the

subtoken model, the right column of Table 4.4 shows pairs of subtokens that are closest

in the embedding space. The model learns that pairs like numerals, Min and Max, and

Height and Width should be placed near to each other in the continuous space. This is

further evidence that the model is learning semantic similarities given only statistical

relationships between tokens.

We can also attempt to be a bit more specific in our analysis. In this we are inspired

by Mikolov et al. (2013a), who noticed that adding together two of their embeddings

of natural language words often yielded a compositional semantics — e.g. embed-

ding(“Paris”) - embedding(“France”) + embedding(“Vietnam”) yielded a vector whose

nearest neighbor was the embedding of “Hanoi”. To attempt something similar for

source code, we consider semantic relationships that pairs of identifiers have with each

other.

For Figure 4.12, we project the D-dimensional embeddings to 2D using PCA rather

than t-SNE. Unlike t-SNE, PCA is a linear method, that is, the mapping between the

D-dimensional points and the 2D points is linear. Therefore, if groups of points are

separated by a plane in the 2D space, then we know that they are separated by a plane

in the higher-dimensional space as well. In Figure 4.12, we match pairs of variable

names in the libgdx project in which one name (the “plural name”) equals another

name (the “singular name”) plus the character s. The Java convention that Collection

objects are often named by plural variable names motivates this choice. Although this

mapping is more noisy than the last, we still see that plural names tend to appear on

the left side of the figure, and singular names on the right. From this exploration we

conclude that the continuous locations of each name seem to be capturing semantic

regularities. Readers who wish to explore further can view the embeddings at http:

//groups.inf.ed.ac.uk/cup/naturalize/.

Even though the continuous embeddings are learned from context alone, these visu-

alizations suggest that these embeddings also contain, to some extent, semantic informa-

tion about which identifiers are similar. This suggests that local and global context do

http://groups.inf.ed.ac.uk/cup/naturalize/
http://groups.inf.ed.ac.uk/cup/naturalize/

84 Chapter 4. Learning Variable Naming Conventions

provide information that can be represented and exploited, that is, semantically similar

names are used in similar contexts. It is especially striking that we have consistently

found that nearby tokens in the continuous space tend to share subtokens, even when

the model does not include subtoken information. The right column of Table 4.4 rein-

forces this point since it shows that, when we do use the subtoken model, nearby pairs

of subtokens in the continuous space seem to be meaningfully related.

Finally, it can be objected that this type of analysis is necessarily subjective. When

backed and validated by quantitative analysis of Section 4.4, however, this analysis

provides visual insight, gained from looking at the embedding vectors.

4.6 Conclusions

In this section, we presented NATURALIZE, a framework that suggests conventional

variable names to reduce unnecessary stylistic diversity within source code projects.

We presented three different machine learning models that score and alternative names

and evaluated them on popular, high-quality and real-life projects. Our subtoken log-

bilinear model can accurately suggest previously unseen names and capture subtoken-

level coding conventions. In addition we found that the log-bilinear models produce

qualitatively interesting representations of variable names.

Learning to name variables is an interesting problem with practical applications

for software engineers. NATURALIZE’s performance suggests that variable naming

assistance tools can be deployed in practical scenarios and are able to make accurate

suggestions maintaining a small false positives ratio. However, the variable naming

problem is far from being solved. The performance at large suggestion frequencies

(see Figure 4.6) suggests that future work can improve upon the performance of the

presented models. In addition, continuous embeddings of identifiers have many other

potential applications in software engineering, such as exploration of linguistic anti-

patterns (Arnaoudova et al., 2013), code search and feature location (Rubin & Chechik,

2013).

Chapter 5

Learning Method Naming Conventions

“So, beautiful code is lucid, it is easy to read and

understand; its organization, its shape, its

architecture reveals intent as much as its

declarative syntax does.”
– Vikram Chandra, The Beauty of Code

Language starts with names. While programming, developers must name variables,

parameters, functions, classes, and files. They strive to choose names that are meaning-

ful and conventional, i.e. consistent with other names used in related contexts in their

codebase. Indeed, leading industrial experts, including Beck (2007), McConnell (2004),

and Martin (2008), have stressed the importance of identifier naming in software. Find-

ing good names for programming language constructs is difficult; poor names make

code harder to understand and maintain (Lawrie et al., 2006a; Takang et al., 1996; Liblit

et al., 2006; Arnaoudova et al., 2015). Empirical evidence suggests that poor names

also lead to software defects (Butler et al., 2009; Abebe et al., 2012). Code mainte-

nance exacerbates the difficulty of finding good names, because the appropriateness of

a name changes over time: an excellent choice, at the time a construct is introduced,

can degrade into a poor name, as when a variable is used in new context or a function’s

semantics changes.

Names of methods are particularly important, and can be difficult to choose. Høst

& Østvold (2009) eloquently captured their importance:

“Methods are the smallest named units of aggregated behavior in most
conventional programming languages and hence the cornerstone of ab-
straction.”

Semantically distinct method names are the basic tools for reasoning about program

85

http://www.theparisreview.org/blog/2014/09/05/the-beauty-of-code/

86 Chapter 5. Learning Method Naming Conventions

behavior. Programmers directly think in terms of these names and their compositions,

since a programmer chose them for the units into which the programmer decomposed

a problem. Moreover, method names can be hard to change, especially when they are

used in an API. When published in a popular library, method naming decisions of

external APIs are especially rigid and poor names can make the library hard to use.

In this chapter, we suggest that modern statistical tools allow us to automatically

suggest descriptive, idiomatic method names to programmers. We tackle the method

naming problem: the problem of inferring a method’s name from its body. As devel-

opers spend approximately half of their development time trying to understand and

comprehend code during maintenance alone (Corbi, 1989), any progress toward solv-

ing the method naming problem will improve the comprehensibility of code (Takang

et al., 1996) increasing programmer productivity (Hendrix et al., 2002).

In Chapter 4, we introduced the NATURALIZE framework, which learns the coding

conventions used in a codebase and tackles one naming problem programmers face —

that of naming variables — by exploiting the “naturalness” or predictability of code

(Hindle et al., 2012). However, the method naming problem is much more difficult than

the variable naming problem, because the appropriateness of method names depends not

solely on their uses but also on their internal structure, i.e. their body. An adequate name

must describe not just what the method is, but what it does. Variable names, by contrast,

can often be predicted solely from a few tokens of local context; for example, it is easy

to predict the variable name that follows the tokens for (int. Because method names

must be functionally descriptive, they often have rich internal structure: method names

are often verb phrases. But this means that method names are often neologisms, that

is, names not seen in the training corpus. Existing probabilistic models of source code,

including the n-gram models used in NATURALIZE, cannot suggest neologisms. These

aspects of the method naming problem severely exacerbate data sparsity because this

means we need to consider larger context which necessarily means that any individual

context will be observed less often. In addition, it is rare to find the same functionality

implemented multiple times, since if this were the case, this functionality would have

been encapsulated in a library to be reused directly. Therefore, the method naming

problem requires models that can better exploit the structure of code, taking into account

long-range dependencies and modeling the method body precisely, while minimizing

the effects of data sparsity.

Method Naming as Code Summarization This problem resembles a summarization

task, where the method name is viewed as the summary of the code. However, method

87

naming is drastically different from natural language summarization, because unlike

natural language, source code is unambiguous and highly structured. Furthermore, a

good summary needs to explain how the code instructions compose into a higher-level

meaning and not naïvely explain what the code does. This necessitates learning higher-

level patterns in source code that uses both the structure of the code and the identifiers

to detect and explain complex code constructs. Our method naming may also be viewed

as a translation task, in the same way that any summarization problem can be viewed

as translation. But a significant difference from translation is that the input source code

sequence tends to be very large (72 on average in our data) and the output summary

very small (3 on average in our data). The length of the input sequence necessitates

the extraction of both temporally invariant attention features and topical sentence-wide

features and — as we show in this chapter — existing neural machine translation

techniques yield sub-optimal results.

Haiduc et al. (2010b) showed that natural language text summarization does not

work well for code and such techniques must be adapted to be effective. They later

developed summaries that are used to improve comprehension (Haiduc et al., 2010a).

Sridhara et al. (2011) used idioms and structure in the code of methods to generate high

level abstract summaries. While they don’t suggest method names, they discuss how

their approach may be extended to provide them. Sridhara et al. (2010); Sridhara (2012)

also showed how to generate code summaries appropriate for comments within the

code (e.g. as method headers). For more work in this area, Eddy et al. (2013); Nazara

et al. (2015) provide surveys of code summarization methods.

Machine Learning for Naming Methods Deep learning for structured prediction

problems, in which a sequence (or more complex structure) of predictions need to be

made given another input sequence, presents special difficulties, because not only are

the input and output high-dimensional, but the dimensionality is not fixed in advance.

Recent research has tackled these problems using neural models of attention (Mnih et al.,

2014), which have had great recent successes in machine translation (Bahdanau et al.,

2015) and image captioning (Xu et al., 2015). Attention models have been successful

because they separate two concerns: predicting which input locations are most relevant

to each part of the output as it is generated; and actually predicting an output location

given the most relevant inputs.

In this chapter, we suggest that many domains — including method naming— con-

tain translation-invariant features that can help to determine the most useful locations

for attention. For example, in a research paper, the sequence of words “in this paper,

88 Chapter 5. Learning Method Naming Conventions

we suggest” often indicates that the next few words will be important to the topic of the

paper. As another example, suppose a neural network is trying to predict the name of a

method in the Java programming language from its body. If we know that this method

name begins with get and the method body contains a statement return ____ ; ,

then whatever token fills in the blank is likely to be useful for predicting the rest of the

method name. Previous architectures for neural attention are not constructed to learn

translation-invariant features specifically.

In this chapter, we introduce a neural convolutional attention model, that includes

a convolutional network within the attention mechanism itself. Convolutional models

are a natural choice for learning translation-invariant features while using only a small

number of parameters and for this reason have been highly successful in non-attentional

models for images (LeCun et al., 1998; Krizhevsky et al., 2012) and text classification

(Kalchbrenner et al., 2014). But to our knowledge they have not been applied within

an attention mechanism. Convolutional networks can robustly learn to detect long

and short-range patterns in a computationally efficient way. Our model uses a set of

convolutional layers — without any pooling — to detect patterns in the input and

identify “interesting” locations where attention should be focused.

Furthermore, source code presents the challenge of out-of-vocabulary words. Each

new software project and each new source file introduces new vocabulary about aspects

of the software’s domain, data structures, and so on. This vocabulary often does not

appear in the training set. To address this problem, we introduce a copy mechanism,

which uses the convolutional attention mechanism to identify important tokens in the

input even if they are out-of-vocabulary tokens that do not appear in the training set.

The decoder, using a meta-attention mechanism, may choose to copy tokens directly

from the input to the output sequence, resembling the functionality of Vinyals et al.

(2015).

Use Cases Our suggestion model can be embedded within a variety of tools to support

code development and code review. Some of these scenarios are detailed in Subsec-

tion 4.1.1 but are also mentioned here for self-containedness. During development,

suppose that the developer is adding a method to an existing project. After writing the

body, the developer may be unsure if the name she chose is descriptive and conven-

tional within the project. Our model suggests alternative names from patterns it learned

from other methods in the project. During code review, our model can highlight those

names to which our model assigns a (very) low score. In either case, the system has

two phases: a training phase, which takes as input a training set of source files (e.g.

5.1. A Convolutional Attention Model 89

the current revision of the project) and returns a trained neural network model that can

suggest names; and a testing or deployment phase, in which the input is a trained neural

network and the source code of a method, and the output is a ranked list of suggested

names. Any suggestion system has the potential to suffer from what we have called

the “Clippy effect” (see Allamanis et al. (2014) and Chapter 4), in which too many low

quality suggestions alienate the user. To prevent this, our suggestion model also returns

a numeric score that reflects its degree of confidence in its suggestion; practical tools

would only make a suggestion to the user if the confidence were sufficiently high.

Other use cases of our machine learning model can be found in the realm of code

summarization and retrieval. Apart from the obvious use as a summarization technique

that can generate “captions” of code and aid program comprehension, our tool can be

useful for code search. By acting as a query expansion method the network can suggest

new natural language terms that may be relevant for a given snippet of code.

Contributions The key contributions of this chapter are:

• a novel convolutional attention network architecture that combines two convo-

lutional attention mechanisms and a meta-attention mechanism to successfully

learn to predict method summaries in the form of descriptive method names at

the subtoken level;

• a comprehensive approach to the method naming problem, with interest both in

the machine learning and software engineering community;

• a comprehensive evaluation of four competing algorithms on real-world data

that demonstrates the advantage of our method compared to standard attention

mechanisms; and

• a comparison between our feature-less convolutional attention network and the

log-bilinear model presented in Chapter 4 showing how the convolutional at-

tention networks achieves better performance without any external hand-crafted

features.

5.1 A Convolutional Attention Model

Our convolutional attention model receives as input a code snippet c. This snippet may

be the body of a method or any other snippet. We then tokenize c and split each identifier

90 Chapter 5. Learning Method Naming Conventions

Emt

Kl1

Dw1

RELU

Kl2

k1
w2

ht−1

k2

k2

Kα
Kκ

SOFTMAX
L f eat attention features

α

κ

attention weight vectorsattention weight vectors

Figure 5.1: The architecture of the convolutional attention network. attention_features

learns location-specific attention features given an input sequence {mi} and a context

vector ht−1. Given these features attention_weights —using a convolutional layer and

a SOFTMAX— computes the final attention weight vectors such as α and κ in this figure.

token into subtokens.1 We then have an input c = [<c>,c1, . . .cN ,</c>], where <c> and

</c> are two special start and end tokens. Given c, our networks learns to output an

extreme summary in the form of a concise method name. The summary is a sequence

of subtokens m = [<m>,m1, . . .mM,</m>], where <m> and </m> are the special start and

end symbols of every subtoken sequence. For example, in the shouldRender method

(top left of Table 5.3) the input code subtokens are

c = [<c>,try,{,return,render,requested,||,is,continuous, . . . ,</c>]

while the target output is

m = [<m>,should,render,</m>] .

The neural network predicts each summary subtoken sequentially and it models the

probability distribution P(mt |m0, . . . ,mt−1,c) for all t > 0. Information about the previ-

ously produced subtokens m0, . . . ,mt−1 is passed into a recurrent neural network that

1Subtokens — as in Chapter 4 — refer to the parts of a source code token e.g. getInputStream has
the get, Input and Stream subtokens. We split subtokens on camelCase, snake_case and around
numerals.

5.1. A Convolutional Attention Model 91

represents the input state with a vector ht−1. Our convolutional attention neural network

(Figure 5.1) uses the input state ht−1 and a series of convolutions over the embeddings

Em of the tokens c to compute a matrix of attention features L f eat , that contains one vec-

tor of attention features for each sequence position (Figure 5.1). The resulting features

are used to compute one or more normalized attention vectors (e.g. α in Figure 5.1)

which are distributions over input token locations containing a weight (in (0,1)) for

each subtoken in c. Finally, given the attention weights, a context representation is com-

puted and is used to predict the probability distribution over the targets mi. This model

can be thought as a generative bimodal model of summary text given a code snippet.

5.1.1 Learning Attention Features

We describe our model from the bottom up (Figure 5.1). First we discuss how to

compute the attention features L f eat from the input c and the previous hidden state

ht−1. The basic building block of our model is a convolutional network (LeCun et al.,

1990; Collobert & Weston, 2008) for extracting position and context-dependent fea-

tures. The input to attention_features is a sequence of code subtokens c of length

LEN(c) and each location is mapped to a matrix of attention features L f eat , with size

(LEN(c)+ const)× k2 where const is a fixed amount of padding. The intuition behind

attention_features is that given the input c, it uses convolution to compute k2 fea-

tures for each location. By then using ht−1 as a multiplicative gating-like mechanism,

only the currently relevant features are kept in L2. In the final stage, we normalize L2.

attention_features is described with the following pseudocode:

attention_features (code tokens c, context ht−1)

C← LOOKUPANDPAD(c, E)

L1← RELU(CONV1D(C, Kl1))

L2← CONV1D(L1,Kl2)�ht−1

L f eat ← L2/‖L2‖2

return L f eat

Here E ∈ R|V |×D contains the D-dimensional embedding of each subtoken in names

and code (i.e. all possible cis and mis). The two convolution kernels are Kl1 ∈ RD×w1×k1

and Kl2 ∈ Rk1×w2×k2 , where w1, w2 are the window sizes of the convolutions and RELU

refers to a rectified linear unit (Nair & Hinton, 2010). The vector ht−1 ∈ Rk2 repre-

sents information from the previous subtokens m0 . . .mt−1. CONV1D performs a one-

dimensional (throughout the length of sentence c) narrow convolution. Note that the

92 Chapter 5. Learning Method Naming Conventions

input sequence c is padded by LOOKUPANDPAD. The size of the padding is such that

with the narrow convolutions, the attention vector (returned by attention_weights) has

exactly LEN(c) components. The � operator is the elementwise multiplication of a

vector and a matrix, i.e. B = A�v for v ∈ RM and A a M×N matrix, Bi j = Ai jvi. We

found the normalization of L2 into L f eat to be useful during training avoiding issues

where all the output values of the RELU were below the activation point. We believe it

helps because of the widely varying lengths of inputs c. Note that no pooling happens in

this model; the input sequence c is of the same length as the output sequence (modulo

the padding).

To compute the final attention weight vector — a vector with non-negative elements

and unit norm — we define attention_weights as a function that accepts L f eat from

attention_features and a convolution kernel K of size k2×w3×1. attention_weights
returns the normalized attention weights vector with length LEN(c) (e.g. α and κ in

Figure 5.1) and is described by the following pseudocode:

attention_weights (attention features L f eat , kernel K)

return SOFTMAX(CONV1D(L f eat ,K))

Computing the State ht Predicting the full summary m is a sequential prediction

problem, where each subtoken mt is sequentially predicted given the previous state

containing information about the previous subtokens m0 . . .mt−1. The state is passed

through ht ∈ Rk2 computed by a Gated Recurrent Unit (Cho et al., 2014) i.e.

GRU(current input xt , previous state ht−1)

rt ← σ(xtWxr +ht−1Whr +br)

ut ← σ(xtWxu +ht−1Whu +bu)

ct ← tanh(xtWxc + rt� (ht−1Whc)+bc)

ht ← (1−ut)�ht−1 +ut� ct

return ht

During testing the next state is computed by ht = GRU(Emt ,ht−1) i.e. using the em-

bedding of the current output subtoken mt . For regularization during training, we use

a trick similar to Bengio et al. (2015) and with probability equal to the dropout rate

we compute the next state as ht = GRU(n̂,ht−1), where n̂ is the predicted embedding.

This helps the network to become more robust by learning to recover from “mistakes”

it may make.

5.1. A Convolutional Attention Model 93

5.1.2 Simple Convolutional Attention Model

We now use the components described above as building blocks for our extreme sum-

marization model. We first build conv_attention, a convolutional attention model that

uses an attention vector α computed from attention_weights to weight directly the

embeddings of the tokens in c and compute the predicted target embedding n̂ ∈ RD. It

returns a distribution over all subtokens in V .

conv_attention (code c, previous state ht−1)

L f eat ← attention_features(c,ht−1)

α←attention_weights (L f eat ,Katt)

n̂← ∑i αiEci

n← SOFTMAX(E n̂>+b)
return TODIST(n,V)

where b ∈ R|V | is a bias vector and TODIST returns a probability distribution over

the subtokens in vi ∈ V assigning to each vi probability ni. We train this model using

maximum likelihood. Generating from the model works as follows: starting with the

special m0 = <m> subtoken and h0, at each timestep t the next subtoken mt is generated

using the probability distribution n returned by conv_attention (c,ht−1). Given the

new subtoken mt , we compute the next state ht = GRU(Emt ,ht−1). The process stops

when the special </m> subtoken is generated.

5.1.3 Copy Convolutional Attention Model

We extend conv_attention by using an additional attention vector κ as a copying mech-

anism that can suggest out-of-vocabulary subtokens. In our data a significant propor-

tion of the output subtokens (about 35%) appear in c. Motivated by this, we extend

conv_attention and allow a direct copy from the input sequence c into the summary.

Now the network when predicting mt , with probability λ copies a token from c into

mt and with probability 1−λ predicts the target subtoken as in conv_attention. Essen-

tially, λ acts as a meta-attention mechanism. When copying, a token ci is copied into

mt with probability equal to the attention weight κi. The process is the following:

copy_attention (code c, previous state ht−1)

L f eat ← attention_features (c,ht−1)

α←attention_weights (L f eat ,Katt)

κ←attention_weights (L f eat ,Kcopy)

λ←max(σ(CONV1D(L f eat ,Kλ)))

94 Chapter 5. Learning Method Naming Conventions

n̂← ∑i αiEci

n← SOFTMAX(E n̂>+b)
return λ ·POS2DIST(κ,c)+(1−λ) ·TODIST(n,V)

where σ is the sigmoid function, Katt , Kcopy and Kλ are different convolutional ker-

nels, n ∈ R|V |, α,κ ∈ RLEN(c), POS2DIST returns the copy mechanism attention as a

probability distribution over the subtokens in c (which may include out-of-vocabulary

subtokens) assigning probability κi to each code subtoken ci. Finally, the predictions

of the two attention mechanisms are merged, returning a probability distribution for all

potential target subtokens in V ∪c and interpolating over the two attention mechanisms,

using the (adaptive) meta-attention weight λ. Note that α and κ are analogous attention

weights but are computed from different kernels, and that n is computed exactly as in

conv_attention. Note that although the usage of POS2DIST and TODIST may seem

unnecessarily complicated, they are needed for allowing the model to predict out-of-

vocabulary (OOV) subtokens. If our model predicts an OOV subtoken, we compute the

next state as ht = GRU(EUNK,ht−1).

Objective To obtain signal for the copying mechanism and λ, we use a supervised

objective. We input a binary vector Ic=mt to copy_attention. Ic=mt is of size LEN(c)
where each component is one if the code subtoken is identical to the current target subto-

ken mt . We can then compute the probability of a correct copy over the marginalization

of the two mechanisms, i.e.

P(mt |ht−1,c) = λ∑
i

κiIci=mt +(1−λ)µrmt (5.1)

where the first term is the probability of a correct copy (weighted by λ) and the second

term is the probability of the target token mt (weighted by 1−λ). The term µ ∈ (0,1]

acts as a supervised penalty to avoid the situation where the model’s simple attention

gets credit for predicting an UNK although the current subtoken mt can be predicted

exactly by the copy mechanism. In all other cases, we set µ = 1. When penalizing UNK

predictions, we arbitrarily used µ= e−10, although variations did not affect performance.

5.1.4 Predicting Names

To predict a full method name, we use a hybrid breath-first search and beam search.

We start from the special m0 = <m> subtoken and maintain a (max-)heap of the highest

probability partial predictions so far. At each step, we pick the highest probability

prediction and predict its next subtokens, pushing them back to the heap. When the

5.2. Evaluation 95

</m> subtoken is generated the suggestion is moved onto the list of suggestions. Since

we are interested in the top k suggestions, at each point, we prune partial suggestions

that have a probability less than the current best kth full suggestion. To make the process

tractable, we limit the partial suggestion heap size and stop iterating after 100 steps.

5.2 Evaluation

Dataset Collection We are interested in the method naming problem where we “sum-

marize” a source code snippet into a short and concise method-like name. This is a

general problem with multiple applications. Such a functionality may be useful within

the widely used “extract method” refactoring (Silva et al., 2016) within an IDE, where

our model suggests a name for the extracted code. Suggesting alternative names can

also be useful within the code review process (Section 4.1). Such summarization meth-

ods can also find use within search engines that require to interpret natural language

queries about code or perform query expansion-like techniques. Finally, summarization

can be useful for educational purposes where an summary is generated to aid code com-

prehension. However, no dataset containing summaries of arbitrary snippets of source

code currently exists. Therefore, it is natural to consider existing method (function)

bodies as our snippets and the method names picked by the developers as our target

extreme summaries.

To collect a dataset of good quality, we cloned 11 open-source Java projects from

GitHub. We obtained the most popular projects by taking the sum of the z-scores of the

number of watchers and forks of each project, using GHTorrent (Gousios & Spinellis,

2012). We selected the top 11 projects that contained more than 10MB of source code

files each and use libgdx as a development set. These projects have thousands of forks

and stars, being widely known among software developers. The projects along with

short descriptions are shown in Table 5.1. We used this procedure to select a mature,

large, and diverse corpus of real source code. For each file, we extract the Java methods,

removing methods that are overridden, are abstract or are the constructors of a class.

We find the overridden methods by an approximate static analysis that checks for inher-

itance relationships and the @Override annotation. Overridden methods are removed,

since they are highly repetitive and their names are easy to predict. Any full tokens

that are identical to the method name (e.g. in recursion) are replaced with a special

SELF token. We split and lowercase each method name and code token into subtokens

{mi} and {ci} on camelCase and snake_case. The dataset and code can be found at

http://github.com

96
C

hapter5.
Learning

M
ethod

N
am

ing
C

onventions

Table 5.1: Open-source Java projects used and F1 scores achieved. F1 measures the retrieval performance over the subtokens of each method

name.

Project Name Git SHA Description

F1

tf-idf Bahdanau et al. (2015) conv_attention copy_attention
Rank 1 Rank 5 Rank 1 Rank 5 Rank 1 Rank 5 Rank 1 Rank 5

cassandra 53e370f Distributed Database 40.9 52.0 35.1 45.0 46.5 60.0 48.1 63.1
elasticsearch 485915b REST Search Engine 27.8 39.5 20.3 29.0 30.8 45.0 31.7 47.2
gradle 8263603 Build System 30.7 45.4 23.1 37.0 35.3 52.5 36.3 54.0
hadoop-common 42a61a4 Map-Reduce Framework 34.7 48.4 27.0 45.7 38.0 54.0 38.4 55.8
hibernate-orm e65a883 Object/Relational Mapping 53.9 63.6 49.3 55.8 57.5 67.3 58.7 69.3
intellij-community d36c0c1 IDE 28.5 42.1 23.8 41.1 33.1 49.6 33.8 51.5
libgdx∗ 156f7c1 Game Dev Framework 41.8 53.1 40.2 46.3 47.0 60.5 50.2 63.0
liferay-portal 39037ca Portal Framework 59.6 70.8 55.4 70.6 63.4 75.5 65.9 78.0
presto 4311896 Distributed SQL query en-

gine

41.8 53.2 33.4 41.4 46.3 59.0 46.7 60.2

spring-framework 826a00a Application Framework 35.7 47.6 29.7 41.3 35.9 49.7 36.8 51.9
wildfly c324eaa Application Server 45.2 57.7 32.6 44.4 45.5 61.0 44.7 61.7

∗ libgdx was used for hyperparameter optimization.

5.2. Evaluation 97

http://groups.inf.ed.ac.uk/cup/codeattention/.

Experimental Setup To measure the quality of our suggestions, we compute two

scores. Exact match is the percentage of the method names predicted exactly, while the

F1 score is computed in a per-subtoken basis. When suggesting summaries, each model

returns a ranked list. We compute exact match and F1 at rank 1 and 5, as the best score

achieved by any one of the top suggestions (i.e. if the fifth suggestion achieves the best

F1 score, we use this one for computing F1 at rank 5). Using BLEU (Papineni et al.,

2002) would have been possible, but it would not be different from F1 given the short

lengths of our output sequences (3 on average). We train and test each model separately

per project. This is because each project’s domain varies widely and little information

can be transferred among them, due to the principle of code reusability of software

engineering. We note that we attempted to train a single model using all project training

sets but this yielded significantly worse results for all algorithms. For each project, we

split the files (top-level Java classes) uniformly at random into training (65%), validation

(5%) and test (30%) sets. We optimize hyperparameters using Bayesian optimization

with Spearmint (Snoek et al., 2012) maximizing F1 at rank 5.

For comparison, we use two algorithms: a tf-idf algorithm that computes a tf-idf

vector from the code snippet subtokens and suggests the names of the nearest neighbors

using cosine similarity. We also use the standard attention model of Bahdanau et al.

(2015) that uses a biRNN and fully connected components, that has been successfully

used in machine translation. We perform hyperparameter optimizations following the

same protocol on libgdx.

Training. To train conv_attention and copy_attention we optimize the objective

using stochastic gradient descent with RMSProp and Nesterov momentum (Sutskever

et al., 2013; Hinton et al., 2012). We use dropout (Srivastava et al., 2014) on all pa-

rameters, parametric leaky RELUs (Maas et al., 2013; He et al., 2015) and gradient

clipping. Each of the parameters of the model is initialized with normal random noise

around zero, except for b that is initialized to the log of the empirical frequency of

each target token in the training set. For conv_attention the optimized hyperparame-

ters are k1 = k2 = 8, w1 = 24, w2 = 29, w3 = 10, dropout rate 50% and D = 128. For

copy_attention the optimized hyperparameters are k1 = 32, k2 = 16, w1 = 18, w2 = 19,

w3 = 2, dropout rate 40% and D = 128.

http://groups.inf.ed.ac.uk/cup/codeattention/

98 Chapter 5. Learning Method Naming Conventions

Table 5.2: Evaluation metrics averaged across test projects. LBL refers to the log-bilinear

models of Chapter 4. Note that the LBL models has additional information in the form of

hand-crafted features such as features about the method signature. The hand-crafted

features are discussed in Subsection 5.2.3.

F1 (%) Exact Match (%) Precision (%) Recall (%)

At Rank: 1 5 1 5 1 5 1 5

tf-idf 40.0 52.1 24.3 29.3 41.6 55.2 41.8 51.9

Bahdanau et al. (2015) 33.6 45.2 17.4 24.9 35.2 47.1 35.1 42.1

conv_attention 43.6 57.7 20.6 29.8 57.4 73.7 39.4 51.9

copy_attention 44.7 59.6 23.5 33.7 58.9 74.9 40.1 54.2

LBL 15.3 46.0 13.6 25.7 15.6 53.2 15.3 43.3

LBL Subtoken 37.1 51.9 15.1 24.1 53.2 64.1 34.1 47.1

5.2.1 Quantitative Evaluation

Table 5.1 shows the F1 scores achieved by the different methods for each project while

Table 5.2 shows a quantitative evaluation, averaged across all test projects. By “Stan-

dard Attention” we refer to the machine translation model of Bahdanau et al. (2015).

The tf-idf algorithm seems to be performing very well, showing that the bag-of-words

representation of the input code is a strong indicator of its name. Interestingly, the stan-

dard attention model performs worse than tf-idf in this domain, while conv_attention
and copy_attention perform the best. The copy mechanism gives a good F1 improve-

ment at rank 1 and a larger improvement at rank 5. Although our convolutional attention

models have an exact match similar to tf-idf, they achieve a much higher precision com-

pared to all other algorithms. This is because they successfully learn about subtoken

conventions, such as the fact that a method returning a boolean may usually start with

is. As we also observed in Chapter 4, such models tend to be more conservative when

making predictions, returning UNK predictions more often than other models, resulting

in higher precision.

These differences in the data characteristics could be the cause of the low perfor-

mance achieved by the model of Bahdanau et al. (2015), which had great success in

machine translation. Although source code snippets resemble natural language sen-

tences, they are more structured, much longer and vary greatly in length. In our training

sets, each method has on average 72 tokens (median 25 tokens, standard deviation 156)

and the output method names are made up from 3 subtokens on average (σ = 1.7).

5.2. Evaluation 99

OOV Accuracy We measure the out-of-vocabulary (OOV) word accuracy as the

percentage of the out-of-vocabulary subtokens (i.e. those that have not been seen in

the training data) that are correctly predicted by copy_attention. On average, across

our dataset, 4.4% of the test method name subtokens are OOV. Naturally, the standard

attention model and tf-idf have an OOV accuracy of zero, since they are unable to

predict those tokens. On average we get a 10.5% OOV accuracy at rank 1 and 19.4% at

rank 5. This shows that the copying mechanism is useful in this domain and especially in

smaller projects that tend to have more OOV tokens. We note that OOV accuracy varies

across projects, presumably due to different coding styles. Finally, we should also note

that although the copying mechanism is useful for OOV subtokens, our results suggest

that it also helps with non-OOV subtokens, increasing the confidence of generating

some subtokens.

Topical vs. Time-Invariant Feature Detection The difference of the performance

between the copy_attention and the standard attention model of Bahdanau et al. (2015)

raises an interesting question. What does copy_attention learn that cannot be learned

by the standard attention model? One hypothesis is that the biRNN of the standard

attention model fails to capture long-range features, especially in very long inputs.

To test our hypothesis, we shuffle the subtokens in libgdx, essentially removing all

features that depend on the sequential information. Without any local features all models

should reduce to achieving performance similar to tf-idf. Indeed, copy_attention now

has an F1 at rank 1 that is +1% compared to tf-idf (presumably because the output

GRU acts as a language model over the summary), while the standard attention model

further worsens its performance getting an F1 score (rank 1) of 26.2%, compared to

the original 41.8%. This suggests that the biRNN fails to capture long-range topical

attention features, which is probably also the reason that it fails to beat tf-idf in this

summarization task.

A simpler ht−1 Since the target summaries are quite short, we tested a simpler

alternative to the GRU, assigning ht−1 = W × [Gmt−1,Gmt−2], where G ∈ RD×|V | is a

new embedding matrix (different from the embeddings in E) and W is a k2×D× 2

tensor. This model is simpler and slightly faster to train and resembles the log-bilinear

language model of Mnih & Teh (2012). This models achieves similar performance to

copy_attention, reducing F1 by less than 1%. We believe that this happens because

summaries tend to be quite short and therefore the long-term memory of RNN architec-

tures does not provide a significant advantage.

100
C

hapter5.
Learning

M
ethod

N
am

ing
C

onventions

Table 5.3: A sample of handpicked snippets and the respective suggestions that illustrate some interesting challenges of the domain and how

the copy_attention model handles them or fails. Note that the algorithms do not have access to the signature of the method but only to the

body. Examples taken from the libgdx Android/Java graphics library test set.

boolean shouldRender() void reverseRange(Object[] a, int lo, int hi)

1 try {

2 return renderRequested||isContinuous;

3 } finally {

4 renderRequested = false;

5 }

Suggestions: Iis,render (27.3%) Iis,continuous (10.6%)

Iis,requested (8.2%) Irender,continuous (6.9%)

Iget,render (5.7%)

1 hi--;

2 while (lo < hi) {

3 Object t = a[lo];

4 a[lo++] = a[hi];

5 a[hi--] = t;

6 }

Suggestions: Ireverse,range (22.2%) Ireverse (13.0%)

Ireverse,lo (4.1%) Ireverse,hi (3.2%) Imerge,range (2.0%)

int createProgram() VerticalGroup right()

1 GL20 gl = Gdx.gl20;

2 int program = gl.glCreateProgram();

3 return program != 0 ? program : -1;

1 align |= Align.right;

2 align &= ~Align.left;

3 return this;

Suggestions: Icreate (18.36%) Iinit (7.9%) Irender (5.0%)

Iinitiate (5.0%) Iload (3.4%)

Suggestions: Ileft (21.8%) Itop (21.1%) Iright (19.5%)

Ibottom (18.5%) Ialign (3.7%)

5.2.
E

valuation
101

Table 5.3: A sample of handpicked snippets and the respective suggestions that illustrate some interesting challenges of the domain and how

the copy_attention model handles them or fails. Note that the algorithms do not have access to the signature of the method but only to the

body. Examples taken from the libgdx Android/Java graphics library test set.

boolean isBullet() float getAspectRatio()

1 return (m_flags & e_bulletFlag)

2 == e_bulletFlag;

1 return (height == 0) ?

2 Float.NaN : width / height;

Suggestions: Iis (13.5%) Iis,bullet (5.5%) Iis,enable (5.1%)

Ienable (2.8%) Imouse (2.7%)

Suggestions: Iget,UNK (9.0%) Iget,height (8.7%) Iget,width (6.5%)

Iget (5.7%) Iget,size (4.2%)

int minRunLength(int n) JsonWriter pop()

1 if (DEBUG) assert n >= 0;

2 int r = 0;

3 while (n >= MIN_MERGE) {

4 r |= (n & 1);

5 n >>= 1;

6 }

7 return n + r;

1 if (named) throw

2 new IllegalStateException(UNKSTRING);

3 stack.pop().close();

4 current = stack.size == 0 ?

5 null : stack.peek();

6 return this;

Suggestions: Imin (43.7%) Imerge (13.0%) Ipref (1.9%)

Ispace (1.0%) Imin,all (0.8%)

Suggestions: Iclose (21.4%) Ipop (10.2%) Ifirst (6.5%) Istate (3.8%)

Iremove (2.2%)

102
C

hapter5.
Learning

M
ethod

N
am

ing
C

onventions

Table 5.3: A sample of handpicked snippets and the respective suggestions that illustrate some interesting challenges of the domain and how

the copy_attention model handles them or fails. Note that the algorithms do not have access to the signature of the method but only to the

body. Examples taken from the libgdx Android/Java graphics library test set.

Rectangle setPosition(float x, float y) float surfaceArea()

1 this.x = x;

2 this.y = y;

3 return this;

1 return 4 * MathUtils.PI *

2 this.radius * this.radius;

Suggestions: Iset (54.0%) Iset,y (12.8%) Iset,x (9.0%)

Iset,position (8.6%) Iset,bounds (1.68%)

Suggestions: Idot,radius (26.5%) Idot (13.1%) Icrs,radius (9.0%)

Idot,circle (6.5%) Icrs (4.1%)

5.2. Evaluation 103

5.2.2 Qualitative Evaluation

Figure 5.2a shows a visualization of a small method that illustrates how copy_attention
typically works. At the first step, it focuses its attention at the whole method and decides

upon the first subtoken. In a large number of cases this includes subtokens such as get,

set, is, create etc. In the next steps the meta-attention mechanism is highly confident

about the copying mechanism (λ = 0.97 in Figure 5.2a) and sequentially copies the

correct subtokens from the code snippet into the name. We note that across many

examples the copying mechanism tends to have a significantly more focused attention

vector κ, compared to the attention vector α. Presumably, this happens because of the

different training signals of the attention mechanisms.

A second example of copy_attention is seen in Figure 5.2b. Although due to space

limitations this is a relatively short method, it illustrates how the model has learned

both time-invariant features and topical features. It correctly detects the == operator and

predicts that the method has a high probability of starting with is. Furthermore, in the

next step (prediction of the m2 bullets subtoken) it successfully learns to ignore the e

prefix (prepended on all enumeration variables in that project) and the flag subtoken

that does not provide useful information for the summary.

Table 5.3 presents a set of hand-picked examples from libgdx that show interesting

challenges of the method naming problem and how our copy_attention handles them.

In the shouldRender method, understandably, the model does not distinguish between

should and is — both implying a boolean return value — and instead of shouldRender,

isRender is suggested. The correct decision could have made if the model had ade-

quate knowledge about the linguistic structure of the returned variable renderRequested,

where the requested (verb in past participle) suggests that the method should start with

a should rather than an is.

The getAspectRatio, surfaceArea and minRunLength examples show the challenges

of describing a previously unseen abstractions. Although a human might have known

that the width to height ratio is called “aspect ratio”, the algorithm has no knowledge

about this abstraction. Interestingly, the model correctly recognizes that a novel (UNK)

token should be predicted after get in getAspectRatio. In contrast, the getPosition

method is correctly predicted (as the fourth choice), suggesting that the notion of “po-

sition” is learned from the model. These examples illustrate a very interesting and

important challenge for machine learning, i.e. how models can learn and reason about

abstractions and new concepts.

104 Chapter 5. Learning Method Naming Conventions

Finally, a surprising result, reverseRange is predicted correctly, because of the struc-

ture of the code, even though no code tokens contain the summary subtokens. This

suggests that the model has learned to recognize patterns in the usage of variables and

body’s control structure, not just paying attention to identifier names.

5.2.3 Comparison with Log-Bilinear Model

The log-bilinear models presented in Section 4.2 can also be used for the method naming

problem. In this section, we are interested in comparing the performance of the log-

bilinear model to the convolutional attention model presented earlier. However, a direct

comparison of the results would be unfair, since the the log-bilinear model gets more

information (e.g. the signature of the method), albeit in a less structured way. Since the

log-bilinear model gets more information, this disadvantages the convolutional network

that could have also received this information (having access to more information,

generally leads to improved performance). However, we are interested in showing how

adding features (e.g. the return type) but removing the structure of the code tokens

affects the performance on the method naming problem.

For the log-bilinear models, we add a set of hand-crafted features that potentially

provide valuable information about the name of each method. These features are de-

tailed below.

AST Ancestors are the types of the parent and grandparent AST nodes of the method

declaration. These features indicate if a method belongs to a class or a nested

(inner) class.

Cyclomatic Complexity The cyclomatic complexity (McCabe, 1976) (clipped at the

maximum value of 10) gives some indication about the complexity of the imple-

mentation within the method. For example, we expect this to be useful discrimi-

nating a simple getter method with complexity of 1 from an implementation of

some complex logic which would have a much larger cyclomatic complexity.

Subtokens of Names of Containing Class, Superclass and Interfaces The subtokens

of the name of the class where the method is declared and the subtokens of the

names of the superclass the class inherits and interfaces it implements may pro-

vide valuable information about the domain and the functionality of the named

method.

5.2. Evaluation 105

Containing Class’ Field Subtokens Any subtokens of the fields of the class declaring

the method give information about the class’ functionality and could be useful

for determining the method’s function and thus name.

Method Body Subtokens The subtokens of all the tokens within the body of the

method are necessarily informative about the method’s name. This feature es-

sentially retrieves the information that the tf-idf baseline uses (Table 5.2).

Declaration Modifiers This feature includes any modifiers (e.g. private or final) of

the method declaration.

Return Types The return type of a method is probably the single most important

feature, since it provides important indications about the method’s name. For ex-

ample, a function that returns boolean may commonly start with the is subtoken.

Sibling Method Name Subtokens The sibling method name subtokens also provide

some indications about the name of a method, since they provide some indications

about the class’ functionality.

Number of Arguments This feature indicates the number of arguments that the method

receives. For example, this feature is useful for detecting methods that do not re-

ceive any arguments (e.g. getters).

Exceptions Thrown this feature returns the types of the exceptions that the method

may throw. Such features may be useful for determining the method functionality,

e.g. if an IOException is thrown, it suggests that the method deals with I/O.

In previous work (Allamanis et al., 2015a), we found that all these features help to some

extend, where the class, superclass and interface name subtokens and the return type

features were the most helpful.

Discussion Table 5.2 presents a comparison of the performance of the simple LBL

— predicting whole method names — and the subtoken LBL model compared to the

models previously presented. Both LBL models perform worse compared to the con-

volutional attention model. It is unsurprising to see that the subtoken model performs

better than the simple LBL. This can be attributed to the fact that method names have

a high rate of neologisms and suggesting previously used names is not very useful.

In contrast, the subtoken LBL performs slightly worse compared to the convolutional

attention model, showing that it has also learned subtoken naming conventions using

106 Chapter 5. Learning Method Naming Conventions

the provided features. This clearly indicates the informativeness of the features used by

the LBL models but also the importance of the structure of the method content that the

convolutional attention model has learned to exploit.

We note, that the neural log-bilinear model learns to name methods using a large set

of hand-crafted features that are available upon parsing the code and include the whole

class context as well as the method signature. In contrast, the convolutional attention

model learns to name a method without any features and using solely the body tokens

while still achieving better performance. As future work, we observe that adding extra

features — when available — to the convolutional attention model will further improve

performance on the method naming problem.

5.3 Learned Representations

The log-bilinear model discussed in Subsection 5.2.3 learns easily-visualizable dis-

tributed vector representations. Similar to Section 4.5, we present here the representa-

tions learned by the log-bilinear model. In contrast, the subtoken LBL model and the

convolutional attention network (Section 5.1), since they predict single subtokens, do

not produce embeddings for the full method name.

Figure 5.3 displays the vectors assigned to a few method names from a typical

project (elasticsearch). Each point represents the q vector of the indicated token. To

interpret this, recall that the model uses the qt vectors to predict whether token t will

occur in particular context. Therefore, tokens t and t ′ with similar vectors qt and qt ′

are tokens that the model expects to occur in similar contexts. These embeddings were

generated from the log-bilinear context model — that is, without using subtokens —

so the model has no information about which tokens are textually similar. Rather, the

only information that the model can exploit is the contexts in which the tokens are used.

Despite this, we notice that many of the names which are grouped together seem to have

similar functions. For example, there is a group of assertXXXX methods on the left hand

side. Especially striking is the clump of construction methods on the right-hand side

newDoubleArray, newIntArray, newLongArray, and so on. It is also telling that near this

clump, the names grow and resize are also close together. Analysis reveals that these

names do indeed seem to name methods of different classes that seem to have similar

functionality. Our previous work (Allamanis et al., 2014) indicates that developers often

prefer such entities to have consistent names.

For Figure 5.4 (as in Section 4.5), we project the D-dimensional embeddings to

5.3. Learned Representations 107

Attention Vectors λ(%)

set α <c>{ this.useBrowserCache = useBrowserCache; }</c>
1.2

(m1) κ <c>{ this.useBrowserCache = useBrowserCache; }</c>

use α <c>{ this.useBrowserCache = useBrowserCache; }</c>
97.4

(m2) κ <c>{ this.useBrowserCache = useBrowserCache; }</c>

browser α <c>{ this.useBrowserCache = useBrowserCache; }</c>
96.9

(m3) κ <c>{ this.useBrowserCache = useBrowserCache; }</c>

cache α <c>{ this.useBrowserCache = useBrowserCache; }</c>
58.3

(m4) κ <c>{ this.useBrowserCache = useBrowserCache; }</c>

END α <c>{ this.useBrowserCache = useBrowserCache; }</c>
6.6

(m5) κ <c>{ this.useBrowserCache = useBrowserCache; }</c>

(a) Visualization for setUseBrowserCache in libgdx.

Attention Vectors λ(%)

is α <c>{ return (mFlags & eBulletFlag) == eBulletFlag; }</c>
1.2

(m1) κ <c>{ return (mFlags & eBulletFlag) == eBulletFlag; }</c>

bullet α <c>{ return (mFlags & eBulletFlag) == eBulletFlag; }</c>
43.6

(m2) κ <c>{ return (mFlags & eBulletFlag) == eBulletFlag; }</c>

END α <c>{ return (mFlags & eBulletFlag) == eBulletFlag; }</c>
17.4

(m3) κ <c>{ return (mFlags & eBulletFlag) == eBulletFlag; }</c>

(b) Visualization for isBullet in libgdx. The copy_attention captures location-invariant features

and the topicality of the input code sequence.

Figure 5.2: Visualizations for copy_attention, used to compute P(mt |m0 . . .mt−1,c).
The darker the color of a subtoken, they higher its attention weight. This relationship

is linear. Yellow indicates the attention weight of the conv_attention component, while

purple the attention of the copy mechanism. Since the values of α are usually spread

across the subtokens the colors show a normalized α, i.e. α/‖α‖
∞

. In contrast, the copy

attention weights κ are usually very peaky and we plot them as-is. Underlined subtokens

are out-of-vocabulary. λ shows the meta-attention probability of using the copy attention

κ vs. the convolutional attention α. More visualizations of libgdx methods can be found

at http://groups.inf.ed.ac.uk/cup/codeattention/.

http://groups.inf.ed.ac.uk/cup/codeattention/

108 Chapter 5. Learning Method Naming Conventions

Figure 5.3: A 2D non-linear projection, using t-SNE (van der Maaten & Hinton), of embed-

dings of method names appearing in method declarations in the elasticsearch project.

Similar methods have been grouped together, even though the model has no notion of

the textual similarity of the method names, for example, the assert-like methods on the

left or the new array methods on the right.

2D using PCA rather than t-SNE. Again, although a technical point, this is important.

Unlike t-SNE, PCA is a linear method, that is, the mapping between the D-dimensional

points and the 2D points is linear. Therefore, if groups of points are separated by a

plane in the 2D space, then we know that they are separated by a plane in the higher-

dimensional space as well. Figure 5.4 shows the embeddings of all pairs of setter and

getter methods for the project netty. The subtoken model did not generate these models,

so the model cannot cluster these tokens based on textual similarity. Nevertheless, we

find that getter and setter tokens are reasonably well separated in the continuous space,

because they are used in similar ways.

The visualizations presented suggest that by using the simple LBL model with

some useful features, we can learn distributed representations of method declarations

that seem to be capturing semantic regularities. Such distributed representations may be

useful for other downstream tasks, such as code search or identifying unconventional

method names.

5.4 Conclusions

This chapter presented a neural convolutional attention model that addresses the method

naming problem, where given a snippet of code where we try to predict a concise

summary-like method name. This is a hard problem since it requires a good understand-

ing of the functionality of the code. Our neural network model achieves good accuracy

when predicting method names on popular open-source Java projects.

From a software engineering perspective, finding accurate and conventional method

5.4. Conclusions 109

get

setFloat

setByte

set

setTimeMillis

setShort

setInt

setChar

setDoublesetLong

setAll

setBoolean

setReceiveBufferSize
getOption

getSoLinger

setSoLinger

setOption

getReceiveBufferSize

setSendBufferSize

getSendBufferSize

setTrafficClass

getTrafficClass

setSoTimeout

setBackloggetSoTimeout

getBytessetBytes

getBacklog

getDiscardThreshold

setDiscardThreshold
getValue

setValue

getLong

getInt

getBoolean

getByte

setMedium

getChar
getMedium

getDouble
getFloat

getShort
getRawResult

setRawResult

getTimeMillis

getAll

setCharset

getCharset
setMaxSizegetMaxSize

getFilename

getContentType
getContentTransferEncoding

setContentTypesetFilename
setContentTransferEncoding

Figure 5.4: A 2D linear projection, using PCA, of the embeddings of setters (blue) and

getters (red) for method declarations. Matched getter/setting pairs are connected with a

dotted line. The embeddings seem to separate setters from the getters.

names is important for code comprehension and maintainability. Machine learning

models — like the one presented in this chapter — can help suggest new conventional

names when developers are writing new code or during code review. In addition, such

models can help with learning method naming conventions within projects and detect

linguistic anti-patterns (Arnaoudova et al., 2015).

From a machine learning perspective, modeling and understanding source code

artifacts can have a direct impact in software engineering. The problem of learning

to name methods is a first step towards the more general goal of machine learning

methods for inferring representations of source code that will allow to probabilistically

reason about code, resulting in useful software engineering tools that will help code

construction and maintenance.

Chapter 6

Learning Continuous Semantic

Representations of Symbolic

Expressions

Learning about coding conventions requires knowledge about code semantics. In the

previous chapters, we presented methods that used syntactic code features to infer im-

plicit semantic information about coding conventions. However, syntactic differences

usually obscure semantics similarities. For example, it is easy to imagine two syntacti-

cally different but semantically equivalent snippets of code (e.g. two sorting routines).

Conversely, two syntactically similar snippets may be semantically very different as

commonly exhibited by single-line bugs.

Learning about conventional semantic operations can help us reason about code

that is found in software systems. In this chapter, we make the first steps towards

learning continuous representations of the semantics of code. These continuous repre-

sentations will be useful for machine learning methods that need to learn to represent

and probabilistically reason about code semantics. Although this is a hard problem, it

has important implications when learning (semantic) coding conventions. For example,

imagine an operation that is performed with a looping structure. A developer may use

a large set of syntactic constructs to express an underlying operation. For example, she

may use recursion, goto instructions, for, or while loops to perform an operation with

identical semantics. However, if we wish to create machine learning systems that can de-

tect semantic conventions (e.g. to detect bugs in semantically conventional operations)

the “sparsity” introduced by the multitude the possible syntactic ways of expressing

the same operation will confuse our machine learning models and obscure the actual

111

112Chapter 6. Learning Continuous Semantic Representations of Symbolic Expressions

conventional semantics.

For example, we will illustrate this issue through the well-known and conventional

sorting semantic operation. Sorting is a semantically conventional operation, compared

to other rare (and probably buggy) operations such as “sort all elements except from

one random element” and therefore we could build a probabilistic model to detect non-

conventional semantic operations that may signify implementation bugs. At the same

time, there are many possible ways to syntactically express a sorting routine. Therefore

we need machine learning models that accurately model code semantics by using the

syntactic form of source code and learn identical representations for semantically iden-

tical but syntactically diverse implementations, while learn different representations for

semantically varying but syntactically similar code.

Unfortunately, existing machine learning models cannot achieve this and this chap-

ter presents some early steps towards this direction. Existing machine learning research

has extensively focused on learning about declarative knowledge but little attention

has been given to procedural knowledge, i.e. knowledge about how to do things, which

can be complex yet difficult to articulate explicitly. Only recently, the goal of building

systems that learn procedural knowledge has motivated many architectures for learning

representations of a single algorithm (Graves et al., 2014; Reed & de Freitas, 2016;

Kaiser & Sutskever, 2016). These methods generally learn from execution traces of

programs (Reed & de Freitas, 2016) or input-output pairs generated from a program

(Graves et al., 2014; Kurach et al., 2015; Riedel et al., 2016; Grefenstette et al., 2015;

Neelakantan et al., 2015).

However, the recursive abstraction that is central to procedural knowledge is per-

haps most naturally represented not by abstract models of computation, as in that work,

but by symbolic representations that have syntactic structure, such as logical expres-

sions and source code. One type of evidence for this claim is the simple fact that people

communicate algorithms using mathematical formulas and pseudocode rather than Tur-

ing machines. Yet, apart from some notable exceptions (Alemi et al., 2016; Piech et al.,

2015; Zaremba et al., 2014) and Chapter 5 of this dissertation, symbolic representa-

tions of procedures have received relatively little attention within the machine learning

literature as a source of information for representing procedural knowledge.

In this chapter, we address the problem of learning continuous semantic representa-

tions (SEMVECs) of arbitrary symbolic expressions. Our goal is to assign continuous

vectors to symbolic expressions in such a way that semantically equivalent, but syn-

tactically diverse expressions are assigned to identical (or highly similar) continuous

113

vectors, when given access to a training set of pairs for which semantic equivalence is

known. This is an important but hard problem; learning composable SEMVECs of sym-

bolic expressions requires that we learn about the semantics of symbolic elements and

operators and how they map to the continuous representation space, thus encapsulating

implicit knowledge about symbolic semantics and its recursive abstractive nature. This

is a first step towards learning about “semantic naturalness” of code that will allow ma-

chine learning systems to reason about the conventional semantic operations performed

within a snippet of code, devoid of any syntactic “distractions”.

However, we are not solely interested in semantic equivalence of symbolic expres-

sions — which can be efficiently computed with existing symbolic methods — although

it is a core property that our model needs to capture. The aim of this work is to learn

continuous representations of code that abstract syntactic differences but retain seman-

tic information. Continuous semantic representations are differentiable and capture

the notion of similarity (as the distance between continuous representations). These

properties make continuous representations suitable for learning and reasoning about

semantics with machine learning.

This work in similar in spirit to the work of Zaremba et al. (2014), who focus on

learning expression representations to aid the search for computationally efficient identi-

ties. They use recursive neural networks (TREENN)1 (Socher et al., 2012) for modeling

homogeneous, single-variable polynomial expressions. While they present impressive

results, we find that the TREENN model fails when applied to more complex symbolic

polynomial and boolean expressions. In particular, in our experiments we find that

TREENNs tend to assign similar representations to syntactically similar expressions,

even when they are semantically very different. The underlying conceptual problem is

how to develop a continuous representation that follows syntax but not too much, that

respects compositionality while also representing the fact that a small syntactic change

can be a large semantic one.

To tackle this problem, we propose a new architecture, called neural equivalence

networks (EQNETs). EQNETs learn how syntactic composition recursively composes

SEMVECs, like a TREENN, but are also designed to model large changes in semantics

as the network progresses up the syntax tree. As equivalence is transitive, we formulate

an objective function for training based on equivalence classes rather than pairwise

decisions. The network architecture is based on composing residual-like multi-layer

1To avoid confusion, we use TREENN for recursive neural networks and retain RNN for recurrent
neural networks.

114Chapter 6. Learning Continuous Semantic Representations of Symbolic Expressions

networks, which allows more flexibility in modeling the semantic mapping up the

syntax tree. To encourage representations within an equivalence class to be tightly clus-

tered, we also introduce a training method that we call subexpression forcing, which

uses an autoencoder to map representations on a low-dimensional space and unifies

the representations of semantically identical but syntactically different representations

by requiring reversible symbolic operation to produce reversible continuous represen-

tations. Experimental evaluation on a highly diverse class of symbolic algebraic and

boolean expression types shows that EQNETs dramatically outperform existing archi-

tectures like TREENNs and RNNs.

To summarize, the main contributions of our work are:

• We formulate the problem of learning continuous semantic representations of

symbolic expressions (SEMVECs) and develop benchmarks for this task.

• We present neural equivalence networks (EQNETs), a neural network architec-

ture that learns to represent expression semantics onto a continuous semantic

representation space and how to perform symbolic operations in this space.

• We provide an extensive evaluation on boolean and polynomial expressions,

showing that EQNETs perform dramatically better than state-of-the-art alterna-

tives.

Code and data are available at groups.inf.ed.ac.uk/cup/semvec.

6.1 Neural Equivalence Networks

In this work, we are interested in learning semantic, composable representations of

mathematical expressions (SEMVEC) and learn to generate identical representations

for expressions that are semantically equivalent, i.e. they belong to the same equivalence

class. Equivalence is a stronger property than similarity that is habitually learned by

neural networks, since equivalence is additionally a transitive relationship.

Problem Hardness. Finding the equivalence of arbitrary symbolic expressions is a

NP-hard problem or worse. For example, if we focus on boolean expressions, reduc-

ing an expression to the representation of the false equivalence class amounts to

proving its non-satisfiability — an NP-complete problem. Of course, we do not expect

to circumvent an NP-complete problem with neural networks. A network for solving

boolean equivalence would require an exponential number of nodes in the size of the

http://groups.inf.ed.ac.uk/cup/semvec

6.1. Neural Equivalence Networks 115

formula if P 6= NP. Instead, our goal is to develop architectures whose inductive biases

allow them to efficiently learn to solve the equivalence problems for expressions that

are similar to a smaller number of expressions in a given training set. This requires that

the network learn identical representations for expressions that may be syntactically

different but semantically equivalent and also discriminate between expressions that

may be syntactically very similar but are non-equivalent. Table 6.1 shows a sample of

such expressions that illustrate the hardness of this problem.

Notation and Framework. We employ the general framework of recursive neural

networks (TREENN) (Socher et al., 2012, 2013) to learn to compose subtree representa-

tions into a single representation. The TREENNs we consider operate on tree structures

of the syntactic parse of a formula. Given a tree T , TREENNs learn distributed rep-

resentations by recursively computing the representations of its subtrees. We denote

the children of a node n as ch(n) which is a (possibly empty) ordered tuple of nodes.

We also use par(n) to refer to the parent node of n. Each node in our tree has a type,

e.g. a terminal node could be of type “a” referring to the variable a or of type “and”

referring to a node of the logical AND (∧) operation. We refer to the type of a node n as

τn. At a high level, TREENNs retrieve the representation of a tree T rooted at node ρ,

by invoking TREENET(ρ) that returns a vector representation rρ ∈ RD, i.e., a SEMVEC,

using the function

TREENET(current node n)

if n is not a leaf then
rn←COMBINE(TREENET(c0), . . . ,TREENET(ck),τn), where (c0, . . . ,ck)= ch(n)

else
rn← LOOKUPLEAFEMBEDDING(τn)

end if
return rn

The general framework of TREENET allows two points of variation, the implementation

of LOOKUPLEAFEMBEDDING and COMBINE. The traditional TREENNs (Socher et al.,

2013) define LOOKUPLEAFEMBEDDING as a simple lookup operation within a matrix

of embeddings and COMBINE as a single-layer neural network. As discussed next, these

will both prove to be serious limitations in our setting.

116Chapter 6. Learning Continuous Semantic Representations of Symbolic Expressions

rc2

rc1

a

a

c Combine

l̄0

rp

SubexpForce

rc1

rc2

rp r̃c1

r̃c2

r̃p
Combine

r̃c1–rc1, r̃c2–rc2, r̃p–rp

x̃
l̄1

l̄out

/ ‖·‖2

SemVec

(a) Architectural diagram of EQNETs. Example parse tree shown is of the boolean expression

(a∨ c)∧a.

COMBINE (rc0, . . . ,rck ,τn)

l̄0← [rc0, . . . ,rck]

l̄1← σ
(
Wi,τn · l̄0

)
l̄out ←Wo0,τn · l̄0 +Wo1,τn · l̄1
return l̄out/

∥∥l̄out
∥∥

2

(b) COMBINE of EQNET.

SUBEXPFORCE (rc0, . . . ,rck ,rn,τn)

x← [rc0, . . . ,rck]

x̃← tanh(Wd · tanh(We,τn · [rn,x] ·n))
x̃← x̃ · ‖x‖2 /‖x̃‖2

r̃n← COMBINE(x̃,τn)

return −
(
x̃>x+ r̃>n rn

)
(c) Loss function used for subexpression forcing

Figure 6.1: EQNET architecture.

6.1. Neural Equivalence Networks 117

6.1.1 Neural Equivalence Networks

We now define the neural equivalence networks (EQNET) that learn to compose rep-

resentations of equivalence classes into new equivalence classes (Figure 6.1a). Our

network follows the TREENN architecture, that is, our EQNETs are implemented using

the TREENET, so as to model the compositional nature of symbolic expressions. How-

ever, the traditional TREENNs (Socher et al., 2013) use a single-layer neural network

at each tree node. During our preliminary investigations and in Section 6.2, we found

that single layer networks are not expressive enough to capture many operations, even

a simple XOR boolean operator, because representing these operations required high-

curvature operations in the continuous semantic representation space. Instead, we turn

to multi-layer neural networks. In particular, we define the COMBINE in Figure 6.1b.

This uses a two-layer MLP with a residual-like connection to compute the SEMVEC of

each parent node in that syntax tree given that of its children. Each node type τn, e.g.

each logical operator, has a different set of weights. We experimented with deeper net-

works but this did not yield any improvements. However, as TREENN become deeper,

they suffer from optimization issues, such as diminishing and exploding gradients. This

is essentially because of the highly compositional nature of tree structures, where the

same network (i.e. the COMBINE non-linear function) is used recursively, causing it to

“echo” its own errors and producing unstable feedback loops. We observe this problem

even with only two-layer MLPs, as the overall network can become quite deep when

using two layers for each node in the syntax tree.

We resolve this issues in a few different ways. First, we constrain each SEMVEC to

have unit norm. That is, we set LOOKUPLEAFEMBEDDING(τn) =Cτn/‖Cτn‖2 , and we

normalize the output of the final layer of COMBINE in Figure 6.1b. The normalization

step of l̄out and Cτn is somewhat similar to layer normalization (Ba et al., 2016), although

applying layer normalization directly did not work for our problem. Normalizing the

SEMVECs partially resolves issues with diminishing and exploding gradients, and re-

moves a spurious degree of freedom in the semantic representation. As simple as this

modification may seem, we found that it was vital to obtaining effective performance,

and all of our multi-layer TREENNs converged to low-performing parameters without

it.

However this modification is not sufficient, since the network may learn to map

expressions from the same equivalence class to multiple SEMVECs in the continuous

space. We alleviate this problem using a method that we call subexpression forcing.

118Chapter 6. Learning Continuous Semantic Representations of Symbolic Expressions

Subexpression forcing guides EQNET to cluster its output to one location per equiv-

alence class, enforces the reversibility of the representations and unifies the represen-

tations of semantically identical but syntactically distinct expressions. The high-level

idea will be to use an autoencoder with a bottleneck, to remove irrelevant information

from the representations, while minimizing the reconstruction error of parent and child

representations together, to encourage dependence in the representations of parents

and children. More specifically, we encode each parent-children tuple [rc0 , . . . ,rck ,rp]

containing the (computed) SEMVECs of the children and parent nodes into a low-

dimensional space using a denoising autoencoder. We then seek to minimize the re-

construction error of the child representations (r̃c0, . . . , r̃ck) as well as the reconstructed

parent representation r̃p that can be computed from the reconstructed children. More

formally, we minimize the return value of subexpression forcing in Figure 6.1c where n
is a binary noise vector with κ percent of its elements set to zero. Note that the encoder

is specific to the parent node type τp. Although our subexpression forcing may seem

similar to the recursive autoencoders of Socher et al. (2011) it differs significantly in

form and purpose, since it acts as an autoencoder on the whole parent-children rep-

resentation tuple and the encoding is not used within the computation of the parent

representation.

Subexpression forcing has several desired effects. First, it forces each parent-children

tuple to lie in a low-dimensional space, requiring the network to compress informa-

tion from the individual subexpressions. Second, because the denoising autoencoder

is reconstructing parent and child representations together, this encourages child rep-

resentations to be predictable from parents and siblings. Putting these two together,

the goal is that the information discarded by the autoencoder bottleneck will be more

syntactic than semantic, assuming that the semantics of child node is more predictable

from its parent and sibling than its syntactic realization. The goal is to nudge the net-

work to learn consistent, reversible semantics. Additionally, subexpression forcing has

the potential to gradually unify distant representations that belong to the same equiv-

alence class. To illustrate this point, imagine two semantically equivalent c′0 and c′′0
child nodes of different expressions that have distant SEMVECs, i.e.

∥∥∥rc′0
− rc′′0

∥∥∥
2
� ε

although COMBINE(rc′0
, . . .) ≈ COMBINE(rc′′0

, . . .). In some cases due to the autoen-

coder noise, the differences between the input tuple x′,x′′ that contain rc′0
and rc′′0

will

be non-existent and the decoder will predict a single location r̃c0 (possibly different

from rc′0
and rc′′0

). Then, when minimizing the reconstruction error, both rc′0
and rc′′0

will be attracted to r̃c0 and eventually should merge.

6.1. Neural Equivalence Networks 119

6.1.2 Training

We train EQNETs from a dataset of expressions whose semantic equivalence is known.

Given a training set T = {T1 . . .TN} of parse trees of expressions, we assume that the

training set is partitioned into equivalence classes E = {e1 . . .eJ}. We use a supervised

objective similar to classification; the difference between classification and our setting

is that whereas standard classification problems consider a fixed set of class labels,

in our setting the number of equivalence classes in the training set will vary with N.

Given an expression tree T that belongs to the equivalence class ei ∈ E , we compute

the probability

P(ei|T) =
exp
(
TREENN(T)>qei +bi

)
∑ j exp

(
TREENN(T)>qe j +b j

) (6.1)

where qei are model parameters that we can interpret as representations of each equiva-

lence classes that appears in the training class, and bi are bias terms. Note that in this

work, we only use information about the equivalence class of the whole expression T ,

ignoring available information about subexpressions. This is without loss of generality,

because if we do know the equivalence class of a subexpression of T , we can simply

add that subexpression to the training set. Directly maximizing P(ei|T) would be bad

for EQNET since its unit-normalized outputs cannot achieve high probabilities within

the softmax. Instead, we train a max-margin objective that maximizes classification

accuracy, i.e.

LACC(T,ei) = max

(
0, argmax

e j 6=ei,e j∈E
logP(e j|T)− logP(ei|T)+m

)
(6.2)

where m > 0 is a scalar margin. And therefore the optimized loss function for a single

expression tree T that belongs to equivalence class ei ∈ E is

L(T,ei) = LACC(T,ei)+
µ
|Q| ∑n∈Q

SUBEXPFORCE(ch(n),n) (6.3)

where Q = {n ∈ T : |ch(n)|> 0}, i.e. contains the non-leaf nodes of T and µ ∈ (0,1]

a scalar weight. We found that subexpression forcing is counterproductive early in

training, before the SEMVECs begin to represent aspects of semantics. So, for each

epoch t, we set µ = 1−10−νt with ν≥ 0.

Instead of the supervised objective that we propose, an alternative option for training

EQNET would be a Siamese objective (Chopra et al., 2005) that learns about similarities

(rather than equivalence) between expressions. In practice, we found the optimization

120Chapter 6. Learning Continuous Semantic Representations of Symbolic Expressions

to be very unstable, yielding suboptimal performance. We believe that this has to do

with the compositional and recursive nature of the task that creates unstable dynamics

and the fact that equivalence is a stronger property than similarity.

6.2 Evaluation

Datasets We generate datasets of expressions grouped into equivalence classes from

two domains. The datasets from the BOOL domain contain boolean expressions and

the POLY datasets contain polynomial expressions. In both domains, an expression is

either a variable, a binary operator that combines two expressions, or a unary opera-

tor applied to a single expression. When defining equivalence, we interpret distinct

variables as referring to different entities in the domain, so that, e.g. the polynomials

c ·(a ·a+b) and f ·(d ·d+e) are not equivalent. For each domain, we generate “simple”

datasets which use a smaller set of possible operators and “standard” datasets which

use a larger set of more complex operators. We generate each dataset by exhaustively

generating all parse trees up to a maximum tree size. All expressions are then simpli-

fied into a canonical from in order to determine their equivalence class and are grouped

accordingly. Table 6.3 shows the datasets we generated. We also present in Table 6.1

some sample expressions. For the polynomial domain, we also generated ONEV-POLY

datasets, which are polynomials over a single variable, since they are similar to the

setting considered by Zaremba et al. (2014) — although ONEV-POLY is still a lit-

tle more general because it is not restricted to homogeneous polynomials. Learning

SEMVECs for boolean expressions is already a hard problem; with n boolean variables,

there are 22n
equivalence classes (i.e. one for each possible truth table). We split the

datasets into training, validation and test sets. We create two test sets, one to measure

generalization performance on equivalence classes that were seen in the training data

(SEENEQCLASS), and one to measure generalization to unseen equivalence classes

(UNSEENEQCLASS). It is easiest to describe UNSEENEQCLASS first. To create the

UNSEENEQCLASS, we randomly select 20% of all the equivalence classes, and place

all of their expressions in the test set. We select equivalence classes only if they contain

at least two expressions but less than three times the average number of expressions

per equivalence class. We thus avoid selecting very common (and hence trivial to learn)

equivalence classes in the testset. Then, to create SEENEQCLASS, we take the remain-

ing 80% of the equivalence classes, and randomly split the expressions in each class

into training, validation, SEENEQCLASS test in the proportions 60%–15%–25%. We

6.2. Evaluation 121

provide the datasets online.

Baselines To compare the performance of our model, we train the following base-

lines. TF-IDF: learns a representation given the tokens of each expression (variables,

operators and parentheses). This can capture topical/declarative knowledge but is un-

able to capture procedural knowledge. GRU refers to the token-level gated recurrent

unit encoder of Bahdanau et al. (2015) that encodes the token-sequence of an expres-

sion into a distributed representation. Stack-augmented RNN refers to the work of

Joulin & Mikolov (2015) which was used to learn algorithmic patterns and uses a stack

as a memory and operates on the expression tokens. We also include two recursive

neural network (TREENN) architectures. The 1-layer TREENN which is the original

TREENN also used by Zaremba et al. (2014). We also include a 2-layer TREENN,

where COMBINE is a classic two-layer MLP without residual connections. This shows

the effect of SEMVEC normalization and subexpression forcing.

Hyperparameters We tune the hyperparameters of the baselines and EQNET using

Bayesian optimization (Snoek et al., 2012), optimizing on a boolean dataset with 5

variables and maximum tree size of 7 (not shown in Table 6.3). We use the average

k-NN (k = 1, . . . ,15) statistics (described next) as an optimization metric. The selected

hyperparameters are detailed in Table 6.2.

6.2.1 Quantitative Evaluation

Metric To evaluate the quality of the learned representations we count the proportion of

k nearest neighbors of each expression (using cosine similarity) that belong to the same

equivalence class. More formally, given a test query expression q in an equivalence

class c we find the k nearest neighbors Nk(q) of q across all expressions, and define the

score as

scorek(q) =
|Nk(q)∩ c|

min(k, |c|−1)
. (6.4)

To report results for a given testset, we simply average scorek(q) for all expressions q

in the testset.

Evaluation Figure 6.2 presents the average scorek across the datasets for each model.

Table 6.3 shows score5 of UNSEENEQCLASS for each dataset. It can be clearly seen that

EQNET performs better for all datasets, by a large margin. The only exception is POLY5,

where the two-layer TREENN performs better. However, this may have to do with the

small size of the dataset. The reader may observe that the simple datasets (containing

122Chapter 6. Learning Continuous Semantic Representations of Symbolic Expressions

BOOL8

(¬a)∧ (¬b) (¬a∧¬c)∨ (¬b∧a∧ c)∨ (¬c∧b) (¬a)∧b∧ c

a¬((¬a)⇒ ((¬a)∧b)) c⊕ (((¬a)⇒ a)⇒ b) ¬((¬b)∨ ((¬c)∨a))

¬((b∨ (¬(¬a)))∨b) ¬((b⊕ (b∨a))⊕ c) ((a∨b)∧ c)∧ (¬a)

(¬a)⊕ ((a∨b)⊕a) ¬((¬(b∨ (¬a)))⊕ c) (¬((¬(¬b))⇒ a))∧ c

(b⇒ (b⇒ a))∧ (¬a) ((b∨a)⊕ (¬b))⊕ c) (c∧ (c⇒ (¬a)))∧b

((¬a)⇒ b)⇒ (a⊕a) (¬((b⊕a)∧a))⊕ c b∧ (¬(b∧ (c⇒ a)))

False (¬a)∧ (¬b)∨ (∧c) ¬a∨b

(a⊕a)∧ (c⇒ c) (a⇒ (¬c))⊕ (a∨b) a⇒ ((b∧ (¬c))∨b)

(¬b)∧ (¬(b⇒ a)) (a⇒ (c⊕b))⊕b ¬(¬((b∨a)⇒ b))

b∧ ((a∨a)⊕a) b⊕ (a⇒ (b⊕ c)) (¬a)⊕ (¬(b⇒ (¬a)))

((¬b)∧b)⊕ (a⊕a) (b∨a)⊕ (x⇒ (¬a)) b∨ (¬((¬b)∧a))

c∧ ((¬(a⇒ a))∧ c) b⊕ ((¬a)∨ (c⊕b)) ¬((a⇒ (a⊕b))∧a)

POLY8

−a− c c2 b2c2

(b−a)− (c+b) (c · c)+(b−b) (b ·b) · (c · c)
b− (c+(b+a)) ((c · c)− c)+ c c · (c · (b ·b))
a− ((a+a)+ c) ((b+ c)−b) · c (c ·b) · (b · c)
(a− (a+a))− c c · (c− (a−a)) ((c ·b) · c) ·b
(b−b)− (a+ c) c · c ((c · c) ·b) ·b

c b · c b− c

c− ((c− c) ·a) (c− (b−b)) ·b (a− (a+ c))+b

c− ((a−a) · c) (b− (c− c)) · c (a− c)− (a−b)

((a−a) ·b)+ c (b−b)+(b · c) (b− (c+ c))+ c

(c+a)−a c · ((b− c)+ c) (b− (c−a))−a

(a · (c− c))+ c (b · c)+(c− c) b− ((a−a)+ c)

Table 6.1: Sample expressions for the datasets used.

6.2. Evaluation 123

Table 6.2: Hyperparameters used in this work.

Model Hyperparameters

EQNET learning rate 10−2.1, RMSProp ρ = 0.88, momentum 0.88, minibatch

size 900, representation size D = 64, autoencoder size M = 8, autoen-

coder noise κ = 0.61, gradient clipping 1.82, initial parameter standard

deviation 10−2.05, dropout rate .11, hidden layer size 8, ν= 4, curriculum

initial tree size 6.96, curriculum step per epoch 2.72, objective margin

m = 0.5

1-layer-TREENN learning rate 10−3.5, RMSProp ρ = 0.6, momentum 0.01, minibatch size

650, representation size D = 64, gradient clipping 3.6, initial parameter

standard deviation 10−1.28, dropout 0.0, curriculum initial tree size 2.8,

curriculum step per epoch 2.4, objective margin m = 2.41

2-layer-TREENN learning rate 10−3.5, RMSProp ρ = 0.9, momentum 0.95, minibatch size

1000, representation size D = 64, gradient clipping 5, initial parameter

standard deviation 10−4, dropout 0.0, hidden layer size 16, curriculum

initial tree size 6.5, curriculum step per epoch 2.25, objective margin

m = 0.62

GRU learning rate 10−2.31, RMSProp ρ = 0.90, momentum 0.66, minibatch

size 100, representation size D = 64, gradient clipping 0.87, token em-

bedding size 128, initial parameter standard deviation 10−1, dropout rate

0.26

StackRNN learning rate 10−2.9, RMSProp ρ = 0.99, momentum 0.85, minibatch

size 500, representation size D = 64, gradient clipping 0.70, token em-

bedding size 64, RNN parameter weights initialization standard devi-

ation 10−4, embedding weight initialization standard deviation 10−3,

dropout 0.0, stack count 40

124Chapter 6. Learning Continuous Semantic Representations of Symbolic Expressions

Table 6.3: Dataset statistics and results. SIMP datasets contain simple operators (“∧, ∨,

¬” for BOOL and “+, −” for POLY) while the rest contain all operators (i.e. “∧, ∨, ¬, ⊕,

⇒” for BOOL and “+, −, ·” for POLY). ⊕ is the XOR operator. The number in the dataset

name is the maximum tree size of the parsed expressions within that dataset. L refers

to a “larger” number of 10 variables. H refers to the entropy of equivalence classes.

Dataset # # Equiv # H score5 (%) in UNSEENEQCLASS

Vars Classes Exprs tf-idf GRU Stack TREENN EQ

RNN 1-L 2-L NET

SIMPBOOL8 3 120 39,048 5.6 17.4 30.9 26.7 27.4 25.5 97.4
SIMPBOOL10S 3 191 26,304 7.2 6.2 11.0 7.6 25.0 93.4 99.1
BOOL5 3 95 1,239 5.6 34.9 35.8 12.4 16.4 26.0 65.8
BOOL8 3 232 257,784 6.2 10.7 17.2 16.0 15.7 15.4 58.1
BOOL10S 10 256 51,299 8.0 5.0 5.1 3.9 10.8 20.2 71.4
SIMPBOOLL5 10 1,342 10,050 9.9 53.1 40.2 50.5 3.48 19.9 85.0
BOOLL5 10 7,312 36,050 11.8 31.1 20.7 11.5 0.1 0.5 75.2
SIMPPOLY5 3 47 237 5.0 21.9 6.3 1.0 40.6 27.1 65.6
SIMPPOLY8 3 104 3,477 5.8 36.1 14.6 5.8 12.5 13.1 98.9
SIMPPOLY10 3 195 57,909 6.3 25.9 11.0 6.6 19.9 7.1 99.3
ONEV-POLY10 1 83 1,291 5.4 43.5 10.9 5.3 10.9 8.5 81.3
ONEV-POLY13 1 677 107,725 7.1 3.2 4.7 2.2 10.0 56.2 90.4
POLY5 3 150 516 6.7 37.8 34.1 2.2 46.8 59.1 55.3

POLY8 3 1,102 11,451 9.0 13.9 5.7 2.4 10.4 14.8 86.2
SDatasets are sampled at uniform from all possible expressions, and include all equivalence classes but

sampling 200 expressions per equivalence class if more expressions can be formed.

6.2. Evaluation 125

5 10
k

10−1

100

sc
or
e k

(a-i) SEENEQCLASS

5 10
k

10−1

100

sc
or
e k

(a-ii) UNSEENEQCLASS

(a) Evaluation of generalization: Models trained

and tested on same type of data. Averaged over all

datasets in Table 6.3.

5 10
k

10−1

100

sc
or
e k

(b-i) SEENEQCLASS

5 10
k

10−1

100

sc
or
e k

(b-ii) UNSEENEQCLASS

(b) Evaluation of compositionality; training set sim-

pler than test set. Averaged over all pairs in Fig-

ure 6.3c.

tf-idf GRU StackRNN TreeNN-1Layer TreeNN-2Layer EqNet

Figure 6.2: Average scorek (y-axis in log-scale). Markers are shown every three ticks for

clarity. TREENN refers to Socher et al. (2012). Detailed, per-dataset, plots can be found

in Figure 6.3.

fewer operations and variables) are easier to learn. Understandably, introducing more

variables increases the size of the represented space reducing performance. The tf-

idf method performs better in settings where more variables are included, because it

captures well the variables and operations used. Similar observations can be made

for sequence models. The one and two layer TREENNs have mixed performance; we

believe that this has to do with exploding and diminishing gradients due to the deep and

highly compositional nature of TREENNs. Although Zaremba et al. (2014) consider

a different problem to us, they use data similar to the ONEV-POLY datasets with a

traditional TREENN architecture. Our evaluation suggests that EQNETs perform much

better within the ONEV-POLY setting.

Figure 6.3 presents a detailed evaluation for our k-NN metric for each dataset. Fig-

ure 6.3c and Figure 6.3d shows the detailed evaluation when using models trained on

simpler datasets but tested on more complex ones, essentially evaluating the learned

compositionality of the models. Figure 6.4 show how the performance varies across the

datasets based on their characteristics. As expected as the number of variables increase,

the performance worsens (Figure 6.4a) and expressions with more complex operators

tend to have worse performance (Figure 6.4b). In contrast, Figure 6.4c suggests no

126Chapter 6. Learning Continuous Semantic Representations of Symbolic Expressions

5 10

S
IM

P
B

O
O

L
10

5 10

B
O

O
L
5

5 10

B
O

O
L
8

5 10
B

O
O

L
10

5 10

S
IM

P
B

O
O

L
L5

5 10

B
O

O
L
L5

5 10

S
IM

P
P

O
LY

8

5 10

S
IM

P
P

O
LY

10

5 10

O
N

E
V

-P
O

LY
10

5 10

O
N

E
V

-P
O

LY
13

5 10

P
O

LY
5

5 10
0.0

0.2

0.4

0.6

0.8

1.0

P
O

LY
8

(a) SEENEQCLASS evaluation using model trained on the respective training set.

5 10

S
IM

P
B

O
O

L
10

5 10

B
O

O
L
5

5 10

B
O

O
L
8

5 10

B
O

O
L
10

5 10

S
IM

P
B

O
O

L
L5

5 10

B
O

O
L
L5

5 10

S
IM

P
P

O
LY

8

5 10

S
IM

P
P

O
LY

10

5 10

O
N

E
V

-P
O

LY
10

5 10

O
N

E
V

-P
O

LY
13

5 10

P
O

LY
5

5 10
0.0

0.2

0.4

0.6

0.8

1.0

P
O

LY
8

(b) UNSEENEQCLASS evaluation using model trained on the respective training set.

5 10

B
O

O
L
L5
→

B
O

O
L
8

5 10

B
O

O
L
5→

B
O

O
L
8

5 10

B
O

O
L
5→

B
O

O
L
10

5 10

P
O

LY
8→

S
IM

P
P

O
LY

8

5 10

S
IM

P
P

O
LY

5→
S

IM
P

P
O

LY
10

5 10

S
IM

P
P

O
LY

8→
S

IM
P

P
O

LY
10

5 10

P
O

LY
5→

S
IM

P
P

O
LY

10

5 10

P
O

LY
8→

S
IM

P
P

O
LY

10

5 10

O
N

E
V

-P
O

LY
10
→

O
N

E
V

-P
O

LY
13

5 10

P
O

LY
8→

O
N

E
V

-P
O

LY
13

5 10
0.0

0.2

0.4

0.6

0.8

1.0

P
O

LY
5→

P
O

LY
8

(c) SEENEQCLASS evaluation using model trained on simpler datasets. Caption is “model trained

on”→“Test dataset”.

5 10

B
O

O
L
L5
→

B
O

O
L
8

5 10

B
O

O
L
5→

B
O

O
L
8

5 10

B
O

O
L
5→

B
O

O
L
10

5 10

P
O

LY
8→

S
IM

P
P

O
LY

8

5 10

S
IM

P
P

O
LY

5→
S

IM
P

P
O

LY
10

5 10

S
IM

P
P

O
LY

8→
S

IM
P

P
O

LY
10

5 10

P
O

LY
5→

S
IM

P
P

O
LY

10

5 10

P
O

LY
8→

S
IM

P
P

O
LY

10

5 10

O
N

E
V

-P
O

LY
10
→

O
N

E
V

-P
O

LY
13

5 10

P
O

LY
8→

O
N

E
V

-P
O

LY
13

5 10
0.0

0.2

0.4

0.6

0.8

1.0

P
O

LY
5→

P
O

LY
8

(d) Evaluation of compositionality. UNSEENEQCLASS evaluation using model trained on simpler

datasets. Caption is “model trained on”→“Test dataset”.

tf-idf GRU StackRNN TreeNN-1Layer TreeNN-2Layer EqNet

Figure 6.3: Evaluation of scorex (y axis) for x = 1, . . . ,15. on the respective SEENEQ-

CLASS and UNSEENEQCLASS. The markers are shown every five ticks of the x-axis to

make the graph more clear. TREENN refers to the model of Socher et al. (2012).

6.2. Evaluation 127

5 10
k

0.2

0.4

0.6

0.8

1.0
sc
or
e k

1 Var
3 Vars
10 Vars

(a) Performance vs. Number of Vari-

ables.

5 10
k

0.2

0.4

0.6

0.8

1.0

sc
or
e k

Simple
All

(b) Performance vs. Operator Com-

plexity.

6 8 10 12 14

Equivalence Class Entropy

0.5

0.6

0.7

0.8

0.9

1.0

1.1

sc
or
e 1

0

simpleBoolean8

oneVarPoly13

poly5
boolean10

oneVarPoly10

simplepoly8

largeBoolean5

simplepoly5

boolean8

simpleBoolean10

largeSimpleBoolean5

simplepoly10

boolean5

poly8

(c) Entropy H vs. score10 for all datasets.

Figure 6.4: Performance of EQNET on SEENEQCLASS for the datasets grouped by their

characteristics.

128Chapter 6. Learning Continuous Semantic Representations of Symbolic Expressions

¬(c⊕ (a∧ ((a⊕ c)∧ b))) ((c∨ (¬b))⇒ a)∧ (a⇒ a) ((b⊕ (¬c))∧ b)⊕ (a∨ b)

((b · a)− a) · b a− ((a+ b) · a) ((c · b) · c) · a b+((b · b) · b)

Figure 6.5: Visualization of score5 for all expression nodes for three BOOL10 and four

POLY8 test sample expressions using EQNET. The darker the color, the lower the score,

i.e. white implies a score of 1 and dark red a score of 0.

obvious correlation between performance and the entropy of the equivalence classes

within the datasets. The results for UNSEENEQCLASS look very similar and are not

plotted.

Evaluation of Compositionality We evaluate whether the EQNETs have successfully

learned to compute compositional representations, rather than overfitting to expression

trees of a small size. We evaluate this by considering a type of transfer setting, in which

we train on simpler datasets, but tested on more complex ones; for example, training

on the training set of BOOL5 but testing on the testset of BOOL8. We average over 11

different train-test pairs (full list in Figure 6.3c) and present the results in Figure 6.2b-i

and Figure 6.2b-ii (note the differences in scale to the two figures on the left). These

graphs again show that EQNETs are dramatically better than any of the other methods,

and indeed, performance is only a bit worse than in the non-transfer setting.

Impact of EQNET Components EQNETs differ from traditional TREENNs in two

major components, which we analyze here. First, SUBEXPFORCE has a positive impact

on performance. When training the network with and without subexpression forcing,

on average, the area under the curve (AUC) of the scorek decreases by 16.8% on the

SEENEQCLASS and 19.7% on the UNSEENEQCLASS. This difference is smaller in the

transfer setting of Figure 6.2b-i and Figure 6.2b-ii, where AUC decreases by 8.8% on

average. However, even in this setting we observe that SUBEXPFORCE helps more in

large and diverse datasets. The second key difference to traditional TREENNs is the

output normalization at each layer. Comparing our model to the one-layer and two-layer

TREENNs again, we find that output normalization results in important improvements

(the two-layer TREENNs have on average 60.9% smaller AUC).

6.2. Evaluation 129

Table 6.4: Non semantically equivalent first nearest-neighbors from BOOL8. A check-

mark indicates that the method correctly results in the nearest neighbor being from the

same equivalence class.

Expression a∧ (a∧ (a∧ (¬c))) a∧ (a∧ (c⇒ (¬c))) (a∧a)∧ (c⇒ (¬c))

tfidf c∧ ((a∧a)∧ (¬a)) c⇒ (¬((c∧a)∧a)) c⇒ (¬((c∧a)∧a))

GRU X a∧ (a∧ (c∧ (¬c))) (a∧a)∧ (c⇒ (¬c))

1L-TREENN a∧ (a∧ (a∧ (¬b))) a∧ (a∧ (c⇒ (¬b))) (a∧a)∧ (c⇒ (¬b))

EQNET X X (¬(b⇒ (b∨ c)))∧a

Table 6.5: Non semantically equivalent first nearest-neighbors from POLY8. A checkmark

indicates that the method correctly results in the nearest neighbor being from the same

equivalence class.

Expression a+(c · (a+ c)) ((a+ c) · c)+a (b ·b)−b

tf-idf a+(c+a) · c (c ·a)+(a+ c) b · (b−b)

GRU b+(c · (a+ c)) ((b+ c) · c)+a (b+b) ·b−b

1L-TREENN a+(c · (b+ c)) ((b+ c) · c)+a (a− c) ·b−b

EQNET X X (b ·b) ·b−b

130Chapter 6. Learning Continuous Semantic Representations of Symbolic Expressions

a∧ (b∧ c)

¬(a∨ (b∨ c))

a∨ c

b

a
c

a∧ b

b∨ c ¬(a∧ (b∨ c))
a∨ (b∨ c)

¬a

¬(b∧ c)

¬(a∨ (b∧ c))
a∨ (b∧ c)

¬(a∨ c)

a∧ c

¬(a∧ c)

a∧ (b∨ c)

¬c

¬(a∧ b)

a∨ b

¬(b∨ c)

¬b

b∧ c

¬(a∧ (b∧ c))

¬(a∨ b)

(a) Negation in BOOL expressions

b− a

a− b(a+ c)− (c+ b)

(c− c)− (a− b)

c− (a+ b)

a− (b+ c)

(a+ b)− (b+ c)

a− (c− b)

c− a

(b− a) + c

(b− b)− (a− c)

a− (b− c)

a− c

b− (a+ c)

(b) Negatives in POLY expressions

Figure 6.6: A PCA visualization of some simple non-equivalent boolean and polyno-

mial expressions (black-square) and their negations (red-circle). The lines connect the

negated expressions.

6.2.2 Qualitative Evaluation

Table 6.4 and Table 6.5 shows expressions whose SEMVEC nearest neighbor is of an

expression of another equivalence class. Manually inspecting boolean expressions, we

find that EQNET confusions happen more when a XOR or implication operator is in-

volved. In fact, we fail to find any confused expressions for EQNET not involving these

operations in BOOL5 and in the top 100 expressions in BOOL10. As expected, tf-idf

confuses expressions with others that contain the same operators and variables ignoring

order. In contrast, GRU and TREENN tend to confuse expressions with very similar

symbolic representation differing in one or two deeply nested variables or operators. In

contrast, EQNET tends to confuse fewer expressions (as we previously showed) and the

confused expressions tend to be more syntactically diverse and semantically related.

Figure 6.5 shows a visualization of score5 for each node in the expression tree.

One may see that as EQNET knows how to compose expressions that achieve good

score, even if the subexpressions achieve a worse score. This suggests that for com-

mon expressions, (e.g. single variables and monomials) the network tends to select

a unique location, without merging the equivalence classes or affecting the upstream

performance of the network. Larger scale interactive t-SNE visualizations can be found

online.

Figure 6.6 presents two PCA visualizations of the learned embeddings of simple

expressions and their negations/negatives. It can be easily discerned that the black dots

http://groups.inf.ed.ac.uk/cup/semvec

6.3. Related Work in Machine Learning 131

and their negations (in red) are easily discriminated in the semantic representation space.

Figure 6.6b shows this property in a very clear manner: left-right discriminates between

polynomials with a and −a, top-bottom between polynomials that contain b and −b

and the diagonal y = x between c and −c. We observe a similar behavior in Figure 6.6a

for boolean expressions.

6.3 Related Work in Machine Learning

Researchers have proposed compilation schemes that can transform any given program

or expression to an equivalent neural network (Gruau et al., 1995; Neto et al., 2003;

Siegelmann, 1994). One can consider a serialized version of the resulting neural network

as a representation of the expression. However, it is not clear how we could compare the

serialized representations corresponding to two expressions and whether this mapping

preserves semantic distances.

Recursive neural networks (TREENN) (Socher et al., 2012, 2013) have been success-

fully used in NLP with multiple applications. Socher et al. (2012) show that TREENNs

can learn to compute the values of some simple propositional statements. EQNET’s

SUBEXPFORCE may resemble recursive autoencoders (Socher et al., 2011) but differs

in form and function, encoding the whole parent-children tuple to force a clustering

behavior. In addition, when encoding each expression our architecture does not use a

pooling layer but directly produces a single representation for the expression.

This work is related to other probabilistic models of source code discussed in Chap-

ter 2, Mou et al. (2016) use tree convolutional neural networks to classify code into 106

student submissions tasks. Although their model learns intermediate representations

of the student tasks, it is a way of learning task-specific features in the code, rather

than of learning semantic representations of programs. Piech et al. (2015) also learn

distributed matrix representations of programs from student submissions. However, to

learn the representations, they use input and output program states and do not test over

program equivalence. Additionally, these representations do not necessarily represent

program equivalence, since they do not learn the representations over the exhaustive

set of all possible input-output states. Allamanis et al. (2016d) learn variable-sized

representations of source code snippets to summarize them with a short function-like

name. This method aims to learn summarization features in code rather than to learn

representations of symbolic expression equivalence.

More closely related is the work of Zaremba et al. (2014) who use a recursive neural

132Chapter 6. Learning Continuous Semantic Representations of Symbolic Expressions

network (TREENN) to guide the tree search for more efficient mathematical identities,

limited to homogeneous single-variable polynomial expressions. In contrast, EQNETs

consider at a much wider set of expressions, employ subexpression forcing to guide the

learned SEMVECs to better represent equivalence, and do not use search when looking

for equivalent expressions. Alemi et al. (2016) use RNNs and convolutional neural

networks to detect features within mathematical expressions and speed the search for

premise selection during automated theorem proving but do not explicitly account for

semantic equivalence. In the future, SEMVECs may find useful applications within this

work.

Our work is also related to recent work on neural network architectures that learn

controllers/programs (Gruau et al., 1995; Graves et al., 2014; Joulin & Mikolov, 2015;

Grefenstette et al., 2015; Dyer et al., 2015; Reed & de Freitas, 2016; Neelakantan et al.,

2015; Kaiser & Sutskever, 2016). In contrast to this work, we do not aim to learn how to

evaluate expressions or execute programs with neural network architectures but to learn

continuous semantic representations (SEMVECs) of expression semantics irrespectively

of how they are syntactically expressed or evaluated.

6.4 Conclusions

In this chapter, we presented EQNETs, a first step in learning continuous semantic

representations (SEMVECs) of procedural knowledge. SEMVECs have the potential of

bridging continuous representations with symbolic representations and their semantics.

This will be useful for creating machine learning methods that learn to reason about

code semantics and the associated conventions. In the future, such methods may have

applications in finding bugs in source code but may also find use in artificial intelligence

and existing program analysis methods.

We showed that EQNETs perform significantly better than state-of-the-art alterna-

tives. But further improvements are needed, especially for more robust training of com-

positional models in machine learning. In addition, even for relatively small symbolic

expressions, we have an exponential explosion of the semantic space to be represented.

Fixed-sized SEMVECs, like the ones used in EQNET, eventually limit the capacity that

is available to represent procedural knowledge. In the future, to represent more complex

procedures, variable-sized representations would most probably be necessary.

Chapter 7

Mining Idiomatic Source Code

“Any fool can write code that a computer can

understand. Good programmers write code that

humans can understand.”
– Martin Fowler. Refactoring: Improving the Design

of Existing Code, 1999

Programming language text is a means of human communication. Programmers

write code not simply to be executed by a computer, but also to communicate the

precise details of the code’s operation to later developers who will adapt, update, test

and maintain the code. Programmers themselves use the term idiomatic to refer to code

that is written in a style that other experienced developers find natural and conventional.1

Programmers believe that it is important to write idiomatic code, as evidenced by the

amount of relevant resources available: For example, Wikibooks has a book devoted to

C++ idioms (Wikibooks, 2013), and similar guides are available for Java (Java Idioms

Editors, 2014) and JavaScript (Chuan, 2014; Waldron, 2014). A guide on GitHub for

idiomatic JavaScript (Waldron, 2014) has more than 11,949 stars and 1,589 forks. A

search for the keyword “idiomatic” on StackOverflow yields over 49,000 hits; all but

one of the first 100 hits are questions about what the idiomatic method is for performing

a given task.

The notion of code idiom is one that is commonly used but seldom defined. We take

the view that an idiom is a code fragment that represents a “mental chunk” that humans

use when reasoning about some code which describes a single coherent operation.

In this chapter, we discuss syntactic and semantic idioms. Syntactic idioms represent
1This use of the word “idiom” refers to notion of style similar to art or music, rather than to linguistic

idioms that are groups of words whose meaning is not deducible from the meaning of the individual
words.

133

134 Chapter 7. Mining Idiomatic Source Code

common syntactic structures. For example, the loop for(int i=0;i<n;i++) { ... } is

common for iterating over an array and although it would be possible to express this

operation in many other ways, such as with a do-while loop or using recursion, we

would find those alternatives alien and more difficult to understand. Similarly, semantic

idioms represent common semantic concepts which developers use as units of reasoning.

For example, a map-reduce operation over a collection is a common semantic idiom,

which includes applying a mapping function to each element of the collection and then

reducing the mapped values to a single result. Such an idiomatic semantic operation is

so common that the simple “map-reduce” term is used to explain the concept among

software engineers.

Idioms differ significantly from previous notions of patterns in software, such as

code clones (Roy & Cordy, 2007) and API patterns (Zhong et al., 2009). Unlike clones,

idioms commonly recur across projects, even ones from different domains, and un-

like API patterns, idioms commonly involve syntactic constructs, such as iteration and

exception handling. A large number of example syntactic idioms, all of which are

automatically identified by our system, are shown in Figures 7.7, 7.8 and 7.9 while

Figure 7.15 shows sample semantic idioms. As the reader may notice, all idioms may

have metavariables that abstract over identifiers, code blocks and other elements.

Idioms are important to software engineering. First, syntactic idioms are widely

useful as a form of documentation of some code construct or API. Already, major IDEs

support syntactic idioms by including features that allow programmers to define idioms

and easily reuse them. Eclipse’s SnipMatch (Recommenders, 2014) and IntelliJ IDEA’s

live templates (JetBrains, 2014) allow the user to define custom snippets of code that can

be inserted on demand. NetBeans includes a similar “Code Templates” feature in its ed-

itor and Microsoft created Bing Developer Assistant (Microsoft Research, 2014; Zhang

et al., 2016) that allows users to search and add snippets to their code, by retrieving

code from popular coding websites, such as StackOverflow and other documentation.

The fact that all major IDEs include features that allow programmers to manually define

and use idioms attests to their importance.

Semantic idioms on the other hand represent patterns that software engineering tool

designers need to know to achieve good coverage of their tool. For example, when

designing a refactoring tool, toolsmiths implicitly aim to capture common semantic

patterns so that the implemented code rewritings can achieve good coverage on real-

life code. Similarly, software architects define new APIs that simplify common usage

idioms of library or project-internal APIs. Semantic idioms are also the driving force

135

behind the introduction of new programming language features that cover common

language use cases, such as the introduction of the foreach construct in Java and C# or

the multi-catch statement in Java 7.

We are unaware, however, of methods for automatically identifying code idioms.

This is a major gap in tooling for software development. Software developers cannot

use manual IDE tools for syntactic idioms without significant effort to organize the

idioms of interest and then manually add them to the tool. This is especially an obstacle

for less experienced programmers who do not know which idioms they should be using.

Indeed, as we demonstrate later, many syntactic idioms are library-specific, so even an

experienced programmer will not be familiar with the code idioms for a library that is

new to them. Although in theory this cost could be amortized if the users of each library

were to manually create an idiom guide, in practice even expert developers will have

difficulty listing the most “valuable” idioms that they use daily, just as a native speaker

of English would have difficulty exhaustively listing all of the words that they know.

Perhaps for this reason, although IDEs have included features for manually specifying

idioms for many years,2 we are unaware of large-scale efforts by developers to list

and categorize library-specific idioms. The ability to automatically identify syntactic

idioms is needed.

Similarly, designers and tool developers who work to manipulate code need help

with automatically identifying common and meaningful patterns, i.e. patterns that are

easy to manipulate and reason about and implement a cohesive functionality. Tools

such as grep and manual inspection currently dominate the search for useful patterns

and, unfortunately, tend to return frequent but trivial or redundant patterns. These tools

also require that the tool developer already has some intuition about existing pattern,

something that may not be true especially for project or domain-specific patterns. It

is crucial therefore, to assist tool developers to find and rank useful and meaningful

patterns. Mining semantic idioms solves this issue by providing data-based evidence

mining and ranking code patterns within a codebase.

In this chapter, we present a novel method for automatically mining semantic and

syntactic code idioms from an existing corpus of idiomatic code. At first, this might

seem to be a simple proposition: simply search for subtrees that occur often in a parsed

corpus. However, this naïve method does not work well, for the simple reason that

frequent trees are not necessarily interesting trees. To return to our previous example,

for loops occur more commonly than for(int i=0;i<n;i++) {...}, but one would be

2See e.g. http://bit.ly/1nN4hz6

http://bit.ly/1nN4hz6

136 Chapter 7. Mining Idiomatic Source Code

hard pressed to argue that for(...) {...} on its own (that is, with no expressions or

body) is an interesting pattern.

Instead, we rely on a different principle: interesting patterns are those that help to

explain the code that programmers write. As a measure of “explanation quality”, we

use a probabilistic model of the source code, and retain those idioms that make the

training corpus more likely under the model. However, a naïve implementation of this

idea would also create problems—if we simply create one giant idiom for each file that

contains its entire abstract syntax tree (AST), then this will explain the training corpus

with high probability, despite being a lousy model. So we also need a method that

controls the number of idioms induced, adding a new idiom only if it “explains enough”

about the corpus. These ideas can be formalized in a single, theoretically principled

framework using a nonparametric Bayesian analysis. Nonparametric Bayesian methods

have become enormously popular in statistics, machine learning, and natural language

processing because they provide a flexible and principled way of automatically inducing

a “sweet spot” of model complexity based on the amount of data that is available

(Orbanz & Teh, 2010; Gershman & Blei, 2012; Teh & Jordan, 2010). In particular, we

employ a nonparametric Bayesian tree substitution grammar, which has recently been

developed in the field of natural language processing (Cohn et al., 2010; Post & Gildea,

2009), but which has not been applied to source code.

Because our method is primarily statistical in nature, it is language agnostic, and

can be applied to any programming language for which one can collect a corpus of

previously-written code. Our major contributions are:

• We introduce the idiom mining problem (Section 7.1);

• We present HAGGIS, a method for automatically mining syntactic and semantic

code idioms based on nonparametric Bayesian tree substitution grammars (Sec-

tion 7.2);

• We demonstrate that HAGGIS successfully identifies cross-project syntactic idioms

(Section 7.4), for example, 67% of idioms that we identify from one set of open-

source projects also appear in an independent set of snippets of example code from

the popular Q&A site StackOverflow;

• Examining the syntactic idioms that HAGGIS identifies (Figure 7.7 and Figure 7.8),

we find that they describe important program concepts, including object creation,

exception handling, and resource management;

• To further demonstrate that the syntactic idioms identified by HAGGIS are semanti-

7.1. Problem Definition 137

cally meaningful, we examine the relationship between idioms and code libraries

(Subsection 7.4.4), finding that many idioms are strongly connected to package

imports in a way that can support suggestion.

• We present a method for extending syntactic idiom mining to mine semantic id-

ioms by abstracting ASTs and embedding additional semantic information in the

mining process. We specialize this framework for mining semantic idioms of loop

constructs (Section 7.5).

• We demonstrate how semantic loop idioms can be used for API and language design

via two case studies: we find that that adding Enumerate to C# would simplify 12%

of loops or adding a certain API in lucenenet can reduce the complexity of its code

(Section 7.6).

• Finally, we demonstrate how semantic loop idioms can be used by software tool

designers via a case study on refactoring. We show that the top 25 loop idioms cover

45% of concrete loops and that semantic idioms can be simply used to suggest loop-

to-LINQ refactorings achieving 89% accuracy (Section 7.6).

We submitted a small set of syntactic idioms from HAGGIS to the Eclipse SnipMatch

project (Subsection 7.4.3) for inclusion into its pre-supplied library of snippets. Several

of these snippets were accepted.

7.1 Problem Definition

A code idiom is a code fragment that represents some common concept and acts a

“mental chunk” of code that programmers tend to use frequently and assign a coherent

meaning. An example of a syntactic idiom is shown in Figure 7.1(b) This is an idiom

which is used for manipulating objects of type android.database.Cursor, which en-

sures that the cursor is closed after use (this idiom is indeed discovered by our method).

Figure 7.2a shows a semantic idiom discovered by our method that corresponds to a

simple reduce operation with a foreach in C#. As in these example, idioms have param-

eters, which we will call metavariables, such as the name of the Cursor variable, and

a code block describing what should be done if the moveToFirst operation is success-

ful. An Android programmer who is unfamiliar with this idiom might make mistakes,

like not calling the close method or not using a finally block, causing subtle memory

leaks.

Many syntactic idioms, like the close example or those in Figure 7.8, are specific

138 Chapter 7. Mining Idiomatic Source Code

1 ...

2 if (c != null) {

3 try {

4 if (c.moveToFirst()) {

5 number = c.getString(

6 c.getColumnIndex(

7 phoneColumn));

8 }

9 } finally {

10 c.close();

11 }

12 }

13 ...

(a) A snippet from PhoneNumberUtils in

android.telephony.

1 try {

2 if ($(Cursor).moveToFirst()) {

3 $BODY$

4 }

5 } finally {

6 $(Cursor).close();

7 }

(b) A common idiom when handling

android.database.Cursor objects, suc-

cessfully mined by HAGGIS.

IfStatement
expression:
c!=null

then:Block
TryStatement

body:IfStatement

expr:MethodInvocation

expr:var%android.database.Cursor%

name:c
name:moveToFirst

then:Block
number = c.getString(c.getColumnIndex(phoneColumn));

finally:Block

ExpressionStatement

MethodInvocation

expr:var%android.database.Cursor%

name:c
name:close

(c) Eclipse JDT’s AST for the code in (a). Shaded nodes are those included in the idiom.

Figure 7.1: Example of code idiom extraction.

7.1. Problem Definition 139

foreach (var $0 in $EXPR$) {

$BBLOCK[UR($0, $1); URW($2);]

}

(a) A semantic loop idiom capturing a reduce idiom, which reads the unitary variables $0 and $1

and reduces them by writing into the unitary variable $2.

foreach(var refMap $0 in mapping.ReferenceMaps)

this $2.AddProperties(properties $1, refMap $0.Data.Mapping);

(b) Concrete loop from csvhelper that match the semantic loop idiom in Figure 7.2a.

Figure 7.2: A sample semantic idiom and a matching loop.

to particular software libraries. Other syntactic idioms are general across projects of

the same programming language, such as those in Figure 7.9, including an idiom for

looping over an array or an idiom defining a String constant. (All of the idioms in these

figures are discovered by our method). As these examples show, idioms are usually

parameterized and the parameters often have syntactic structure, such as expressions

and code blocks. We also make similar observations for semantic idioms, semantic

idioms tend to be either general or domain-specific.

We define syntactic idioms as fragments of abstract syntax trees, which allows us to

naturally represent the syntactic structure of an idiom. For semantic idioms, we choose

to further abstract the AST by removing information not relevant to the semantics of

interest to our application and annotating the tree with additional semantic information.

Again, we define semantic idioms as fragments of the processed AST structure. Since

mining both syntactic and semantic idioms follows the same process on trees, hence-

forth we will use the term idiom to refer to both types of idioms and we will refer to

both the abstracted and the traditional ASTs simply as ASTs.

More formally, an idiom is a fragment T = (V,E) of an (possibly further abstracted)

abstract syntax tree (AST). By fragment, we mean the following. Let G be the context-

free grammar3 of the programming language in question. Then a fragment T is a tree

of terminals and nonterminal from G that is a subgraph of some valid parse tree from

G.

3Programming language grammars typically describe parse trees rather than ASTs, but since there is
a 1:1 mapping between the two, we assume a context free grammar (CFG) that directly describes ASTs
is available.

140 Chapter 7. Mining Idiomatic Source Code

An idiom T can have as leaves both terminals and non-terminals. Non-terminals

correspond to metavariables which must be filled in when instantiating the idiom. For

example, in Figure 7.1(c), the shaded lines represent the fragment for an example idiom;

notice how the Block node of the AST, which is a non-terminal, corresponds to a

$BODY$ metavariable in the idiom.

Mining Idioms We introduce the idiom mining problem, namely, to identify a set of

idioms automatically given only a corpus of previously-written idiomatic code. More

formally, given a training set of source files or snippets {c1,c2, . . .cN}, we first convert

them into (possibly abstracted) ASTs using a function

f : c→ T (7.1)

that converts the code into an AST-like structure. For syntactic idioms, f is a tra-

ditional AST parser with some small modifications (Section 7.3). For semantic id-

ioms f takes a more complex form, as described in Section 7.5. Thus given a dataset

D = { f (c1), f (c2), . . . f (cN)} = {T1,T2, . . .TN}, the idiom mining problem is to iden-

tify a set of idioms I = {Ti} that occur in the training set. This is an unsupervised

learning problem, as we do not assume that we are provided with any example idioms

that are explicitly identified. Each fragment Ti should occur as a subgraph of every tree

in some subset D(Ti)⊆D of the training corpus.

What Idioms are Not Idioms are not clones. Code clones (Roy & Cordy, 2007; Roy

et al., 2009; Baker, 1993; Basit & Jarzabek, 2009; Jiang et al., 2007; Kontogiannis et al.,

1996) are pieces of code that are used verbatim (or nearly so) in different code locations

usually due to copy paste operations. For example, a large identical code fragment

that appears only twice in a codebase is a code clone but not an idiom. By contrast,

idioms are used verbatim (or nearly so) in different code locations because programmers

find them natural for performing a particular task. Essentially, idioms have a semantic

purpose that developers are consciously aware of. Indeed, unlike clones we suggest

that idioms are not typically entered by copy-paste — speaking for ourselves, we do

not need copy-paste to enter something as simple as for(int i=0;i<n;i++). Rather, we

suggest that programmers treat idioms as mental chunks, which they often type directly

by hand when needed, although we leave this conjecture to future work.

Because methods for clone detection work by finding repeated regions of code,

existing clone detection methods could also be applied to find idioms. However, in our

experiments (Subsection 7.4.2), this does not prove to be an effective approach. We

argue that this highlights a conceptual difference between clone detection and idiom

7.2. Mining Idioms 141

detection: Clone detection methods attempt to find the largest fragment that is copied

(even if only once), whereas methods for idiom detection need to search for fragments

that seem “natural” to programmers, which requires a trade off between the size of the

fragment and the frequency with which programmers use it.

Also, idiom mining is not API mining. API mining (Nguyen et al., 2009; Wang

et al., 2013; Zhong et al., 2009) is an active research area that focuses on mining groups

of library functions from the same API that are commonly used together. These types of

patterns that are inferred are essentially sequences, or sometimes finite state machines,

of method invocations. Although API patterns are valuable, idiom mining is markedly

different, because idioms have syntactic structure and can even contain no API calls.

For example, current API mining approaches cannot find patterns such as a library

with a Tree class that requires special iteration logic, or a Java library that requires the

developer to free resources within a finally block. This is exactly the type of pattern

that HAGGIS identifies.

7.2 Mining Idioms

In this section, we introduce the technical framework that is required for HAGGIS,4

our proposed method for the idiom mining problem. At a high level, we approach the

problem of mining source code idioms as that of inferring of commonly reoccurring

fragments in (abstracted) ASTs. We apply recent advanced techniques from statistical

NLP (Cohn et al., 2010; Post & Gildea, 2009), but we need to explain them in some

detail to justify why they are appropriate for this software engineering task, and why

simpler methods would not be effective.

We will build up step by step. First, we will describe our representation of idioms.

In particular, we describe a family of probability distributions over ASTs which are

called probabilistic tree substitution grammars (pTSGs). A pTSG is essentially a prob-

abilistic context free grammar (PCFG) with the addition of special rules that insert a

tree fragment all at once.

Second, we describe how we discover idioms. We do this by learning a pTSG that

best explains a large quantity of existing source code. We consider as idioms the tree

fragments that appear in the learned pTSG. We learn the pTSG using a powerful general

framework called nonparametric Bayesian methods. Nonparametric Bayes provides a

principled theoretical framework for automatically inferring how complex a model

4Holistic, Automatic Gathering of Grammatical Idioms from Software.

142 Chapter 7. Mining Idiomatic Source Code

should be from data. Every time we add a new fragment rule to the pTSG, we are

adding a new parameter to the model (the rule’s probability of appearing), and the

number of potential fragments that we could add is infinite. This creates a risk that

by adding a large number of fragments we could construct a model with too many

parameters, which would be likely to overfit the training data. Nonparametric Bayesian

methods provide a way to tradeoff the model’s fit to the training set with the model’s

size when the maximum size of the model is unbounded.

It is also worth explaining why we employ probabilistic models here, rather than a

standard deterministic CFG. Probabilities provide a natural quantitative measure of the

quality of a proposed idiom: A proposed idiom is worthwhile only if, when we include

it into a pTSG, it increases the probability that the pTSG assigns to the training corpus.

This encourages the method to avoid identifying idioms that are frequent but boring.

At first, it may seem odd that we apply grammar learning methods here, when of

course the grammar of the programming language is already known. We clarify that our

aim is not to re-learn the known grammar, but rather to learn probability distributions

over trees from the known grammar. These distributions will represent which rules

from the grammar are used more often, and, crucially, which sets of rules tend to be

used contiguously.

7.2.1 Probabilistic Grammars

A probabilistic context free grammar (PCFG) is a simple way to define a distribution

over the strings of a context-free language. A PCFG is defined as G = (Σ,N,S,R,Π),

where Σ is a set of terminal symbols, N a set of nonterminals, S ∈ N is the root nonter-

minal symbol and R is a set of productions. Each production in R has the form X → Y ,

where X ∈ N and Y ∈ (Σ∪N)∗, where ∗ denotes the Kleene star of the set. The set

Π is a set of distributions P(r|c), where c ∈ N is a non-terminal, and r ∈ R is a rule

with c on its left-hand side. To sample a tree from a PCFG, we recursively expand the

tree, beginning at S, and each time we add a non-terminal c to the tree, we expand c

using a production r that is sampled from the corresponding distribution P(r|c). The

probability of generating a particular tree T from this procedure is the product over

all rules that are required to generate T . The probability P(x) of a string x ∈ Σ∗ is the

sum of the probabilities of the trees T that yield x, that is, we simply consider P(x) as a

marginal distribution of P(T).

Tree Substitution Grammars A tree substitution grammar (TSG) (Joshi & Schabes,

7.2. Mining Idioms 143

E→ E

T

F * F

(E

T + T

)

(prob 0.5)

Figure 7.3: An example of a pTSG rule for a simple expression grammar. See text for

more details.

1997; Bod et al.) is a simple extension to a CFG, in which productions expand into tree

fragments rather than simply into a list of symbols. Formally, a TSG is also a tuple

G = (Σ,N,S,R), where Σ,N,S are exactly as in a CFG, but now each production r ∈ R

takes the form X → TX , where TX is a fragment. To produce a string from a TSG, we

begin with a tree containing only S, and recursively expand the tree in a manner exactly

analogous to a CFG — the only difference is that some rules can increase the height

of the tree by more than 1. A probabilistic tree substitution grammar (pTSG) G (Cohn

et al., 2010; Post & Gildea, 2009) augments a TSG with probabilities, in an analogous

way to a PCFG. A pTSG is defined as G = (Σ,N,S,R,Π) where Σ is a set of terminal

symbols, N a set of non terminal symbols, S ∈ N is the root non-terminal symbol, R

is a set of tree fragment productions. Finally, Π is a set of distributions PT SG(TX |X),

for all X ∈ N, each of which is a distribution over the set of all rules X → TX in R that

have left-hand side X . Note that TSGs and PCFGs are similar with the difference that

the productions in R expand to tree fragments that may or may not contain terminal

symbols. Thus, a well-formed TSG contains frequently reoccurring tree fragments.

Although TSGs are a full language model, in this chapter we will only take advantage

of their ability to learn in a probabilistically principled way common tree fragments.

The key reason that we use pTSGs for idiom mining is that each tree fragment

TX can be thought of as describing a set of context-free rules that are typically used in

sequence. This is exactly what we are trying to discover in the idiom mining problem. In

other words, our goal will be to induce a pTSG in which every tree fragment represents

144 Chapter 7. Mining Idiomatic Source Code

a code idiom if the fragment has depth greater than 1, or a rule from the language’s

original grammar if the depth equals 1. As a simple example, consider the PCFG

E→ T +T (prob 0.7) T → F ∗F (prob 0.6)

E→ T (prob 0.3) T → F (prob 0.4)

F → (E) (prob 0.1) F → id (prob 0.9),

where E, T , and F are non-terminals, and E the start symbol. Now, suppose that we are

presented with a corpus of strings from this language that include many instances of

expressions like id ∗ (id + id) and id ∗ (id +(id + id)) (perhaps generated by a group

of students who are practicing the distributive law). Then, we might choose to add a

single pTSG rule to this grammar, displayed in Figure 7.3, adjusting the probabilities

for that rule and the E→ T +T and E→ T rules so that the three probabilities sum to

1. Essentially, this allows us to a represent a correlation between the rules E→ T +T

and T → F ∗F .

Finally, note that every CFG can be written as a TSG where all productions expand

to trees of depth 1. Conversely, every TSG can be converted into an equivalent CFG

by adding extra non-terminals (one for each TSG rule X → TX). So TSGs are, in some

sense, fancy notation for CFGs. This notation will prove very useful, however, when

we describe the learning problem next.

7.2.2 Learning TSGs

Now we define the learning problem for pTSGs that we will consider. First, we say

that a pTSG G1 = (Σ1,N1,S1,R1,P1) extends a CFG G0 if every tree with positive

probability under G1 is grammatically valid according to G0. Given any set T of tree

fragments from G0, we can define a pTSG G1 that extends G0 as follows. First, set

(Σ1,N1,S1) = (Σ0,N0,S0). Then, set R1 = RCFG∪RFRAG, where RCFG is the set of all

rules from R0, expressed in the TSG form, i.e. with right-hand sides as trees of depth 1,

and RFRAG is a set of fragment rules Xi→ Ti, for all Ti ∈ T and where Xi is the root of

Ti.

The grammar learning problem that we consider can be called the CFG exten-

sion problem. The input is a set of trees T1 . . .TN from a context-free grammar G0 =

(Σ0,N0,S0,R0). The CFG extension problem is to learn a pTSG G1 that extends G0

and is good at explaining the training set T1 . . .TN . The notion of “good” is deliberately

vague; formalizing it is part of the problem. It should also be clear that we are not trying

7.2. Mining Idioms 145

to learn the CFG for the original programming language — instead, we are trying to

identify sequences of CFG rules that commonly co-occur contiguously.

7.2.2.1 Why Not Just Count Common Trees?

A natural first approach to the CFG extension problem is to mine frequent patterns, for

example, to return the set of all AST fragments that occur more than a user-specified

parameter M times in the training set. This task is called frequent tree mining, and

has been the subject of some work in the data mining literature (Jiménez et al., 2010;

Termier et al., 2002; Zaki, 2002, 2005). Unfortunately, preliminary investigation by

Kuzborskij (2011) found that these approaches do not yield good idioms, suffering from

known problems observed with frequent pattern mining in the data mining literature

(Aggarwal & Han, 2014, Chapter 4). Instead, the fragments that are returned tend to be

small and generic, omitting many details that, to a human eye, are central to the idiom.

For example, given the idiom in Figure 7.1(c), it would be typical for tree mining

methods to return a fragment containing the try, if, and finally nodes but not the

crucial method call to Cursor.close().

The reason for this is simple: Given a fragment T that represents a true idiom, it

can always be made more frequent by removing one of the leaves, even if that leaf

co-occurs often with the rest of the tree. So tree mining algorithms tend to return these

shorter trees, resulting in incomplete idioms. This is a general problem with frequent

pattern mining: frequent patterns can be “boring” patterns (Aggarwal & Han, 2014,

Chapter 5). To avoid this problem, we need to penalize the method when it chooses not

to extend a pattern to include a node that co-occurs frequently. This is what is provided

by our probabilistic approach.

A different idea is to use the maximum likelihood principle, that is, to find the pTSG

G1 that extends G0 and maximizes the probability that G1 assigns to T1 . . .TN . This also

does not work. The reason is that a trivial solution is simply to add a fragment rule

E→ Ti for every training tree Ti. This will assign a probability of 1/N to each training

tree, which in practice will often be optimal. What is going on here is that the maximum

likelihood grammar is overfitting. It is not surprising that this happens: there are an

infinite number of potential trees that could be used to extend G0, so if a model is given

such a large amount of flexibility, overfitting becomes inevitable. What we need is a

strong method of controlling overfitting, which the next section provides.

146 Chapter 7. Mining Idiomatic Source Code

7.2.2.2 Nonparametric Bayesian Methods

At the heart of any machine learning application is the need to control the complexity

of the model. For example, in a clustering task — an unsupervised task in which the

object is to partition a dataset into a set of groups, called clusters, that are intuitively

similar — many clustering methods, such as K-means, require the user to specify the

number of clusters K in advance. If K is too small, then each cluster will be very large

and not contain useful information about the data. If K is too large, then each cluster

will only contain a few data points, so again, the cluster centroid will not tell us much

about the dataset. For the CFG extension problem, the key factor that determines model

complexity is the number of fragment rules that we allow for each non-terminal. If we

allow the model to assign too many fragments or fragments that are too large to each

non-terminal, then it can simply memorize the training set. But if we allow too few,

then the model will be unable to find useful patterns. Nonparametric Bayesian methods

provide a powerful and theoretically principled method for managing this trade-off.

Although powerful, these methods can be difficult to understand at first. We will not

give a detailed tutorial due to space; for a gentle introduction, see Gershman & Blei

(2012).

To begin, we must first explain Bayesian statistics. Bayesian statistics (Gelman et al.,

2013; Murphy, 2012) is an alternative general framework to classical frequentist statisti-

cal methods, such as confidence intervals and hypothesis testing, that allows the analyst

to encode prior knowledge about the quantity of interest. The idea behind Bayesian

statistics is that whenever one wants to estimate an unknown parameter θ from a dataset

x1,x2, . . .xN , the analyst should not only treat the data x1 . . .xN as random variables —

as in classical statistics — but also θ as well. To do this, the analyst must choose a prior

distribution P(θ) that encodes any prior knowledge about θ (if little is known, this dis-

tribution can be vague, e.g. uniform), and then a likelihood P(x1 . . .xN |θ) that describes

a model of how the data is generated given θ. To be clear, the prior and the likelihood

are mathematical models of the data, that is, they are mathematical approximations to

reality that are designed by the data analyst. Some models are better approximations

than others, and more accurate models will yield more accurate inferences about θ.

Once we define a prior and a likelihood, the laws of probability provide only one

choice for how to infer θ, namely, via the conditional distribution P(θ|x1 . . .xN) which

is uniquely defined by Bayes’ rule. This distribution is called the posterior distribution

and encapsulates all of the information that we have about θ from the data. We can

7.2. Mining Idioms 147

compute summaries of the posterior to make inferences about θ, for example, if we

want to estimate θ by a single vector, we might compute the mean of P(θ|x1 . . .xN).

Although mathematically the posterior distribution is a simple function of the prior

and likelihood, in practice it can be very difficult to compute, and approximations are

often necessary. To summarize, applications of Bayesian statistics have three steps:

first, choose a prior p(θ); second, choose a likelihood p(x1 . . .xN |θ), finally, compute

p(θ|x1 . . .xN) using Bayes’s rule.

As a simple example, suppose the data x1 . . .xN are real numbers, which we believe

to be distributed independently according a Gaussian distribution with variance 1 but

unknown mean θ. Then we might choose a prior p(θ) to be Gaussian with mean 0

and a large variance, to represent the fact that we do not know much about θ before

we see the data. Our beliefs about the data indicate that p(xi|θ) is Gaussian with mean

θ and variance 1. By applying Bayes’s rule, it is easy to show that P(θ|x1 . . .xN) is

also Gaussian, whose mean is approximately5 equal to N−1
∑i xi and whose variance is

approximately 1/N. This distribution represents a Bayesian’s belief about the unknown

mean θ, after seeing the data.

Nonparametric Bayesian methods handle the more complex case where the number

of parameters is unknown as well. For example, consider a clustering model where,

conditioned on the cluster identity, the data is Gaussian, but the number of clusters

is unknown. In this case, θ is a vector containing the centroid for each cluster, but

then, because before we see the data the number of clusters could be arbitrarily large,

θ has unbounded dimension. Nonparametric Bayesian methods focus on developing

prior distributions over such infinite dimensional objects, which are then used within

Bayesian statistical inference. Bayesian nonparametrics have been the subject of intense

research in statistics and machine learning, with popular models including the Dirichlet

process (Hjort, 2010) and the Gaussian process (Williams & Rasmussen, 2006).

Applying this discussion to the CFG extension problem, what we are trying to infer

is a pTSG T . So, to apply Bayesian inference, our prior distribution must be a proba-

bility distribution over probabilistic grammars. In order to define this distribution, we

will need to take a brief digression and define first a distribution P0(T) over fragments

from a CFG. Let G0 be the known CFG for the programming language in question. We

will assume that we have available a PCFG for G0, because this can be easily estimated

by maximum likelihood from a training corpus; call this distribution PML. Now, PML

gives us a distribution over full trees. To get a distribution over fragments, we include

5The exact value depends on precisely what variance we choose in p(θ), but the formula is simple.

148 Chapter 7. Mining Idiomatic Source Code

a distribution over tree sizes, yielding

P0(T) = Pgeom (|T |, p$)∏
r∈T

PML(r), (7.2)

where |T | is the size of the fragment T , Pgeom is a geometric distribution with parameter

p$, and r ranges over the multiset of productions that are used within T .

Now we can define a prior distribution over pTSGs. Recall that we can define

a pTSG G1 that extends G0 by specifying a set of tree fragments FX for each non-

terminal X . So, to define a distribution over pTSGs, we will define a distribution P(FX)

over the set of tree fragments rooted at X . We need P(FX) to have several important

properties. First, we need P(FX) to have infinite support, that is, it must assign positive

probability to all possible fragments. This is because if we do not assign a fragment

positive probability in the prior distribution, we will never be able to infer it as an idiom,

no matter how often it appears. Second, we want P(FX) to exhibit a “rich-get-richer”

effect, namely, once we have observed that a fragment TX occurs many times, we want

to be able to predict that it will occur more often in the future.

A natural distribution with these properties is the Dirichlet process (DP). The Dirich-

let process has two parameters: a base measure,6 in our case, the fragment distribution

P0, and a concentration parameter α ∈ R+, which controls the strength of the rich-

get-richer effect. Following the stick-breaking representation (Sethuraman, 1991), a

Dirichlet process defines a prior distribution over FX as

P(T ∈ FX) =
∞

∑
k=1

πkδ{T =Tk} Tk ∼ P0 (7.3)

πk = uk

k−1

∏
j=1

(
1−u j

)
uk ∼ Beta(1,α). (7.4)

To interpret this, recall that the symbol∼ is read “is distributed as,” the Beta distribution

is a standard distribution over the set [0,1], and δ{T =Tk} is a delta function, i.e., a

probability distribution over T that generates Tk with probability 1. Note, that as we

will discuss next, mining does not directly implement this equation, but only its posterior

and avoids the infinite summation. However, these equations are illustrative of how a DP

works: Intuitively, what is going on in a DP is that a sample from the DP is a distribution

over a countably infinite number of fragments T1,T2, Each one of these fragments

is sampled independently from the fragment distribution P0. To assign a probability

to each fragment, we recursively split the interval [0,1] into a countable number of

6The base measure will be a probability measure, so for our purposes, we can think of this as a fancy
word for “base distribution”.

7.2. Mining Idioms 149

sticks π1,π2, The value (1−uk) defines what proportion of the remaining stick is

assigned to the current sample Tk, and the remainder is assigned to the infinite number

of remaining trees Tk+1,Tk+2, This process defines a distribution over fragments

FX for each non-terminal X , and hence a distribution P(G1) over the set of all pTSGs

that extend G0. We will refer to this distribution as a Dirichlet process probabilistic tree

substitution grammar (DPpTSG) (Post & Gildea, 2009; Cohn et al., 2010).

This process may seem odd for two reasons: (a) each sample from P(G1) is in-

finitely large, so we cannot store it exactly on a computer, (b) the fragments from G1

are sampled randomly from a PCFG, so there is no reason to think that they should

match real idioms. Fortunately, the answer to both these concerns is simple. We are

not interested in the fragments that exist in the prior distribution, but rather of those in

the posterior distribution. More formally, the DP provides us with a prior distribution

G1 over pTSGs. But G1 itself, like any pTSG, defines a distribution P(T1,T2, . . .TN |G1)

over the training set. So, just as in the parametric case, we can apply Bayes’s rule to

obtain a posterior distribution P(G1|T1,T2, . . .TN). It can be shown that this distribution

is also a DPpTSG, and, amazingly, that this posterior DPpTSG can be characterized by

a finite set of fragments F ′X for each non-terminal. It is these fragments that we will

identify as code idioms (Section 7.3).

7.2.2.3 Inference

Now that we have defined a posterior distribution over probabilistic grammars, we need

to describe how to compute this distribution. Unfortunately, the posterior distribution

cannot be computed exactly, so we resort to approximations. The most commonly used

approximations in the literature are based on Markov chain Monte Carlo (MCMC),

which we explain below. The high-level idea behind MCMC is to define a Markov

chain that has the property that if we run the Markov chain for long enough, samples

from the chain will eventually be approximately distributed according to the intractable

distribution that we care about. But first, we make one more observation about pTSGs.

All of the pTSGs that we consider are extensions of an unambiguous base CFG G0. This

means that given a source code file or snippet c, we can separate the pTSG parsing task

into two steps: first, parse c using f (which is defined by G0), resulting in a CFG tree T ;

second, group the nodes in T according to which fragment rule in the pTSG was used

to generated them. We can represent this second task as a tree of binary variables zs for

each node s. These variables indicate whether s is the root of a new fragment (zs = 1), or

if s is part of the same fragment as its parent (zs = 0). Essentially, the variables zs show

150 Chapter 7. Mining Idiomatic Source Code

s

Tt

Ts

Figure 7.4: Sampling a pTSG from a tree T . Dots within the node circles show the

points where the tree is split (i.e. zt = 1). Terminal nodes have double-line border. The

figure shows two tree fragments, each shaded with a different color (Tt is the top blue-

shaded tree fragment and Ts is the lower yellow-shaded tree fragment). At some point

during inference node s is considered. At that point, zs is set to 0 or 1 with probability

P(zs = 0) using Equation 7.5. If zs is sampled to have a value of 1, then Tt and Ts

remain separate and exist as two separate rules in the pTSG. Otherwise (zs = 1) Tt and

Ts are joined into a single elementary tree that spans the whole blue and yellow-shaded

regions. This processes is performed iteratively on all nodes multiple times. After a few

burn-in iterations, at each iteration, we retrieve a sample from the posterior pTSG (each

sample is a pTSG) that explains how each tree could have been generated from the real

posterior pTSG.

7.2. Mining Idioms 151

the boundaries of the inferred tree patterns; see Figure 7.4 for an example. Conversely,

even if we don’t know what fragments are in the grammar, given a training corpus that

has been parsed in this way, we can use the zs variables to read off what fragments must

have been in the pTSG.

With this representation in hand, we are now ready to present an MCMC method

for sampling from the posterior distribution over grammars, using a particular method

called Gibbs sampling. Gibbs sampling is an iterative method, which starts with an

initial value for all of the z variables, and then updates them one at a time. At each

iteration, the sampler visits every tree node t of every tree in the training corpus, and

samples a new value for zt . Let s be the root of the fragment where t belongs. If we

choose zt = 1, we can examine the current values of the z variables to determine the

tree fragment Tt that contains t and the fragment Ts for s, which must be disjoint. On

the other hand, if we set zt = 0, then s and t will belong to the same fragment, which

will be exactly Tjoin = Ts∪Tt . Now, we set zt to 0 with probability

Ppost(zt = 0) =
Ppost(Tjoin)

Ppost(Tjoin)+Ppost(Ts)Ppost(Tt)
. (7.5)

where

Ppost(T) =
count(T)+αP0(T)

count(h(T))+α
, (7.6)

h returns the root of the fragment, and count returns the number of times that a tree

occurs as a fragment in the corpus, as determined by the current values of z. Intuitively,

what is happening here is that if the fragments Ts and Tt occur very often together in

the corpus, relative to the number of times that they occur independently, then we are

more likely to join them into a single fragment.

It can be shown that if we repeat this process for a large number of iterations,

eventually the resulting distribution over fragments at the end of each iteration will

converge to the posterior distribution over fragments defined by the DPpTSG. It is

these fragments that we return as idioms.

We present the Gibbs sampler because it is a useful illustration of MCMC, but in

practice we find that it converges too slowly to scale to large codebases. Instead we

use the type-based MCMC sampler of Liang et al. (2010b), which samples multiple

node states at each time step. In specific, type-based MCMC is a form of block Gibbs

sampling where each block is the set of all nodes whose upper and lower trees are

identical. For example, in Figure 7.4 zs of node s will be considered jointly with all

other nodes whose upper and lower tree fragments are identical to Tt and Ts, i.e. the

152 Chapter 7. Mining Idiomatic Source Code

P

c d eba

(a) Non-binarized tree with multiple children nodes.

P

a

b

c

d e

(b) Binarized Tree

Figure 7.5: Tree binarization (Markovization) for nodes with multiple children. Square

nodes represent the dummy nodes added. The goal of this process is to transform

nodes with arbitrary number of children to trees with a fixed number of children. This is

a common trick for reducing data sparsity in NLP. For code idiom mining, this is useful

for AST nodes that represent multiple sequential statements and method arguments.

trees have exactly the same structure and node types. This process tends to yield faster

mixing of the MCMC chain and avoids getting stuck in local optima during sampling

(Liang et al., 2010b).

7.3 Mining Syntactic Idioms

In this section, we describe a set of necessary transformations to ASTs and pTSGs to

adapt these general methods specifically to the task of inferring syntactic code idioms.

AST Transformation As discussed in Section 7.1, to mine syntactic idioms from

a code snippet c we transform it into a tree T using a f : c→ T . This paragraph de-

scribes fsyn that is specific to syntactic code idiom mining. For each .java file we

use the Eclipse JDT (Eclipse-Contributors, 2014) to extract its AST — a tree struc-

ture of ASTNode objects. Each ASTNode object contains two sets of properties: simple

properties — e.g. the type of the operator for an an infix expression ASTNode — and

structural properties that contain zero or more child ASTNode objects. First, we con-

struct the grammar symbols by mapping each ASTNode’s type and simple properties into

a single (terminal or non-terminal) symbol. The transformed tree is then constructed

by mapping the original AST into a tree whose nodes are annotated with the symbols.

Each node’s children are grouped by property.

The transformed trees may contain nodes that have more than two children for a

single property (e.g. Block). This induces unnecessary sparsity in the CFG and TSG

rules. For example, Block node’s potential children include arbitrary permutations of

one or more node types (e.g. assignment nodes, declaration nodes, if nodes, etc.), which

7.3. Mining Syntactic Idioms 153

results in a very large and sparse set of combinations, even for relatively large amounts

of data. This sparsity makes the learning problem harder. Since all such permutations

are sparse, even simple PCFGs do not generalize well in this setting. To alleviate this

issue, we perform tree binarization. This process — common in NLP for exactly the

same reasons we outlined — transforms the original tree into a binary tree by adding

dummy nodes (non-terminals), making the data less sparse (see Figure 7.5). It also helps

us capture idioms in subsequences of sequential statements. Note that binarization is

performed per structural property only when it contains more than two children, while

a node will generally have more than two children across all its structural properties.

One final hurdle for learning meaningful code idioms are variable names. Since

variable names are mostly project or class specific we abstract them introducing an

intermediate MetaVariable node between the SimpleName node containing the string

representation of the variable name and its parent node. MetaVariable nodes are

also annotated with the type of the variable they are abstracting. This provides the

pTSG with the flexibility to either exclude or include variable names as appropriate.

For example, in the snippet of Figure 7.1(a) by using metavariables, we are able to

learn the idiom in Figure 7.1(b) without specifying the name of the Cursor object by

excluding the SimpleName nodes from the fragment. Alternatively, if a specific variable

name is common and idiomatic, such as the i in a for loop, the pTSG can choose to

include SimpleName in the extracted idiom, by merging it with its parent MetaVariable

node.

Training TSGs and Extracting Code Idioms Training a pTSG happens offline,

during a separate training phase. After training the pTSG, we then extract the mined

syntactic code idioms which then can be used for any later visualization. In other

words, a user of a HAGGIS IDE tool would never need to wait for an MCMC method

to finish. The output of an MCMC method is a series of samples from the posterior

distribution, each of which in our case, is a single pTSG. These sampled pTSGs need to

be post-processed to extract a single, meaningful set of code idioms. First, we aggregate

the MCMC samples after removing the first few samples as burn-in, which is standard

methodology for applying MCMC. Then, to extract idioms from the remaining samples,

we merge all samples’ tree fragments into a single set that also keeps a count of the

number of times each element is added (multiset). We prune this multiset by removing

all tree fragments that have been seen less than cmin times. We also prune fragments that

have fewer that nmin nodes to remove trivial idioms. Finally, we convert the remaining

fragments back to Java code. The leaf nodes of the fragments that contain non-terminal

154 Chapter 7. Mining Idiomatic Source Code

symbols represent metavariables and are converted to the appropriate symbol that is

denoted by a $ prefix.

Additionally, to assist the sampler in inducing meaningful idioms, we prune any

import statements from the corpus, so that they cannot be mined as idioms. We also

exclude some nodes from sampling, fixing zi = 0 and thus forcing some nodes to be

un-splittable. Such nodes include method invocation arguments, qualified and param-

eterized type node children, non-block children of while, for and if statement nodes,

parenthesized, postfix and infix expressions and variable declaration statements.

7.4 Syntactic Idioms Evaluation

We take advantage of the omnipresence of idioms in source code to evaluate HAGGIS on

popular open-source projects. We restrict ourselves to the Java programming language,

due to the high availability of tools and source code. We emphasize, however, that

HAGGIS is language agnostic. Before we get started, an interesting way to get an

intuitive feel for any probabilistic model is simply to draw samples from it. Figure 7.6

shows a code snippet that we synthetically generated by sampling from the posterior

distribution over code defined by the pTSG. One can observe that the pTSG — as

a language model — is learning to produce idiomatic and syntactically correct code,

although — as expected — the code is semantically inconsistent.

Methodology We use two evaluation datasets comprised of Java open-source code

available on GitHub. The PROJECTS dataset (Table 7.1) contains the top 13 Java GitHub

projects whose repository is at least 100MB in size according to the GitHub Archive7.

To determine popularity, we computed the z-score of forks and watchers for each project.

The normalized scores were then averaged to retrieve each project’s popularity ranking.

The second evaluation dataset, LIBRARY (Table 7.2), consists of Java classes that import

(i.e. use) 15 popular Java libraries. For each selected library, we retrieved from the Java

GitHub Corpus (Allamanis & Sutton, 2013b) all files that import that library but do not

implement it. We split both datasets into a train and a test set, splitting each project in

PROJECTS and each library file set in LIBRARY into a train (70%) and a test (30%) set.

The PROJECTS will be used to mine project-specific idioms, while the LIBRARY will

be used to mine idioms that occur across libraries.

To extract idioms we run MCMC for 100 iterations for each of the projects in

PROJECTS and each of the library file sets in LIBRARY, using the first 75 iterations as
7https://www.githubarchive.org/

https://www.githubarchive.org/

7.4. Syntactic Idioms Evaluation 155

1 try {

2 regions=computeProjections(owner);

3 } catch (RuntimeException e) {

4 e.printStackTrace();

5 throw e;

6 }

7 if (elem instanceof IParent) {

8 IJavaElement[] children=((IParent)owner).getChildren();

9 for (int fromPosition=0; i < children.length; i++) {

10 IJavaElement aChild=children[i];

11 Set childRegions=findAnnotations(aChild,result);

12 removeCollisions(regions,childRegions);

13 }

14 }

Figure 7.6: Synthetic code randomly generated from a posterior pTSG. The pTSG

produces syntactically correct and locally consistent code. This effect allows us to infer

code idioms. As expected, the pTSG cannot capture higher level information, such as

variable binding.

burn-in. For the last 25 iterations, we aggregate a sample posterior pTSG and extract

idioms as detailed in Section 7.3. As a final step, we remove any idioms that do not

contain identifiers. A threat to the validity of the evaluation using the aforementioned

datasets is the possibility that the datasets are not representative of Java development

practices, containing solely open-source projects from GitHub. However, the selected

datasets span a wide variety of domains, including databases, messaging systems and

code parsers, diminishing any such possibility. Furthermore, we perform an extrinsic

evaluation on source code found on a popular online Q&A website, StackOverflow.

Evaluation Metrics We compute two metrics on the test corpora. These metrics

resemble precision and recall in information retrieval but are adjusted to the code

idiom domain. We define idiom coverage as the percent of source code AST nodes

that matches any of the mined idioms. Coverage is thus a number between 0 and 1

indicating the extent to which the mined idioms exist in a piece of code. We define

idiom set precision as the percentage of the mined idioms that also appear in the test

corpus. Using these two metrics, we tune the concentration parameter of the DPpTSG

model by using android.net.wifi as a validation set, yielding α = 1.

156 Chapter 7. Mining Idiomatic Source Code

1 channel=connection.

2 createChannel();

(a) An com.rabbitmq idiom

1 Elements $name=$(Element).

2 select($StringLit);

(b) An org.jsoup idiom

1 Transaction tx=ConnectionFactory.

2 getDatabase().beginTx();

(c) An org.neo4j idiom

1 catch (Exception e){

2 $(Transaction).failure();

3 }

(d) An org.neo4j idiom

1 SearchSourceBuilder builder=

2 getQueryTranslator().build(

3 $(ContentIndexQuery));

(e) An org.elasticsearch idiom

1 LocationManager $name =

2 (LocationManager)getSystemService(

3 Context.LOCATION_SERVICE);

(f) An android.location idiom

1 Location.distanceBetween(

2 $(Location).getLatitude(),

3 $(Location).getLongitude(),

4 $...);

(g) An android.location idiom

1 try{

2 $BODY$

3 }finally{

4 $(RevWalk).release();

5 }

(h) An org.eclipse.jgit idiom

1 try{

2 Node $name=$methodInvoc();

3 $BODY$

4 }finally{

5 $(Transaction).finish();

6 }

(i) An org.neo4j idiom

1 ConnectionFactory factory =

2 new ConnectionFactory();

3 $methodInvoc();

4 Connection connection =

5 factory.newConnection();

(j) An io.netty idiom

Figure 7.7: Top cross-project syntactic idioms for LIBRARY projects (Table 7.1). Here

we include idioms that appear in the test set files. We rank them by the number of

distinct files they appear in and restrict into presenting idioms that contain at least one

library-specific (i.e. API-specific) identifier. The special notation $(TypeName) denotes

the presence of a variable of type TypeName whose name is undefined. $BODY$ denotes

a user-defined code block of one or more statements, $name a freely defined (variable)

name, $methodInvoc a single method invocation statement and $ifstatement a single if

statement. All the idioms have been automatically identified by HAGGIS. More samples

in Figure 7.8.

7.4. Syntactic Idioms Evaluation 157

1 while ($(ModelNode) != null){

2 if ($(ModelNode) == limit)

3 break;

4 $ifstatement

5 $(ModelNode)=$(ModelNode)

6 .getParentModelNode();

7 }

(a) An org.mozilla.javascript idiom

1 Document doc=Jsoup.connect(URL).

2 userAgent("Mozilla").

3 header("Accept","text/html").

4 get();

(b) An org.jsoup idiom

1 if ($(Connection) != null){

2 try{

3 $(Connection).close();

4 }catch (Exception ignore){}

5 }

(c) An io.netty idiom

1 Traverser traverser

2 =$(Node).traverse();

3 for (Node $name : traverser){

4 $BODY$

5 }

(d) An org.neo4j idiom

1 try{

2 Session session

3 =HibernateUtil

4 .currentSession();

5 $BODY$

6 }catch (HibernateException e){

7 throw new DaoException(e);

8 }

(e) An org.hibernate idiom

1 catch (HibernateException e) {

2 if ($(Transaction) != null) {

3 $(Transaction).rollback();

4 }

5 e.printStackTrace();

6 }

(f) An org.hibernate idiom

1 FileSystem $name

2 =FileSystem.get(

3 $(Path).toUri(),conf);

(g) An org.apache.hadoop idiom

1 (token=$(XContentParser)

2 .nextToken())

3 != XContentParser

4 .Token.END_OBJECT

(h) An org.apache.lucene idiom

1 Toast.makeText(this,

2 $stringLit,Toast.LENGTH_SHORT)

3 .show()

(i) An android idiom

Figure 7.8: Top cross-project syntactic idioms for LIBRARY projects (Table 7.1). Contin-

ued from Figure 7.7.

158 Chapter 7. Mining Idiomatic Source Code

Table 7.1: PROJECTS dataset used for in-project idiom evaluation. Projects in alphabeti-

cal order.

Name Forks Stars Files Commit Description

arduino 2633 1533 180 2757691 Electronics Prototyping

atmosphere 1606 370 328 a0262bf WebSocket Framework

bigbluebutton 1018 1761 760 e3b6172 Web Conferencing

elasticsearch 5972 1534 3525 ad547eb REST Search Engine

grails-core 936 492 831 15f9114 Web App Framework

hadoop 756 742 4985 f68ca74 Map-Reduce Framework

hibernate 870 643 6273 d28447e ORM Framework

libgdx 2903 2342 1985 0c6a387 Game Dev Framework

netty 2639 1090 1031 3f53ba2 Net App Framework

storm 1534 7928 448 cdb116e Distributed Computation

vert.x 2739 527 383 9f79416 Application platform

voldemort 347 1230 936 9ea2e95 NoSQL Database

wildfly 1060 1040 8157 043d7d5 Application Server

7.4.1 Top Idioms

Figure 7.7 and Figure 7.8 shows the top idioms mined in the LIBRARY dataset, ranked

by the number of files in the test sets where each idiom has appeared in. The reader will

observe their immediate usefulness. Some idioms capture how to retrieve or instantiate

an object. For example, in Figure 7.7, the idiom 7.7a captures the instantiation of a

message channel in RabbitMQ, 7.8g retrieves a handle for the Hadoop file system, 7.7e

builds a SearchSourceBuilder in Elasticsearch and 7.8b retrieves a document at a given

address using JSoup. Other idioms capture important transactional properties of code:

idiom 7.7h demonstrates proper use of the memory-hungry RevWalk object in JGit and

7.7i is a transaction idiom in Neo4J. Other idioms capture common error handling, such

as 7.7d for Neo4J and 7.8e for a Hibernate transaction. Finally, some idioms capture

common operations, such as closing a connection in Netty (7.8c), traversing through

the database nodes (7.8d), visiting all AST nodes in a JavaScript file in Rhino (7.8a)

and computing the distance between two locations (7.7g) in Android. The reader may

observe that these idioms provide a meaningful set of coding patterns for each library,

7.4. Syntactic Idioms Evaluation 159

Table 7.2: LIBRARY dataset for cross-project idiom evaluation. Each API file set contains

all class files that import a class belonging to the respective package or one of its

subpackages.

Package Name Files Description

android.location 1262 Android location API

android.net.wifi 373 Android WiFi API

com.rabbitmq 242 Messaging system

com.spatial4j 65 Geospatial library

io.netty 65 Network app framework

opennlp 202 NLP tools

org.apache.hadoop 8467 Map-Reduce framework

org.apache.lucene 4595 Search Server

org.elasticsearch 338 REST Search Engine

org.eclipse.jgit 1350 Git implementation

org.hibernate 7822 Persistence framework

org.jsoup 335 HTML parser

org.mozilla.javascript 1002 JavaScript implementation

org.neo4j 1294 Graph database

twitter4j 454 Twitter API

capturing semantically consistent actions that a developer is likely to need when using

these libraries. However, as we will see in Section 7.5 these idioms are too detailed to

represent common semantic operations and, thus, useful to software tool designers.

In Figure 7.9 we present a small set of general Java syntactic idioms mined across

all datasets by HAGGIS. These idioms represent frequently used patterns that could

be included by default in tools such as Eclipse’s SnipMatch (Recommenders, 2014)

and IntelliJ’s live templates (JetBrains, 2014). These include idioms for defining con-

stants (Figure 7.9c), creating loggers (Figure 7.9b) and iterating through an iterable

(Figure 7.9a).

We now quantitatively evaluate the mined idiom sets. Table 7.3 shows idiom cov-

erage, idiom set precision and the average size of the matched idioms in the test sets

of each dataset. We observe that HAGGIS achieves better precision and coverage in

PROJECTS than LIBRARY. This is expected since code idioms recur more often within

160 Chapter 7. Mining Idiomatic Source Code

1 for (Iterator iter=$methodInvoc; iter.hasNext();)

2 {$BODY$}

(a) Iterate through the elements of an Iterator.

1 private final static Log $name=

2 LogFactory.getLog($type.class);

(b) Creating a logger for a class.

1 public static final String $name = $StringLit;

(c) Defining a constant String.

1 while (($(String) = $(BufferedReader).

2 readLine()) != null) {$BODY$}

(d) Looping through lines from a BufferedReader.

Figure 7.9: Sample language-specific (Java) syntactic idioms idioms mined by HAGGIS.

$StringLit denotes a user-defined string literal, $name a (variable) name, $methodInvoc

a method invocation statement, $ifstatement an if statement and $BODY$ a code block.

Table 7.3: Average and standard deviation of performance in LIBRARY test set. Standard

deviation across projects.

Name Precision (%) Coverage (%) Avg Size (# nodes)

HAGGIS 8.5 ±3.2 23.5 ±13.2 15.0 ±2.1

nmin = 5, cmin = 2

L
IB

R
A

R
Y HAGGIS 16.9 ±10.1 2.8 ±3.0 27.9 ±8.6

nmin = 20, cmin = 25

DECKARD 0.9 ±1.3 4.1 ±5.2 24.6 ±15.0

minToks=10, stride=2, sim=1

P
R

O
JE

C
T

S HAGGIS 14.4 ±9.4 30.3 ±12.5 15.5 ±3.1

nmin = 5, cmin = 2

HAGGIS 29.9 ±19.4 3.1 ±2.6 25.3 ±3.5

nmin = 20, cmin = 25

7.4. Syntactic Idioms Evaluation 161

Table 7.4: Extrinsic evaluation of mined idioms from LIBRARY.

Test Corpus Coverage Precision

StackOverflow 31% 67%

PROJECTS 22% 50%

a project than across disparate projects. This effect may be partially attributed to the

small number of people working in a project and partially to project-specific idioms.

Table 7.3 also gives an indication of the trade-offs we can achieve for different cmin and

nmin.

7.4.2 Code Cloning vs. Code Idioms

Previously, we argued that syntactic code idioms differ significantly from code clones.

We now show this by using a cutting-edge clone detection tool: DECKARD (Jiang et al.,

2007) is a state-of-the-art tree-based clone-detection tool that uses an intermediate

vector representation to detect similarities. To extract code idioms from the code clone

clusters that DECKARD computes, we retrieve the maximal common subtree of each

cluster, ignoring patterns that are less than 50% of the original size of the tree.

We run DECKARD on the validation set with multiple parameters (stride ∈ {0,2},
similarity ∈ {0.95,1.0}, minToks ∈ {10,20}) and picked those that achieve the best

combination of precision and coverage. These parameters would be plausible choices

if one would try to mine idioms with a clone detection tool. Table 7.3 shows pre-

cision, coverage and average idiom size (in number of nodes) of the patterns found

through DECKARD and HAGGIS. HAGGIS found larger and higher coverage idioms,

since clones seldom recur across projects. The differences in precision and coverage

are statistically significant (paired t-test; p < 0.001). We note that the overlap in the

patterns extracted by DECKARD and HAGGIS is small (< 0.5%).

These results are not a criticism of DECKARD — which is a high-quality, state-of-

the-art code clone detection tool — but rather show that the task of code clone detection

is different from code idiom mining. Code clone detection — even when searching for

gapped clones — is concerned with finding pieces of code that are not necessarily fre-

quent but are maximally identical. In contrast, idiom mining is concerned with finding

very common tree fragments that trade off between pattern size and frequency.

162 Chapter 7. Mining Idiomatic Source Code

7.4.3 Extrinsic Evaluation of Mined Syntactic Idioms

Now, we evaluate HAGGIS extrinsically on a dataset of StackOverflow questions (Bac-

chelli, 2013). StackOverflow is a popular Q&A site for programming-related questions.

The questions and answers often contain code snippets, which are representative of

general development practice and are usually short, concise and idiomatic, containing

only essential pieces of code. Our hypothesis is that snippets from StackOverflow are

more idiomatic than typical code, so if HAGGIS idioms are meaningful, they will occur

more commonly in code snippets from StackOverflow than in typical code.

To test this, we first extract all code fragments in questions and answers tagged as

java or android, filtering only those that can be fully parsed by Eclipse JDT (Eclipse-

Contributors, 2014). We further remove snippets that contain less than 5 tokens. After

this process, we have 108,407 partial Java snippets. Then, we create a single set of

idioms, merging all those found in LIBRARY and removing any idioms that have been

seen in less than five files in the LIBRARY test set. We end up with small but high

precision set of idioms across all APIs in LIBRARY.

Table 7.4 shows precision and coverage of HAGGIS’s idioms comparing StackOver-

flow, LIBRARY and PROJECTS. Using the LIBRARY idioms, we achieve a coverage of

31% and a precision of 67% on StackOverflow, compared to a much smaller precision

and coverage in PROJECTS. This shows that the mined idioms are more frequent in

StackOverflow than in a “random” set of projects. Since we expected StackOverflow

snippets to be more highly idiomatic than average projects’ source code, this provides

strong indication that HAGGIS has mined a set of meaningful syntactic idioms. We note

that precision depends highly on the popularity of LIBRARY’s libraries. For example,

because Android is one of the most popular topics in StackOverflow, when we limit the

mined idioms to those found in the two Android libraries, HAGGIS achieves a precision

of 96.6% at a coverage of 21% in StackOverflow. This indicates that HAGGIS idioms

are widely used in practice.

Eclipse SnipMatch To further evaluate HAGGIS, we submitted a set of idioms to

Eclipse SnipMatch (Recommenders, 2014). SnipMatch currently contains about 100

human-created code snippets. Currently only JRE, SWT and Eclipse specific snippets

are being accepted. Upon discussion with the community, we mined a set of idioms

specifically for SWT, JRE and Eclipse. Some of the HAGGIS mined idioms already

existed in SnipMatch. Of the remaining idioms, we manually translated 27 idioms into

JFace templates, added a description and submitted them for consideration. Five of

http://stackoverflow.com/

7.4. Syntactic Idioms Evaluation 163

these were merged as is, four were rejected because of unsupported features/libraries in

SnipMatch (but might be added in the future), one was discarded as a bad practice that

nevertheless appeared often in our data, and one more was discarded because it already

existed in SnipMatch. Finally, another snippet was rejected to allow SnipMatch “to

keep the snippets balanced, i.e. cover more APIs equally well”. The remaining fifteen

were still under consideration at the time of writing. This provides informal evidence

that HAGGIS mines useful idioms that other developers find useful. Nevertheless, this

experience also highlights that, as with any data-driven method, the idioms mined will

also reflect any old or deprecated coding practices in the data.

7.4.4 Syntactic Idioms and Code Libraries

As a final evaluation of the mined syntactic code idioms’ semantic consistency, we

now show that code idioms are highly correlated with the imported packages of a Java

file. We merge the idioms across our LIBRARY projects and visualize the lift among

code idioms and import statements. Lift, commonly used in association rule mining,

measures how dependent the co-appearance of two elements is. For each imported

package p, we compute lift l of the code idiom t as

l(p, t) =
P(p, t)

P(p)P(t)
(7.7)

where P(p) is the probability of importing package p, P(t) is the probability of the

appearance of code idiom t and P(p, t) is the probability that package p and idiom t

appear together. l(p, t) is higher as package p and idiom t are more correlated, i.e., their

appearance is not independent.

Figure 7.10 shows a matrix of the lift of the top idioms and packages. We show the

top 300 most frequently used packages in the training set and their highest correlating

code idioms, along with the top 100 most frequent idioms in LIBRARY. Each row

represents a single code idiom and each column a single package. At the top, one can

see idioms that do not depend strongly on the package imports. These are generic

syntactic idioms (e.g. Figure 7.9c) that do not correlate significantly with any package.

We can also observe dark blocks of packages and idioms. Those represent library or

project-specific idioms that co-appear frequently. This provides additional evidence

that HAGGIS finds meaningful idioms since, as expected, some idioms are common

throughout Java, while others are API or project-specific.

Suggesting idioms To further demonstrate the semantic consistency of the HAGGIS

idioms, we present a preliminary approach to suggesting idioms based on package

164 Chapter 7. Mining Idiomatic Source Code

Packages

Id
io

m
s

Figure 7.10: Lift (Equation 7.7) between imported packages (columns) and syntactic

idioms (rows). For each package-idiom pair, we have one pixel whose color indicates

the lift value. Darker blue color implies higher lift. The rows/columns were sorted in

such a way that makes the clusters visible. Generic/language idioms are seen on the

top since they are used across all code irrespectively of the package. The idioms on

the bottom are package-specific since they are related only to specific packages as

seen from the dark blocks on the right of the figure. We ordered the idioms/packages

using visualization techniques that order the elements based on the top eigenvectors

that make the patterns visible. Idioms and packages shown only for android.location,

android.net.wifi and org.hibernate for brevity.

imports. We caution that our goal here is to develop an initial proof of concept, not the

best possible suggestion method. First, we score each idiom Ti by computing

s(Ti|I) = max
p∈I

l(p,Ti) (7.8)

where I is the set of all imported packages. We then return a ranked list TI = {T1,T2, . . .}
such that for all i < j, s(Ti, I) > s(T j, I). Additionally, we use a threshold sth to con-

trol the precision of the returned suggestions, showing only those idioms ti that have

s(Ti, I) > sth. Thus, we are only suggesting idioms where the level of confidence is

higher than sth. This parameter controls suggestion frequency, i.e. the percent of the

times where we present at least one code idiom.

To evaluate HAGGIS’s idiom suggestions, we use the LIBRARY idioms mined from

the train set and compute the recall-at-rank-k on the LIBRARY’s test set. Recall-at-

rank-k evaluates HAGGIS’s ability to return at least one code idiom for each test file.

Figure 7.11 shows that for suggestion frequency of 20% we achieve a recall of 76%

at rank k = 5, meaning that in the top 5 results we return at least one relevant idiom

76% of the time. This result shows the quality of the mined idioms, suggesting that

HAGGIS can provide a set of meaningful suggestions to developers by solely using

the code’s imports. Further improvements in performance can be achieved by using

advanced classification methods, which we leave to future work, and will enable an

7.5. Mining Semantic Idioms 165

0.0 0.2 0.4 0.6 0.8 1.0
Suggestion Frequency

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

R
ec

al
la

t
ra

nk
k k=1

k=5
k=10

Figure 7.11: Recall at rank k for syntactic code idiom suggestion.

Corpus ASTs

Purity Analysis

Loop Coiling

pTSG Inference Idiom Ranking

Loop Idioms

Figure 7.12: The architecture of our semantic idiom mining system, specialized to loop

idioms. As Section 7.6 demonstrates, loop idioms enable code transformation toolsmiths

and language designers to make data-driven decisions about which rewritings or con-

structs to add.

IDE side-pane with suggested code idioms.

7.5 Mining Semantic Idioms

We previously discussed syntactic idioms that captured conventional syntactic patterns

of code. In this section, we are interested in mining semantic idioms of code, that in-

stead of capturing the syntactic structure of a language construct or an API, capture

conventional semantic operations. Syntactic idiom mining captures the syntactic form

in great detail, obscuring semantic similarities, which makes it impossible to capture

conventional semantic operations. Mining semantic conventions can be useful to de-

velopers of software engineering tools (toolsmiths) that employ rewriting rules within

the tools that transform conventional code. For example, such tools include refactoring,

program analysis tools and compiler optimizations. Semantic idioms are also useful to

language and API designers that want to introduce new language and API constructs

that simplify conventional semantic operations. Therefore, we view semantic idiom

mining as a data-driven method for extracting semantic code conventions within a

single project or across large corpora.

166 Chapter 7. Mining Idiomatic Source Code

What are semantic idioms? Source code semantics denote the underlying operations

performed by code. Semantics exclude various aspects of code that are not used for

execution. For example, exact variable names are ignored and any syntactic sugar (e.g.

multiple types of looping constructs) is unified. This process allows better understand-

ing and analysis of code semantics.

When designing semantic code idioms, we aimed to abstract needless syntactic

diversity, such as variable names, but retain as much of the semantics necessary. The

need for semantic idioms is evident from Figure 7.7. Although syntactic idioms capture

conventional use of code constructs in conjunction with API usages, they fail to capture

common semantic operations such as the well-known conventional “map-reduce” oper-

ation of mapping one collection to another or reducing a collection to a single element

(e.g. summation of all the elements of an array). This is because of the detailed informa-

tion within the AST that is presented to the mining algorithm, inducing sparsity. Thus,

mining semantic idioms with the methods presented in this chapter necessitates the

abstraction of information from the ASTs and the addition of other semantic properties

of the code.

We design semantic idioms as partial semantic-augmented views of the code that

allows us to reason about semantic conventions. For example, such patterns may in-

clude conventional error handling (e.g. exceptions), common ways of allocating and

deallocating resources (e.g. files, mutexes) or handling of asynchronous events. In this

work, we focus on semantic operations performed by loop structures (e.g. Figure 7.13).

Loop-based semantic conventional operations are commonly used (e.g. “map-reduce”)

to the extent that specialized libraries (e.g. Java’s Streams, C#’s LINQ) exist to aid the

developers when writing such operations.

To mine semantic idioms, we follow a process similar to the one presented in the

previous sections. First, we convert each source code snippet of interest into a “semantic”

AST-like tree structure. Figure 7.13 contains an example of a concrete loop and its

abstraction. In this example, the whole tree (Figure 7.13b) consist of a single idiom.

When abstracting source code, described next, we remove exact variable names and

maintain only semantic information about the operations within each basic block. Then,

using a corpus of abstracted trees, we mine semantic idioms. In contrast to syntactic

idioms, where the tree used was the full AST, this pre-processing removes syntactic

information and introduces annotations for any relevant semantic information we wish

to include.

Loop Semantic Idioms In this chapter, we focus on semantic idioms of loops because

7.5. Mining Semantic Idioms 167

foreach (var $0 in $EXPR$) {

$BBLOCK[UR($0, $1); URW($2);]

}

(a) A semantic loop idiom capturing a conventional reduce semantic operation. The foreach’s

body is a single basic block. Within the block two unitary variables $0 and $1 are only read.

Within the basic block a single unitary variable $2 is read and written. Therefore, this semantic

idiom is a reduce operation into the unitary variable $2.

ForEach
expression:

$EXPR$
variable:

$0
body:

$BBLOCK
Unitary Vars Read (UR)

$0
$1

Unitary Vars Read/Written (URW)
$2

(b) The abstracted AST of the semantic idiom shown above.

foreach(var refMap $0 in mapping.ReferenceMaps)

this $2.AddProperties(properties $1, refMap $0.Data.Mapping);

(c) Concrete loop from csvhelper that matches the semantic loop idiom in Figure 7.13a. The

numbers next to each variable shows the correspondence of each variable to the metavariables

within the semantic idiom.

Figure 7.13: A sample semantic idiom, a matching loop and the modified tree structure

(CAST) used for idiom mining. Example from Figure 7.2.

168 Chapter 7. Mining Idiomatic Source Code

loops are vital to programming and program analysis. If we were to mine (semantic)

loop idioms as syntactic idioms, we would not be able to find meaningful semantic

patterns. The syntactic details of the code, such as variable names and exact types of

operations, introduce sparsity when mining code which makes syntactic idioms very

detailed and unable to find common semantic operations.

To tackle this problem we turn to abstraction. Our “coiling” abstraction removes

syntactic information, such as variable and method names, while retaining loop-relevant

properties like loop control variables, collections and introducing additional semantic

information (e.g. variable purity information). Coiling transforms traditional ASTs

(like those used in Section 7.3) into another tree structure which we call coiled ASTs

(CAST). Our coiling process is essential for mining loop semantic idioms, since it

abstracts irrelevant — for our application — variability but maintains and embeds all

relevant semantic information and allows loop idiom mining to find meaningful patterns.

Although in this section we focus coiling on loops, this abstraction process can be easily

generalized to other code constructs. Figure 7.12 depicts the workflow of semantic loop

idiom mining.

In Section 7.6, we discuss how the mined semantic loop idioms look like and how

refactoring, language, and API designers can use them to identify candidate refactor-

ings, new language constructs, or API features. To mine semantic loop idioms, we first

manipulate the ASTs into coiled ASTs (CAST). The CASTs are then passed to the

pTSG inference (described in Section 7.2) to mine the idioms. This section describes

fsem : c→ T , i.e. the function in Equation 7.1 that converts source code snippets c

(snippets of loops in our case) to tree structures that can be mined by HAGGIS.

7.5.1 Purity Analysis

Purity information is important for loop semantics and we embed this information in

the CASTs as additional semantic information that did not exist in the original AST. We

call, a function pure in a variable (or global), when it is does not write (change the value)

of that variable during its execution. Impurity, its complement, is a strong property of

code. Using purity analysis, we tag each variable in a CAST with information about its

purity. This information is significant for code semantics and thus should be directly

embedded within semantic idioms.

Semantic idiom mining is agnostic to the exact method used to infer purity informa-

tion. For the purposes of this work, we chose an approximate method that infers purity

7.5. Mining Semantic Idioms 169

information using dynamic information. Usually only a few runs of a code fragment are

necessary to reveal impurity, because impure code must be carefully written to disguise

its impurity and there is rarely any reason to do so. Thus, exercising a code snippet

against its program’s test suite is likely to detect its impurity. Armed with this intuition,

we implemented an approximate dynamic purity detection technique based on testing.

Given a method and a test suite that invokes that method, we run the test suite and

snapshot memory before and after each invocation of the method. If the memory is un-

changed across all its invocations, the method is pure modulo the test suite; otherwise,

it is impure.

To snapshot the heap, we traverse the heap starting at the input method’s reference

arguments and globals. The heap is an arbitrary graph, but we traverse it breadth first

as a tree and avoid loops by stopping further traversal at objects that have already been

visited. Given the sequence of the traversed values we compute a hash. We compare the

hashes of the before and after invocation snapshots. If the test suite does not execute

the method, its purity, and that of its variables and globals, is unknown. Otherwise, the

input method’s arguments and globals are pure until marked impure. When it executes,

our technique may report false negatives (incorrectly reporting a variable as pure, when

it is impure) but not false positives.

Our use of a dynamic purity analysis avoids the imprecision issues common to

static analyses (Xu et al., 2007) and is sufficient for mining semantic loop idioms. Other

applications may require soundness; for this reason, we designed our mining procedure

to encapsulate our dynamic purity analysis so that we can easily replace it with any

sound static analysis (Sălcianu & Rinard, 2005; Marron et al., 2008; Cherem & Rugina,

2007), without otherwise affecting our idiom mining. An important aspect of inferring

the useful idioms is to annotate their syntactic structure with semantic information, as

we do here with purity information. It would be easy to further augment idioms with

other semantically rich properties, such as heap/aliasing information (Barr et al., 2013;

Raychev et al., 2014).

We instrument every method to realize our technique. First, we wrap its body in

a try block, so that we can capture all the ways the function might exit in a finally

block. At entry and in the finally block, we then inject snapshot calls that take the

method’s arguments and globals and computes their hash. In the finally block after

the snapshot, we compare the hashes and mark any variables that point to memory that

changed as impure.

To speed up our purity inference and avoid the costly memory traversals, we use

170 Chapter 7. Mining Idiomatic Source Code

foreach(x in y) {

if (f(x))

s += x;

else

s -= y.Size;

}

x

y

s

foreach

y

identifier

if

body

f(x)

cond

s=x+

body

s-=y.Size

else

Figure 7.14: Abstract Syntax Tree with References. A reference (depicted red, blue and

green circles) is a set of AST nodes that refer to the same program variable. We label

each AST node with zero or more references.

exponential backoff: if a method has been tested n times and has been found pure with

respect to some argument or global, then we test purity only with probability pn. We

used p = 0.9. As a further optimization and to avoid stack overflows, we assume that

by convention the overriden methods GetHashCode() and Equals(object) methods to

be pure and ignore them. These methods may be invoked very frequently and therefore

instrumentation is costly. Our method cannot detect when a variable is overwritten with

the same value. This is a potential source of false negatives to the extent to which such

identity rewritings are correlated with impurity.

Since we cannot easily rewrite and rebuild libraries, our technique cannot assess

the purity of calls into them. However, they are frequent in code, so we manually

annotated the purity of about 1,200 methods and interfaces in core libraries, including

CoreCLR. These annotations encompass most operations on common data structures

such as dictionaries, sets, lists, strings etc.

7.5.2 Coiling Loops

In Section 7.3 we showed how to extract syntactic idioms from code. Here, we mine

loop idioms to capture universal semantic properties of loops. Thus, we keep only AST

subtrees rooted at loop headers and abstract nodes that obscure structural similarities.

We call this process coiling and detail its abstractions next.

Program Variables In conventional ASTs, a node refers to a single variable. Coiling

breaks this rule, creating nodes that potentially refer to many variables. Because we

want to infer loop idioms that incorporate and therefore match patterns of variable

7.5. Mining Semantic Idioms 171

usage, we need to re-encode variable usage into the AST. To this end, we introduce

the notion of a reference. A reference is a set of nodes that refer to the same program

variable. We label nodes with zero or more references as depicted in Figure 7.14. To

combat sparsity, our pTSG inference merges two references that share the same node

set. Thus, an idiom can match a concrete loop that contains more variables than the

number of references in the idiom.

Expressions Expressions are quite diverse in their concrete syntax, due to the diversity

of variable names, but are usually structurally quite similar. Since our goal is to discover

universal loop properties, we abstract loop expressions to a single EXPR node, labeled

with the variables that it uses. There are three exceptions: increment, decrement, and

loop termination expressions. The pre and post increment and decrement operators

from C introduce spurious diversity in increment expressions. Thus, we abstract all

increment and decrement operations to the single INC/DEC node. We preserve the top-

level operator of a termination expression and rewrite its operands to Expr nodes, with

the exception of bounding expressions that compute a size or length, which we rewrite

to a SizeOf node and label it with the reference to the measured variable.

Basic Blocks A basic block (BBLOCK) is sequence of lines of code lacking control

statements. Basic blocks tend to be quite diverse, so we collapse them into a single node

labeled with references to the variables they use. These basic blocks are equivalent to

uninterpreted functions. To make our pTSG inference aware of purity, we encode the

purity of each of a basic block’s variables as children of the basic block’s node. We

label each child node with its variable’s reference and give it a node type that indicates

its purity in the basic block. The purity node types are R, W, and RW (we circumscribe

RW for notational purposes).

Loops usually traverse collections, so we distinguish them from unitary (primitive

or non-collection) variables. The annotation U denotes a unitary variable. For collec-

tion variables (denoted by C), we separate them into their spine, the references that

interconnect the elements, and the elements it contains. Our purity analysis separately

tracks the mutability of a collection’s spine Cs and its elements CE . This notation allows

us to detect that a collection has changed when the same number of elements have been

added and removed, without comparing its elements to the elements in a snapshot. In

practice, the spine and the elements change together most often and only 9 idioms of

the top 200 idioms (with total coverage 1.2%) have loops that change the elements of a

collection, but leave the spine intact.

Blocks For us, a block is a graph of basic blocks; it is the code that appears between {

172 Chapter 7. Mining Idiomatic Source Code

and } delimiters in a C-style language. Blocks can have multiple exits, including those,

like break or continue statements, that exit the loop. Coiling assigns different node

types to single and multi-exit blocks. This allows our pTSG inference to infer loop

idioms that distinguish single exit blocks, whose enclosing loops are often easier to

refactor or replace.

Example Figure 7.15 shows example idioms and concrete loops they match annotated

with the binding of the idiom’s references to the program variables. In Figure 7.15-8,

the idiom contains var $0=0, because Roslyn8 defines the initializer as a statement. The

idiom contains the < operator, because our expression abstraction preserves the top-

level operator in termination expressions. INC denotes the special node for increment

expression. It contains a single block that, in turn, contains a single basic block that ref-

erences at least (since we merge references with identical sets of nodes) four variables:

The first two are read-only unitary variables (denoted by UR); $2 is a collection with a

read-only spine and elements (denoted by CSR for the spine and CER for the elements);

and $4 is a read-write unitary variable (denoted as URW).

7.5.3 Mining Semantic Idioms

So far we described fsem, i.e. the function in Equation 7.1 that deterministically converts

the code into tree structures, that can be used within the pTSG inference framework. The

CASTs returned from fsem are passed the inference process described in Section 7.2. For

mining semantic idioms we make two small modifications to the inference framework.

First, we simplify the prior (Equation 7.2) by removing the geometric distribution

Pgeom over the size of the idioms, because we found that it heavily penalizes large but

otherwise highly probable idioms, i.e.

P0(T) = ∏
r∈T

PML(r). (7.9)

Thus, our prior pTSG is simply the PCFG defined over our dataset. In addition, instead

of the Dirichlet process (Equation 7.3), we use the more general Pitman-Yor process.

Regarding the hyperparameters, we observe that in practice — and for our data —

different values do not make any difference.

8http://roslyn.io

http://roslyn.io

7.6. Semantic Idioms Evaluation 173

7.5.4 Semantic Idiom Ranking

After mining the idioms, we rank them in order of their utility in characterizing the

target constructs — loops in our case. The ranked list provides data-based evidence to

interested parties (e.g. API designers, refactoring toolsmiths) augmenting their intuition

when identifying the most important code constructs. To mine idioms, we use a score

that computes a trade-off between coverage and idiom expressivity. If we solely ranked

idioms by coverage, we would end up picking very general and uninformative loop

idioms, as would happen with frequent tree mining. We want idioms that have as much

information content as possible and the greatest possible coverage. We score each

idiom by multiplying the idiom’s coverage with its cross-entropy gain. Cross-entropy

gain measures the expressivity of an idiom and is the average (over the number of

CFG productions) log-ratio of the posterior pTSG probability of the idiom over its

PCFG probability. This ratio measures how much the idiom improves upon the base

PCFG. To pick the top idiom we use the following simple iterative procedure. First,

we rank all idioms by their score and pick the top idiom. Then, we remove all loops

that were covered by that idiom and repeat the process. We repeat this until there are

no more loops covered by the remaining idioms. This greedy knapsack-like selection

yields idioms that achieve both high coverage and are highly informative. Since purity

information is explicitly encoded within the CASTs (as special nodes, as discussed in

Subsection 7.5.2), the ranking takes into consideration both the purity information as

well as the other information about each loop.

7.6 Semantic Idioms Evaluation

This work rests on the claim that we can mine semantic idioms of code to provide

data-driven knowledge to refactoring toolsmiths and API designers. The goal of mining

loop idioms is to reduce the cost of identifying loop rewritings (e.g. for loop-to-LINQ

refactoring) by working on loop idioms, instead of concrete loops. A necessary con-

dition for this is an effective procedure for mining loop idioms that cover, or match, a

substantial proportion of real world loops.

Coverage of Idiomatic Loops Our semantic loop idioms are mined from a large

set of projects consisting of 577kLOCs (Table 7.5), which form our training corpus.

Figure 7.16 shows the percent coverage achieved by the ranked list of idioms. With the

first 10 idioms, 30% of the loops are covered, while with 100 idioms 62% of the loops

174 Chapter 7. Mining Idiomatic Source Code

Semantic Idiom Sample Matching Concrete Loop

1 for(int $0=$EXPR; $0<$EXPR; INC($0))

2 $BBLOCK[UR($0);CS,ER(1); URW($2)]

1 for (int i $0 = 0; i $0 < length; i $0++)

2 charsNeeded $2 += components $1[i $0].Length;

(1) Semantic Operation: Reduce with for Coverage: 14%

1 foreach(var $0 in $EXPR)

2 $BBLOCK[UR($0, $1); URW($2);]

1 foreach(Term term $0 in pq.GetTerms())

2 rootMap $2.AddTerm(term $0.Text, query $1.Boost);

(2) Semantic Operation: Reduce with foreach Coverage: 2%

1 foreach(var $0 in $EXPR)

2 $BBLOCK[UR($0, $1);CS,E RW($2)]

1 foreach(DictionaryEntry entry $0 in dict)

2 hash $2[entry $0.Key]=entry $0.Value;

(3) Semantic Operation: Map with foreach Coverage: 2%

1 foreach(var $0 in $EXPR)

2 $BBLOCK[UR($1); URW($0, $2);]

1 foreach(var exp $0 in args)

2 exp $0.Emit(member $1, gen $2);

(4) Semantic Operation: Map overwrite and reduce with foreach Coverage: 2%

1 for(int $0=$EXPR; $0<$EXPR; INC($0))

2 $BBLOCK[UR($0,$1);CS,ER($2);CS,E RW($3)]

1 for (int k $0=a; k $0<b; k $0++)

2 ranks $3[index $2[k $0]] = rank $1;

(5) Semantic Operation: Map collection-to-collection with for. Coverage: 5%

1 for(int $0=$EXPR; $0<$EXPR; INC($0))

2 $BBLOCK[UR($0,$1);URW($2);CS,E RW($3)]

1 for (var k $0= 0; k $0<i; k $0++){

2 d $3[k $0] /= scale $1;

3 h $2 += d $3[k $0] * d $3[k $0];

4 }

(6) Semantic Operation: Map and reduce with for. Coverage: 5%

1 foreach(var $0 in $EXPR)

2 $BBLOCK[UR($1);URW($0)]

1 foreach(LoggingEvent event $0 in loggingEvents)

2 event $0.Fix = m_fixFlags $1;

(7) Semantic Operation: Map and overwrite foreach. Coverage: 1%

1 for(var $0=0; $0 < $EXPR($1,$2,$3); INC($0)){

2 if($EXPR($0, $1, $2, $4, $5))

3 $BBLOCK[UR($0, $1);URW($4);CS,ER($2)]

4 }

1 for(int i $0=0; i $0<data $2.Length $3; i $0++){

2 if(data $2[i $0]>max $4

3 && !float $5.IsNaN(data $2[i $0]))

4 max $4 = data $2[i $0];

5 }

(8) Semantic Operation: Reduce with for and conditional Coverage: 1%

Figure 7.15: Sample semantic idioms and a concrete loops they match.

7.6. Semantic Idioms Evaluation 175

0 50 100 150 200 250 300 350 400

Idioms Included

0

20

40

60

80

100

C
um

ul
at

iv
e

C
ov

er
ag

e
(%

)

Figure 7.16: Cumulative loop coverage vs. the number of (top) semantic idioms used.

Given the diminishing returns the distributions fits well into a Pareto distribution. The

Gini coefficient is G = 0.785 indicating a high coverage inequality among idioms. When

using 50 idioms, 50% of the loops can be covered and with 200 idioms 70% of the loops

are covered. 22% of the loops in our corpus are non-idiomatic (i.e. are not covered by

an idiom).

are covered. This shows that idioms have a Pareto distribution — a core property of

natural code — with a very few common idioms and a long tail of less common ones.

This shows a useful property of the idioms. As a toolsmith or a language or API feature

designer uses the idioms, she will capture gradually more loops, but with diminishing

returns. In our case, the top 50 idioms capture about 50% of the loops, while the next

100 idioms increase the coverage only by another 20%. Therefore, our data-driven

approach allows the prioritization of semantic code idioms — such as the design of

loop-to-LINQ refactorings — and helps to achieve the highest possible coverage with

the minimum possible effort.

Nonidiomatic Loops Figure 7.16 shows that about 22.4% of the loops are not covered

by any of the idioms. Here, we perform a case study of these nonidiomatic loops. We

sampled uniformly at random 100 loops that were not covered by any of the mined

idioms and studied how they differed from idiomatic loops. We found that 41% of

these loops were in test suites, while another 8% of the nonidiomatic loops were loops

that were either automatically generated or were semi-automatically translated from

other languages (e.g. Java and C). Another 13% of these loops were extremely domain-

specific loops (e.g. compression algorithms, advanced math operations), which suggests

that some of these operations are distinct and highly specialized semantic operations.

The rest of the nonidiomatic loops were seemingly normal. However, we noticed they

often contain rare combinations of control statements (e.g. a for with an if and another

176 Chapter 7. Mining Idiomatic Source Code

Table 7.5: C# Projects (577kLOC total) that were used to mine semantic loop idioms

after collecting purity information by running their test suites (containing 34,637 runnable

unit tests).

Name Git SHA Description

Core 3b9517 Castle Framework Core

csvhelper 7c63dc Read/write CSV files

dotliquid 9930ea Template language

libgit2sharp f4a600 C# Git implementation

log4net 782e82 Logging framework

lucenenet 70ba37 Full-text search engine

mathnet-numerics f18e96 Math library

metrics-net 9b46ba Metrics Framework

mongo-csharp-driver 6f237b Database driver

Nustache 23f9cc Logic-less templates

Sandra.Snow c75320 Static Site Generator

loop inside the else statement), convoluted control flow in the body of the loops or

rare purity properties. Some of these rare combinations, like two consecutive if-else

statements, are, in isolation, normal or frequent, but rare when enclosed in a loop rather

than a method. We speculate these loops look normal to developers because we humans

tend to notice the local normality, while neglecting the abnormality of the neighborhood.

Unsurprisingly, our method also considers loops with empty bodies nonidiomatic. The

analysis of the all the studied loops in this paragraph suggests that our method correctly

designates these loops nonidiomatic. Knowing which loops are nonidiomatic and that

they are rare is crucial, since it allows toolmakers to avoid wasting time on them.

Project Specificity of Semantic Loop Idioms So far we discussed idiom coverage

with regards to the corpus used for inferring the pTSG. Now, we are interested in

characterizing the project specificity of the mined loop idioms. For each of the 11

projects, we infer a pTSG on the other 10 projects and compute the coverage of the new

top 200 computed idioms on the target project. We find that the average percent of loops

that are covered by the top 200 idioms trained on all the projects is 70.1% but when the

project is excluded from the training set, it drops to 66.3%. This shows both that the

7.6. Semantic Idioms Evaluation 177

top ranked loop idioms are general and that there is nontrivial proportion of domain-

specific loop idioms. There are two exceptions: the lucenenet text search engine and

the mathnet-numerics math library that about 18% of the loops are project-specific and

cannot be covered by idioms found in the other projects. By manually investigating

the project-specific idioms, we find that mathnet-numerics has a significant number

of math-related specialized loop idioms, while lucenenet’s project-specific idioms are

mostly in its Snowball stemmer, which is autogenerated code that has been ported from

Java and is highly specialized to the text-processing domain.

These results show how mining loop idioms identify not only universal, domain-

independent loop idioms that are frequent yet detailed enough for use within applica-

tions but also domain, even project, specific loop idioms that may still benefit from

custom-defined replacement transformations. Our data-driven approach allows tool-

smiths and language designers to abandon the straitjacket of building “one size fits

all” tools, forced on them by limited engineering resources, and build bespoke, even

adaptable, transformation tools that many more developers can use.

7.6.1 Using Semantic Loop Idioms

Popular semantic idioms identify opportunities for identifying “natural” rewritings of

code patterns that are structurally and semantically similar and frequent enough to

warrant the cost of abstracting and reusing them. Therefore, highly ranked idioms can

serve as a useful basis for language and API designers, representing opportunities for

introducing new language constructs or new APIs. Highly ranked idioms can also serve

as a useful basis for the lefthand side of a rewriting rule that a refactoring toolsmith

or a compiler optimization developer is creating. For each idiom, one has to write the

righthand side of the rewriting rule. For example, loop idioms, our focus in this work,

are well-suited for identifying opportunities for the task of rewriting loops using new

APIs, defining new language constructs that can simplify common operations or even

functionalizing them into LINQ statements. Because these rules are mined from actual

usage, we refer to this process as prospecting. Our semantic idiom ranking allows to

prioritize patterns (e.g. when creating a rewriting rule) in such a way that the top idioms

achieve the maximum codebase coverage possible. In this section, we discuss three

case studies on using loop idioms for prospecting. In the first case study, we discuss

how loop idioms can be used for prospecting loop-to-LINQ rewritings, then we show

some evidence that loop idioms can help with designing better APIs or even provide

178 Chapter 7. Mining Idiomatic Source Code

data-driven arguments for introducing new language features.

Prospecting Loop-to-LINQ Refactorings Semantic loop idioms can help in an impor-

tant instance of refactoring: replacing loops with functional operators. Since 2007, C#

supports Language Integrated Query (LINQ) (Meijer, 2011; Marguerie et al., 2008), that

provides functional-style operations, such as map-reduce, on streams of elements and is

widely used in C# code. LINQ is concise and supports lazy operations that are often easy

to parallelize. For example, multiplying all elements of the collection y by two and re-

moving those less than 1, in parallel, is y.AsParallel().Where(x=>x<1).Select(x=>2*x).

We call a loop that can be replaced with LINQ statements “LINQable”. LINQabil-

ity has important implications for the maintainability and comprehensibility of code.

LINQ’s more conceptually abstract syntax 1) manifests intent, making loops easier to

understand and more amenable to automated reasoning and 2) saves space, in terms of

keystrokes, as a crude measure of effort to compose and read code.

As a testament to the importance of refactoring loops to functional operators, two

tools already support such operations: LAMBDAFICATOR targets Java’s Streams and

JetBrain’s Resharper (JetBrains, 2015) replaces loops with LINQ statements. Both these

tools have followed the classic development model of refactoring tools: they support

rewritings that its toolsmiths decided to support from first principles (Gyori et al., 2013).

Our approach can complement the intuition of the tool makers and therefore allow

these tools to support refactorings that the tool authors would not envision without data,

enabling the data-driven, inference-based development of refactorings. Additionally,

data-driven inference allows toolmakers to discover project or domain-specific semantic

idioms without needing a deep knowledge of a domain or a specific project.

To do this toolsmiths can build a refactoring tool using loop idioms as key elements

to the rewritings that map loops to LINQ statements. In other words, we can use our se-

mantic idioms inference to automatically identify loop constructs that could be replaced

by a LINQ operator, i.e. are LINQ-able.

To evaluate the fitness of our loop idiom mining for prospecting natural loop rewrit-

ings, we built an idiom-to-LINQ suggestion engine. This engine is not a refactoring

tool. Its purpose is to validate the quality of the semantic loop idioms it prospects and

to show how a refactoring toolsmith could make use of them. To build our suggestion

engine, we manually mapped loop idioms to LINQ operators. These suggestions are not

sound, since our engine simply matches an idiom to a concrete loop and does not check

for semantics preservation as a fully automated sound refactoring tool would require.

For example, our idiom-to-LINQ suggestion engine maps the idiom in Figure 7.15.8

7.6. Semantic Idioms Evaluation 179

to a reduce operation. Thus, for the concrete loop in Figure 7.15.8, the suggestion en-

gine outputs the loop and its location, then replaces references with the concrete loop’s

variable names and outputs the following suggestion:

The loop is a reduce on max. Consider replacing it with:

data.Where(cond).Aggregate((elt, max)=>accum)

Notes
1. Where(cond) may not be necessary.

2. Replace Aggregate with Min or Max if possible.

We know that this loop is a reduce because the matching idiom’s purity information

tells us that there is a read-write only on a unitary variable. When our suggestion engine

accurately suggests a loop refactoring, a refactoring toolsmith should find it easy to

formalize a rewriting rule (e.g. identifying and checking the relevant preconditions)

using loop idioms as a basis. In our example, a polished refactoring tool should refactor

the loop in Figure 7.15.8 into data.Where(x=>!float.IsNan(x)).Max(). In our corpus,

we find that at least 55% of all loops are LINQable.

We used the top 25 idioms that cover 45.4% of the loops in our corpus. We mapped

23 idioms, excluding two of the loop idioms (both while idioms, covering 1.5% of

the loops) that have no corresponding LINQ expression. To map each idiom to an

expression, we found the variables that match the references, along with the purity and

type information of each variable. We then wrote C# code to generate a suggestion

template, as previously described. The process of manually mapping the top 23 idioms

to LINQ took less than 12 hours.

With this map, our engine suggests LINQ replacements for 5,150 loops. Each idiom

matches one or more loops and is mapped to a LINQ expression in our idiom-to-LINQ

map. To validate the quality of these suggestions, we uniformly sampled 150 loops

and their associated suggestions. For each of these loops, two annotators assessed our

engine’s suggestion accuracy. This should not be seen as a part of an effort to develop a

batch-refactoring tool, but rather as an means of evaluating our proposed method. Our

results show that the suggestions are correct 89% of the time. The inter-rater agreement

was κ = 0.81 (i.e. agreed 96% of the time). So not only is our idiom to LINQ map easy

to build, it also achieves good precision. This suggests that the mined idioms indeed

learn semantic loop patterns that can be used for refactoring. Table 7.6 shows how often

common LINQ operators are used when loops are fictionalized to LINQ expressions

180 Chapter 7. Mining Idiomatic Source Code

Table 7.6: Basic LINQ operators and coverage statistics from the top 100 loop idioms. #

Idioms is the number of idioms our suggestion engine maps to a LINQ expression that

uses each LINQ operator. Use frequency is the proportion of concrete loops that when

converted to LINQ use the given LINQ operator.

Operator Description # Idioms Use Frequency

Range Returns integer sequence 50 77%

Select Maps a lambda to each element 42 32%

Aggregate Reduce elements into a value 43 21%

SelectMany Flattens collection and maps lambda to

each element

5 10%

Where Filters elements 13 7%

Zip Combines two enumerables 6 3%

First Returns the first element 2 1%

using our top 100 loop idioms. This evaluation indicates that a refactoring toolsmith

can easily use a loop idiom as the lefthand side of a refactoring rule. She can then

write extra code that checks for the correctness of the refactoring. Most importantly,

this process allows the prioritized consideration of rewritings that can provide the

maximum codebase coverage with the minimal effort.

Prospecting New Library APIs The top mined loop idioms are interesting semantic

patterns of the usage of code. However, some of the common patterns may be hard to

read and cumbersome to write. Since semantic idioms represent common operations,

they implicitly suggest new APIs that can simplify how developers invoke some op-

eration. Thus, the data-driven knowledge that can be extracted from semantic idiom

mining can be used to drive changes in libraries, by introducing new API features that

make its usage easier. For example, one common set of semantic loop idioms (covering

13.7% of the loops) have the form

foreach (var element in collection)

obj.DoAction(foo(element))

where each element in the collection is mapped using foo and then some non-pure

action (DoAction in the code snippet above) is performed on obj. The frequent usage of

this loop idiom for a given API can provide a strong indication that a new API feature

7.6. Semantic Idioms Evaluation 181

should be added. For example in lucenenet the following (slightly abstracted) loop

appears

for (int i = 0; i < numDocs; i++) {

Document doc = function_to_get_doc(i);

writer.AddDocument(doc);

}

In this example, the method AddDocument does not support any operation that adds more

than one Document object at a time. This forces the developers of the project to consis-

tently write loops that perform this operation. Adding an API method AddDocuments,

that accepts enumerables would lead to simpler, more readable and more concise code:

writer.AddDocuments(collection.Select(doc => foo(doc)))

Prospecting New LINQ Operators Mined semantic loop idioms can implicitly help

with designing new LINQ operators. For example, while mapping loop idioms to LINQ,

we found 5 idioms (total coverage of 5.4%) that map to the rather cumbersome LINQ

statement

Range(0, M).SelectMany(i => Range(0, N)

.Select(j => foo(i, j)))

These idioms essentially are doubly nested for loops that perform some operation for

each i and j. This suggests that a 2-d Range LINQ operator, would be useful and would

cover about 5.4% of the loops. In contrast, our data suggests that a n-d (n > 2) Range

operator would be used very rarely and therefore no such operator needs to be added.

We note that we have found two StackOverflow questions9 with 15k views that are

looking for a similar functionality. Another example is a set of idioms (coverage 6.6%)

that map to

Range(M, N).Select(i=>foo(collection[i]))

essentially requiring a slice of an ordered collection.10 The common appearance of this

idiom in 6.6% of the loops provides strong data-driven evidence that a new feature

would be highly profitable to introduce. For example, to remove these loops or their

cumbersome LINQ equivalent, we could introduce a new Slice feature that allows

the more idiomatic collection.Slice(M, N).Select(foo). Indeed, the data has helped

9http://stackoverflow.com/questions/3150678 and http://stackoverflow.com/
questions/18673822

10 This could also be mapped to the equally ugly collection.Skip(M).Take(N-M).Select(foo).

http://stackoverflow.com/questions/3150678
http://stackoverflow.com/questions/18673822
http://stackoverflow.com/questions/18673822

182 Chapter 7. Mining Idiomatic Source Code

us identify a frequently requested functionality: This operation seems to be common

enough that .NET 3.0 introduced the slice feature, but only for arrays rather that for

arbitrary sequential collections (e.g. Lists). Additionally, the need of such a feature

— that we automatically identified through data — can be verified by the existence of

a highly voted StackOverflow question11 with 122k views and 15 answers (with 422

votes in total) asking about slicing with some of the answers suggesting a Slice LINQ

extension function.

Finally, we observe that some loops perform more than one impure operation (e.g.

adding elements to two collections), while efficiently reusing intermediate results. To

refactor this with LINQ statements an intermediate LINQ expression needs to be con-

verted to an object (e.g. by using ToList()) to be consequently used in two or more

other LINQ expressions, because of the laziness of LINQ operators. This is not mem-

ory efficient and may create an unneeded bottleneck when performing parallel LINQ

operations. A memoization LINQ operator that can distribute the intermediate value

into two or more LINQ streams, could remove such hurdles from refactoring loops into

LINQ.

In our dataset, LINQ slicing seems to be a common idiom required across many

projects suggesting that an addition to core LINQ API could be reasonable. In contrast,

the 2d Range seems to be most commonly used within the mathnet-numerics project,

suggesting that a domain-specific helper/extension LINQ operator could be introduced

in that project. This discussion shows how mining loop idioms allows toolsmiths and

language designers to leverage data to guide the evolution and improvement of their

tools and languages, all with the aim of making code more readable and maintainable.

Prospecting New Language Features Semantic loop idioms can provide data-driven

evidence for the introduction of new language features. For example, some of the top

loop idioms suggest novel language features. For example, 5 top loop idioms with total

coverage 12% have the form:

for (int i=0; i < collection.Length; i++) {

foo(i, collection[i])

}

where they are iterating over a collection but also require the index of the current

element. A potential new feature would be the introduction of an Enumerate operation

that would jointly return the index and the element of a collection. This resembles the

11http://stackoverflow.com/questions/406485

7.7. Conclusions 183

enumerate function that Python already has and Ruby’s each_with_index. Interestingly,

using loop idioms we have identified a common problem faced by C# developers: in

StackOverflow there is a related question for C#12 with about 379k views and a highly

voted answers (453 votes) that suggests a helper method for bypassing the lack of such

a function. In addition there are two questions about the same feature in Java.13

7.7 Conclusions

In this chapter we presented HAGGIS, a system for automatically mining high-quality

semantic and syntactic code idioms. The idioms discovered include project, API, and

language specific idioms. One interesting direction for future work is the question of

why syntactic code idioms arise and their effect on the software engineering process.

It may be that there are “good” and “bad” idioms. “Good” idioms could arise as an

additional abstraction over programming languages helping developers communicate

more clearly their intention. “Bad” idioms may compensate for deficiencies of a pro-

gramming language or an API. For example, the “multi-catch” statement in Java 714

was designed to remove the need for a syntactic idiom that consisted of a sequence of

catch statements with identical bodies. However, it may be argued that other idioms,

such as the ubiquitous for(int i=0;i<n;i++) aid code understanding. An empirical

study about the differences between these types of idioms could be of great interest to

software engineers and library and language designers.

In this chapter, we also extended our method for unsupervised mining of semantic

idioms, specifically loop idioms, from a corpus of idiomatic code (Section 7.5). By

abstracting the AST and augmenting it with semantic facts like purity, we showed that

idiom mining can cope with syntactic diversity to find and prioritize patterns whose

replacement might improve a refactoring tool’s coverage or help programming lan-

guage and API designers introduce new features. Idioms can also benefit other areas of

program analysis and transformation, guiding the selection of heuristics and choice of

corner cases with data, as in auto-vectorization (Barthe et al., 2013).

12http://stackoverflow.com/questions/43021/
13http://stackoverflow.com/questions/23817840 and http://stackoverflow.com/

questions/7167253/
14https://docs.oracle.com/javase/7/docs/technotes/guides/language/

catch-multiple.html

http://stackoverflow.com/questions/43021/
http://stackoverflow.com/questions/23817840
http://stackoverflow.com/questions/7167253/
http://stackoverflow.com/questions/7167253/
https://docs.oracle.com/javase/7/docs/technotes/guides/language/catch-multiple.html
https://docs.oracle.com/javase/7/docs/technotes/guides/language/catch-multiple.html

Chapter 8

Conclusions

“We live on an island surrounded by a sea of

ignorance. As our island of knowledge grows, so

does the shore of our ignorance.”
– John Archibald Wheeler (Scientific American

1992, Vol. 267)

This dissertation presented the first — to our knowledge — approach to tackling

the problem of learning natural coding conventions including naming, syntactic and se-

mantic coding conventions. This was achieved by carefully designing machine learning

models that learn to reason and analyze various aspects of source code.

In Chapter 4, we presented two machine learning models that learn to predict the

name of a variable given its context. Variables are the basic building blocks of source

code and learning to name them requires an understanding of their role and function.

The machine learning models presented in this dissertation model this role and func-

tion in a probabilistic way. In the next chapter (Chapter 5), we discussed the more

complicated problem of learning method naming conventions. To learn the naming

conventions of methods or arbitrary code snippets, machine learning methods need to

learn to reason about the procedural knowledge within the code. We achieve this us-

ing a sophisticated neural attention-based convolutional network that learns continuous

representations of the procedural knowledge within the code and uses this representa-

tion to reason about naming each method. We show that this model outperforms other

alternative machine learning models.

In Chapter 6, we take the ideas presented in Chapter 5 further and explore a core

machine learning question: “Can we learn semantic continuous representations of

procedural knowledge?”. We explore this ambitious goal using boolean and polynomial

185

186 Chapter 8. Conclusions

symbolic expressions grouped into various equivalence classes. We design and train a

machine learning model to learn to map each equivalent expression — regardless of

its syntactic structure — to a single semantic vector representation and show that our

model outperforms other alternatives. Learning accurate semantic representations of

code can help us reason about procedural knowledge and the conventional semantic

operations devoid of the syntax of the language we use to describe it.

In the final section (Chapter 7), we discuss unsupervised methods for mining syntac-

tic and semantic idioms of source code. These idioms represent conventional “mental

chunks” of source code that developers use. We show that syntactic idioms can be

useful within documentation, whereas semantic idioms can be used by designers of

software engineering tools to achieve greater coverage of a tool. In addition, idioms can

be useful to API and language designers helping them mine common usage patterns of

an API or a language feature to design new APIs and language features that simplify

the code.

The Software Engineering Perspective Modeling and understanding source code

artifacts with machine learning can have a direct impact in software engineering. The

problem of learning to name variables and methods and learning to represent semantics

of expressions is a first step towards the more general goal of developing machine

learning representations of source code that will allow machine learning methods to

reason probabilistically about code resulting in useful software engineering tools that

will help code construction and maintenance.

Within the realm of coding conventions in software engineering, this dissertation

has the potential to change how conventions are inferred and enforced. Machine learn-

ing methods allow us to infer the “emergent” naming conventions within a codebase

without the need of writing explicit rules. Enforcing those conventions makes codebases

more coherent and therefore maintainable.

The Machine Learning Perspective Source code — and its derivative artifacts — rep-

resent a new modality for machine learning with very different characteristics compared

to images and natural language. Therefore, models of source code necessitate research

into new methods that could have interesting parallels to images and natural language.

This work is a step towards this direction: the machine learning models presented in

the dissertation attempt to “understand” the highly-structured format of source code.

This is not just useful for building smart software engineering tools. Machine learning

and artificial intelligence that needs to synthesize or reuse existing code needs may use

such methods to understand the code and its properties.

8.1. Future Work 187

The Programming Languages Perspective Within programming language research,

coding conventions may not be as important as other (formal) properties of the code.

However, the models presented here can be seen as methods for probabilistically under-

standing source code and can be useful within methods of code analysis that need to

first provide “educated” guesses about code properties, before proving formally that a

property holds. Finally, syntactic and semantic code idioms will be widely useful for

programming language designers that need to introduce new features to simplify the

usage of the languages and let their users write more robust and maintainable code.

Automatically mining semantic code idioms may also have implications in compiler

optimization and verification where idioms provide hints for selecting relevant proof

strategies and proof premises.

8.1 Future Work

There are many possible direction for future work, some of which are discussed here.

Transfer of Models to Industry In this dissertation we presented a series of methods

for learning and enforcing coding conventions. Although the models were evaluated in

a principled manner new challenges and opportunities will arise when these models are

used within an industrial setting. The scalability of the models as well as the usability

factors of such tools need to be empirically studied. In addition, incorporating user

feedback to improve the recommendation quality of models that suggest new variable

and method names presents interesting challenges in the machine learning domain.

Learning to Name Variables for Deobfuscation Recently, Bichsel et al. (2016) in-

troduced a structured prediction model for deobfuscating source code. This work uses

machine learning methods on carefully constructed dependency graphs to select simul-

taneously names for multiple identifiers. This model can be easily combined with the

deep learning methods presented in Chapter 4 and Chapter 5 to learn to capture subto-

ken naming conventions and learn non-hand-crafted dependency features, potentially

yielding better performance.

Structured Models of Autocompletion The learned code idioms suggest that larger

patterns tend to appear often in code. However, current autocompletion tools usually

autocomplete only one token per time. Using the notion of code idioms and new mod-

els for statistical autocompletion, we might be able to create new tools that learn to

autocomplete larger patterns of code.

188 Chapter 8. Conclusions

Research on Coding Conventions The empirical use of coding conventions in almost

all software projects suggests that it plays an important role to software engineers. Em-

pirical studies have confirmed some of the benefits of coding conventions, but further

investigation is required. Such investigation may have impact on the design of program-

ming languages and the conventions that are used. Furthermore, apart from enforcing

coding conventions within an industrial setting, the work presented in this dissertation

may be useful for educational purposes, i.e. for teaching students (such as in a MOOC

setting) not only how to write correct code to achieve a task, but also how to write

conventional code.

New Machine Learning Models for Other Coding Conventions Novel machine

learning methods that look at the code at a significantly higher level of abstraction need

to be researched to allow inference of other coding conventions, such as architectural

conventions. For example, new machine learning methods are required to model and

suggest the sparse nature of software architectures and transfer architectural knowledge

across teams and projects.

Composability and Structure in Machine Learning The machine learning models

used within this dissertation and the related work are mostly based on simple code

representations. However, code is a highly structured object with multiple forms and

complex structure. Existing machine learning methods are not able to efficiently fuse

multiple representations and work on highly complex graph structures, such as highly-

detailed program dependency graphs. This suggests that more research is still required

to create structured and compositional models that are able to capture the rich semantics

of source code and its derivative artifacts.

Appendix A

List of Published Work

This appendix contains all the published work of the author during the PhD. The order

is chronological.

• Mining Source Code Repositories at Massive Scale using Language Modeling (Al-

lamanis & Sutton, 2013b).

• Why, When and What: Analyzing Stack Overflow Questions by Topic, Type and

Code (Allamanis & Sutton, 2013a).

• Learning Natural Coding Conventions (Allamanis et al., 2014).

• Autofolding for Source Code Summarization (Fowkes et al., 2016).

• Mining Idioms from Source Code (Allamanis & Sutton, 2014).

• Bimodal Modelling of Source Code and Natural Language (Allamanis et al., 2015b).

• Suggesting Accurate Method and Class Names (Allamanis et al., 2015a).

• A Convolutional Attention Network for Extreme Summarization of Source Code

(Allamanis et al., 2016d).

• Learning Continuous Semantic Representations of Symbolic Expressions (Allama-

nis et al., 2016c).

• Tailored Mutants Fit Bugs Better (Allamanis et al., 2016b).

• Mining Semantic Loop Idioms from Big Code (Allamanis et al., 2016a).

189

Appendix B

GitHub Pull Request Discussions

This appendix contains the discussions that we had during the submission of candi-

date variable renamings, as discussed in Subsection 4.4.2. These are included here for

achieving purposes.

191

+64 −64

Renaming variables for codebase consistency #834
stefanbirkner merged 3 commits into from on 26 Feb 2014junit-team:master mallamanis:master

10 3 20

mallamanis commented on 25 Feb 2014

I've been working on a research machine learning-based tool (link: http://groups.inf.ed.ac.uk/naturalize/)
tool that analyzes source code identifiers and makes suggestions for renaming them. The goal is to reduce
unnecessary diversity in variable naming and improve code readability. This pull request is only a small
sample of the suggestions made for JUnit.

No functional changes were made in any of the commits.

Renamed "result" (18.69%) to "suite" (81.31%). The naturalize tool

de…

d70ca7f

kcooney and 2 others commented on an outdated diff on 25 Feb 2014

View full outdated diffsrc/main/java/junit/framework/TestResult.java

@@ -144,8 +144,8 @@ public void runProtected(final Test test, Protectable p) {

 addFailure(test, e);

 } catch (ThreadDeath e) { // don't catch ThreadDeath by accident

 throw e;

- } catch (Throwable e) {

- addError(test, e);

+ } catch (Throwable t) {

kcooney on 25 Feb 2014

IMHO, for things like variable naming, local consistency is arguably more important than global
consistency, so naming this e is best. If we make a global change, I would prefer to rename
variables of type Throwable to e

mallamanis on 25 Feb 2014

You are probably right. Indeed the tool seems confused about the convention used. It had
suggested multiple changes of the form Throwable t -> Throwable e , but I thought that this
was a false positive (e.g. in org.junit.rules.TestWatcher and
org.junit.tests.experimental.rules.TestWatcherTest test).

I understand that making a global change would be daunting and possibly controversial, would
like me to submit such a pull request?

stefanbirkner on 25 Feb 2014

Such a pull request would be nice.

stefanbirkner commented on 25 Feb 2014

Your first commit (renaming "result" to "suite") is nice and I would like to merge it. But renaming "oldOut" is
not good, because it is a more meaningful name than "oldPrintStream". Renaming "e" to "t" is no
improvement, because we should consistently use e.

Could you please create a pull request with the first commit only.

mallamanis commented on 25 Feb 2014

@stefanbirkner thanks for the comment. It seems that you are right about the "e" to "t" renaming. Sorry for
not noticing that before.

Concerning the oldPrintStream , I too like oldOut more. The tools suggested this renaming because it
was used in a similar context in org.junit.tests.running.core.MainRunner (lines 276 and 288). Do you
think that renaming that variable (oldPrintStream in org.junit.tests.running.core.MainRunner) would

Projects

None yet

Labels

Milestone

4.12

Assignees

No one assigned

3 participants

 Allow edits from maintainers.

None yet

Notifications

You’re receiving notifications because
you were mentioned.

 Merged

 Conversation Commits Files changed

mallamanis commented on 25 Feb 2014

@stefanbirkner thanks for the comment. It seems that you are right about the "e" to "t" renaming. Sorry for
not noticing that before.

Concerning the oldPrintStream , I too like oldOut more. The tools suggested this renaming because it
was used in a similar context in org.junit.tests.running.core.MainRunner (lines 276 and 288). Do you
think that renaming that variable (oldPrintStream in org.junit.tests.running.core.MainRunner) would
make any sense? Obviously, we can always just drop the oldPrintStream change.

stefanbirkner commented on 25 Feb 2014

Renaming the variable in org.junit.tests.running.core.MainRunner makes sense.

mallamanis added a commit to mallamanis/junit that referenced this pull request on 25 Feb 2014

Renamed oldPrintStream to oldOut as discussed in #834 904b18a

mallamanis added a commit to mallamanis/junit that referenced this pull request on 25 Feb 2014

Renamed all Throwables "t" to "e" as discussed in #834 8ca99c9

mallamanis commented on 25 Feb 2014

I've reverted the changes and made new renamings as we discussed. What do you think?

stefanbirkner commented on 26 Feb 2014

LGTM. @mallamanis do you have experience with Git? It would be nice if you rebase your commits to
three commits (Throwable, System.out, suite).

mallamanis added some commits on 25 Feb 2014

Renamed "oldPrintStream" to "oldOut" to make the naming slightly 2745d01

b064a27

mallamanis commented on 26 Feb 2014

@stefanbirkner I think I've done that now. Let me know, if I need to make any other changes.

stefanbirkner merged commit 8a63df4 into on 26 Feb 2014junit-team:master

stefanbirkner added this to the 4.12 milestone on 26 Feb 2014

stefanbirkner commented on 26 Feb 2014

Everything is fine now. Thank you.

Renamed all Throwables "t" to "e" for naming consistency.

+42 −42

Variable renamings to reduce unnecessary variable
naming diversity #5075

mallamanis wants to merge 3 commits into from elastic:master mallamanis:renamingSuggestions

1 3 6

mallamanis commented on 10 Feb 2014

I've been working on a research machine learning-based tool (link: http://groups.inf.ed.ac.uk/naturalize/)
tool that analyzes source code identifiers and makes suggestions for renaming them. The goal is to reduce
unnecessary diversity in variable naming and improve code readability. This pull request is only a small
sample of the suggestions made for elasticsearch.

No functional changes were made in any of the commits

mallamanis added some commits on 10 Feb 2014

Renamed the ImmutableBlobContainer container to blobContainer. af0f713

Renamed XContentParser.Token named "t" to "token". 7d092c2

Renamed ClusterBlocks variable named "block" to "blocks". b847d2e

javanna added enhancement v2.0.0 v1.2.0 labels on 7 Apr 2014

elastic memberjavanna commented on 7 Apr 2014

Merged, thanks!

javanna closed this on 7 Apr 2014

clintongormley added the :Internal label on 7 Jun 2015

Projects

None yet

Labels

Milestone

No milestone

Assignees

javanna

3 participants

 Allow edits from maintainers.

:Internal

enhancement

v1.2.0

v2.0.0-beta1

Notifications

You’re receiving notifications because
you were assigned.

 Closed

 Conversation Commits Files changed

javanna self-assigned this on 7 Apr 2014

+23 −23

Renaming variables for codebase consistency #454
cketti merged 5 commits into from on 1 Mar 2014k9mail:master mallamanis:master

3 5 5

mallamanis commented on 26 Feb 2014

Ι've been working on a research machine learning-based tool (link: http://groups.inf.ed.ac.uk/naturalize/)
tool that analyzes source code identifiers and makes suggestions for renaming them. The goal is to reduce
unnecessary diversity in variable naming and improve code readability. This pull request is only a small
sample of the suggestions made for k-9.

No functional changes were made in any of the commits.

mallamanis added some commits on 26 Feb 2014

Renamed "usee" to "uee". be2b3b1

Renamed "s" to "sizeParam". 2df2058

Renamed "local_folder" to "localFolder". 6075add

Renamed "tokens" to "tokenizer". cfeed40

Renamed "identitiy" to "identity". c17d032

K-9 Mail member

Thanks! The concept is very cool. s to sizeParam in the sample seems a little odd..
…

mallamanis commented on 26 Feb 2014

Thanks @obra ! Naturalize suggested s to sizeParam because a String object was named like that
when used in a similar context in src/com/fsck/k9/view/AttachmentView.java (lines 142, 143, 145).

I could rename both instances to s or just drop that renaming. What do you think?

K-9 Mail membercketti commented on 28 Feb 2014

"sizeParam" looks good enough to me.

@mallamanis: Thanks a lot! I'll try to get this merged during the weekend.

cketti merged commit bf9264d into on 1 Mar 2014k9mail:master

Projects

None yet

Labels

Milestone

No milestone

Assignees

No one assigned

3 participants

 Allow edits from maintainers.

None yet

Notifications

You’re receiving notifications because
you were mentioned.

 Merged

 Conversation Commits Files changed

obra commented on 26 Feb 2014

+14 −14

Renaming variables for codebase consistency #1400
badlogic merged 5 commits into from on 26 Feb 2014libgdx:master mallamanis:master

2 5 5

mallamanis commented on 26 Feb 2014

Ι've been working on a research machine learning-based tool (link: http://groups.inf.ed.ac.uk/naturalize/)
tool that analyzes source code identifiers and makes suggestions for renaming them. The goal is to reduce
unnecessary diversity in variable naming and improve code readability. This pull request is only a small
sample of the suggestions made for libgdx.

No functional changes were made in any of the commits.

mallamanis added some commits on 26 Feb 2014

Renamed "i" (15.46%) to "index" (31.34%). The naturalize tool

detected

35301ce

Renamed "value" (18.55%) to "scalar" (51.13%). The naturalize tool b522d52

Minor changes in JavaDoc 46d4393

Renamed "vector" (7.51%) to "point" (64.23%). The naturalize tool 5d6dffc

Renamed "scale" (24.02%) to "scaleXY" (75.98%). The naturalize tool 33726e2

sinistersnare commented on 26 Feb 2014

Very interesting project, and thanks for the contribution!

I've always wanted to spend a good amount of time using findbugs with libgdx, there's a ton of
recommendations it provides.

libgdx memberbadlogic commented on 26 Feb 2014

Wow, that's a pretty cool tool!

badlogic closed this on 26 Feb 2014

badlogic reopened this on 26 Feb 2014

badlogic merged commit 3d5040f into on 26 Feb 2014libgdx:master

Projects

None yet

Labels

Milestone

No milestone

Assignees

No one assigned

3 participants

 Allow edits from maintainers.

None yet

Notifications

You’re receiving notifications because
you authored the thread.

 Merged

 Conversation Commits Files changed

Bibliography

Abebe, Surafel Lemma, Haiduc, Sonia, Tonella, Paolo, and Marcus, Andrian. The
effect of lexicon bad smells on concept location in source code. In Proceedings of
the International Working Conference on Source Code Analysis and Manipulation
(SCAM), 2011.

Abebe, Surafel Lemma, Arnaoudova, Venera, Tonella, Paolo, Antoniol, Giuliano, and
Gueheneuc, Y. Can lexicon bad smells improve fault prediction? In Proceedings of
the Working Conference on Reverse Engineering (WCRE), 2012.

Acharya, Mithun, Xie, Tao, Pei, Jian, and Xu, Jun. Mining API patterns as partial orders
from source code: from usage scenarios to specifications. In Proceedings of the Joint
Meeting of the European Software Engineering Conference and the Symposium on
the Foundations of Software Engineering (ESEC/FSE), 2007.

Adams, Edward N. Optimizing preventive service of software products. IBM Journal
of Research and Development, 1984.

Aggarwal, Charu C and Han, Jiawei. Frequent pattern mining. Springer, 2014.

Aggarwal, Karan, Salameh, Mohammad, and Hindle, Abram. Using machine translation
for converting Python 2 to Python 3 code. Technical report, 2015.

AirBnb. Airbnb JavaScript Style Guide. https://github.com/airbnb/
javascript, 2015. Visited Sep 2016.

Alemi, Alex A, Chollet, Francois, Irving, Geoffrey, Szegedy, Christian, and Urban, Josef.
DeepMath–Deep sequence models for premise selection. In Proceedings of the
Annual Conference on Neural Information Processing Systems (NIPS), 2016.

Allamanis, Miltiadis and Sutton, Charles. Why, when, and what: analyzing stack over-
flow questions by topic, type, and code. In Proceedings of the Working Conference
on Mining Software Repositories (MSR), 2013a.

Allamanis, Miltiadis and Sutton, Charles. Mining source code repositories at massive
scale using language modeling. In Proceedings of the Working Conference on Mining
Software Repositories (MSR), 2013b.

Allamanis, Miltiadis and Sutton, Charles. Mining idioms from source code. In Pro-
ceedings of the International Symposium on Foundations of Software Engineering
(FSE), 2014.

197

https://github.com/airbnb/javascript
https://github.com/airbnb/javascript

198 Bibliography

Allamanis, Miltiadis, Barr, Earl T, Bird, Christian, and Sutton, Charles. Learning natural
coding conventions. In Proceedings of the International Symposium on Foundations
of Software Engineering (FSE), 2014.

Allamanis, Miltiadis, Barr, Earl T, Bird, Christian, and Sutton, Charles. Suggesting
accurate method and class names. In Proceedings of the Joint Meeting of the Euro-
pean Software Engineering Conference and the Symposium on the Foundations of
Software Engineering (ESEC/FSE), 2015a.

Allamanis, Miltiadis, Tarlow, Daniel, Gordon, Andrew, and Wei, Yi. Bimodal modelling
of source code and natural language. In Proceedings of the International Conference
on Machine Learning (ICML), 2015b.

Allamanis, Miltiadis, Barr, Earl T., Bird, Christian, Devanbu, Premkumar, Marron,
Mark, and Sutton, Charles. Mining semantic loop idioms from Big Code. Tech-
nical report, November 2016a. URL https://www.microsoft.com/en-us/
research/publication/mining-semantic-loop-idioms-big-code/.

Allamanis, Miltiadis, Barr, Earl T., Just, René, and Sutton, Charles. Tailored mutants
fit bugs better. 2016b. URL http://arxiv.org/abs/1611.02516.

Allamanis, Miltiadis, Chanthirasegaran, Pankajan, Kohli, Pushmeet, and Sutton, Charles.
Learning continuous semantic representations of symbolic expressions. 2016c. URL
http://arxiv.org/abs/1611.01423.

Allamanis, Miltiadis, Peng, Hao, and Sutton, Charles. A convolutional attention network
for extreme summarization of source code. In Proceedings of the International
Conference on Machine Learning (ICML), 2016d.

Amann, Sven, Proksch, Sebastian, Nadi, Sarah, and Mezini, Mira. A study of Visual
Studio usage in practice. In Proceedings of the International Conference on Software
Analysis, Evolution, and Reengineering (SANER), 2016.

Andereessen, Mark. Why software is eating the world. The Wall Street Journal. Avail-
able online: http://on.wsj.com/o6yIeE, August 2011. URL http://online.wsj.
com/article/SB10001424053111903480904576512250915629460.html.

Anquetil, Nicolas and Lethbridge, Timothy. Assessing the relevance of identifier names
in a legacy software system. In Proceedings of the 1998 Conference of the Centre
for Advanced Studies on Collaborative Research, pp. 4, 1998.

Anquetil, Nicolas and Lethbridge, Timothy C. Recovering software architecture from
the names of source files. Journal of Software Maintenance, 1999.

Arnaoudova, Venera, Di Penta, Massimiliano, Antoniol, Giuliano, and Gueheneuc,
Yann-Gael. A new family of software anti-patterns: Linguistic anti-patterns. In
Proceedings of the European Conference on Software Maintenance and Reengineer-
ing (CSMR), 2013.

https://www.microsoft.com/en-us/research/publication/mining-semantic-loop-idioms-big-code/
https://www.microsoft.com/en-us/research/publication/mining-semantic-loop-idioms-big-code/
http://arxiv.org/abs/1611.02516
http://arxiv.org/abs/1611.01423
http://online.wsj.com/article/SB10001424053111903480904576512250915629460.html
http://online.wsj.com/article/SB10001424053111903480904576512250915629460.html

Bibliography 199

Arnaoudova, Venera, Eshkevari, Laleh Mousavi, Penta, Massimiliano Di, Oliveto,
Rocco, Antoniol, Giuliano, and Guéhéneuc, Yann-Gaël. REPENT: analyzing the
nature of identifier renamings. IEEE Transactions on Software Engineering (TSE),
2014.

Arnaoudova, Venera, Penta, Massimiliano Di, and Antoniol, Giuliano. Linguistic an-
tipatterns: What they are and how developers perceive them. Empirical Software
Engineering (ESEM), 2015.

Arthur, Charles. Apple’s SSL iPhone vulnerability: How did it happen, and what next?
bit.ly/1bJ7aSa, 2014. Visited Jun 2016.

Association, Motor Industry Software Reliability et al. MISRA-C 2012: Guidelines for
the use of the C language in critical systems. ISBN 9781906400118, 2012.

Ayewah, Nathaniel, Pugh, William, Morgenthaler, J David, Penix, John, and Zhou,
YuQian. Evaluating static analysis defect warnings on production software. In
Proceedings of the 7th ACM SIGPLAN-SIGSOFT workshop on Program analysis for
software tools and engineering, 2007.

Ba, Jimmy Lei, Kiros, Jamie Ryan, and Hinton, Geoffrey E. Layer normalization. arXiv
preprint arXiv:1607.06450, 2016.

Bacchelli, Alberto. Mining challenge 2013: StackOverflow. In Proceedings of the
Working Conference on Mining Software Repositories (MSR), 2013.

Bahdanau, Dzmitry, Cho, Kyunghyun, and Bengio, Yoshua. Neural machine transla-
tion by jointly learning to align and translate. In Proceedings of the International
Conference on Learning Representations (ICLR), 2015.

Baker, Brenda S. A program for identifying duplicated code. Computing Science and
Statistics, 1993.

Barr, Earl T., Bird, Christian, and Marron, Mark. Collecting a heap of shapes. In Pro-
ceedings of the International Symposium on Software Testing and Analysis (ISSTA),
2013.

Barr, Earl T, Brun, Yuriy, Devanbu, Premkumar, Harman, Mark, and Sarro, Federica.
The plastic surgery hypothesis. In Proceedings of the International Symposium on
Foundations of Software Engineering (FSE), 2014.

Barthe, Gilles, Crespo, Juan Manuel, Gulwani, Sumit, Kunz, Cesar, and Marron, Mark.
From relational verification to SIMD loop synthesis. In PPoPP, 2013.

Basit, Hamid Abdul and Jarzabek, Stan. A data mining approach for detecting higher-
level clones in software. IEEE Transactions on Software Engineering (TSE), 2009.

Bass, Len. Software architecture in practice. Pearson, 2007.

Beck, Kent. Implementation patterns. Pearson Education, 2007.

http://bit.ly/1bJ7aSa

200 Bibliography

Beck, Kent and Cunningham, Ward. Using pattern languages for object-oriented pro-
grams. 1987.

Bengio, Samy, Vinyals, Oriol, Jaitly, Navdeep, and Shazeer, Noam. Scheduled sampling
for sequence prediction with recurrent neural networks. In Proceedings of the Annual
Conference on Neural Information Processing Systems (NIPS), 2015.

Bengio, Yoshua, Ducharme, Réjean, Vincent, Pascal, and Janvin, Christian. A neural
probabilistic language model. Journal of Machine Learning Research (JMLR), 2003.

Bessey, Al, Block, Ken, Chelf, Ben, Chou, Andy, Fulton, Bryan, Hallem, Seth, Henri-
Gros, Charles, Kamsky, Asya, McPeak, Scott, and Engler, Dawson. A few billion
lines of code later: using static analysis to find bugs in the real world. Communica-
tions of the ACM, 2010.

Bhatia, Sahil and Singh, Rishabh. Automated correction for syntax errors in program-
ming assignments using recurrent neural networks. arXiv preprint arXiv:1603.06129,
2016.

Bhoopchand, Avishkar, Rocktäschel, Tim, Barr, Earl T., and Riedel, Sebastian. Learning
Python code suggestion with a sparse pointer network. https://openreview.
net/pdf?id=r1kQkVFgl, 2016.

Bichsel, Benjamin, Raychev, Veselin, Tsankov, Petar, and Vechev, Martin. Statistical
deobfuscation of android applications. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, 2016.

Bielik, Pavol, Raychev, Veselin, and Vechev, Martin. Programming with “big code”:
Lessons, techniques and applications. In LIPIcs-Leibniz International Proceedings
in Informatics, 2015.

Bielik, Pavol, Raychev, Veselin, and Vechev, Martin. PHOG: Probabilistic model for
code. In Proceedings of the International Conference on Machine Learning (ICML),
2016.

Biggerstaff, Ted J, Mitbander, Bharat G, and Webster, Dallas. The concept assignment
problem in program understanding. In Proceedings of the International Conference
on Software Engineering (ICSE), 1993.

Binkley, D., Davis, M., Lawrie, D., and Morrell, C. To CamelCase or Under_score. In
Proceedings of the International Conference on Program Comprehension (ICPC),
2009.

Binkley, Dave, Hearn, Matthew, and Lawrie, Dawn. Improving identifier informative-
ness using part of speech information. In Proceedings of the Working Conference on
Mining Software Repositories (MSR), 2011.

Bod, Rens, Scha, Remko, and Sima’an, Khalil. Data-oriented parsing. Center for
the Study of Language and Information — Studies in Computational Linguistics.
University of Chicago Press.

https://openreview.net/pdf?id=r1kQkVFgl
https://openreview.net/pdf?id=r1kQkVFgl

Bibliography 201

Boogerd, Cathal and Moonen, Leon. Assessing the value of coding standards: An empir-
ical study. In Proceedings of the International Conference on Software Maintenance
(ICSM), 2008.

Bourque, Pierre, Fairley, Richard E, et al. Guide to the software engineering body of
knowledge: Version 3.0. IEEE Computer Society Press, 2014.

Brants, Thorsten, Popat, Ashok C, Xu, Peng, Och, Franz J, and Dean, Jeffrey. Large lan-
guage models in machine translation. In Proceedings of the Conference on Empirical
Methods for Natural Language Processing (EMNLP). Citeseer, 2007.

Brooks, Frederick P. The Mythical Man-Month. Addison-Wesley Reading, 1975.

Broy, Manfred, Deißenböck, Florian, and Pizka, Markus. A holistic approach to soft-
ware quality at work. In Proc. 3rd World Congress for Software Quality (3WCSQ),
2005.

Bruch, Marcel, Monperrus, Martin, and Mezini, Mira. Learning from examples to
improve code completion systems. In Proceedings of the Joint Meeting of the Euro-
pean Software Engineering Conference and the Symposium on the Foundations of
Software Engineering (ESEC/FSE), 2009.

Buschmann, Frank, Henney, Kevin, and Schmidt, Douglas C. Pattern-oriented software
architecture, on patterns and pattern languages. John Wiley & Sons, 2007.

Buse, Raymond PL and Weimer, Westley. Synthesizing API usage examples. In
Proceedings of the International Conference on Software Engineering (ICSE), 2012.

Buse, Raymond PL and Weimer, Westley R. Learning a metric for code readability.
IEEE Transactions on Software Engineering (TSE), 2010.

Butler, S., Wermelinger, M., Yu, Yijun, and Sharp, H. Exploring the influence of iden-
tifier names on code quality: An empirical study. In Proceedings of the European
Conference on Software Maintenance and Reengineering (CSMR), 2010.

Butler, Simon, Wermelinger, Michel, Yu, Yijun, and Sharp, Helen. Relating identifier
naming flaws and code quality: An empirical study. In Proceedings of the Working
Conference on Reverse Engineering (WCRE), 2009.

Butler, Simon, Wermelinger, Michel, Yu, Yijun, and Sharp, Helen. Mining Java class
naming conventions. In Proceedings of the International Conference on Software
Maintenance (ICSM), 2011.

Campbell, Joshua Charles, Hindle, Abram, and Amaral, José Nelson. Syntax errors just
aren’t natural: improving error reporting with language models. In Proceedings of
the Working Conference on Mining Software Repositories (MSR), 2014.

Caprile, B. and Tonella, P. Restructuring program identifier names. In Proceedings of
the International Conference on Software Maintenance (ICSM), 2000.

202 Bibliography

Cerulo, Luigi, Di Penta, Massimiliano, Bacchelli, Alberto, Ceccarelli, Michele, and
Canfora, Gerardo. Irish: A hidden Markov model to detect coded information islands
in free text. Science of Computer Programming, 2015.

Chandola, Varun, Banerjee, Arindam, and Kumar, Vipin. Anomaly detection: A survey.
ACM Computing Surveys (CSUR), 2009.

Chen, Stanley F and Goodman, Joshua. An empirical study of smoothing techniques
for language modeling. In Proceedings of the Annual Meeting of the Association for
Computational Linguistics (ACL), 1996.

Cherem, Sigmund and Rugina, Radu. A practical escape and effect analysis for building
lightweight method summaries. In Proceedings of the 16th International Conference
on Compiler Construction, 2007.

Cho, Kyunghyun, van Merriënboer, Bart, Bahdanau, Dzmitry, and Bengio, Yoshua. On
the properties of neural machine translation: Encoder–decoder approaches. Syntax,
Semantics and Structure in Statistical Translation, 2014.

Chopra, Sumit, Hadsell, Raia, and LeCun, Yann. Learning a similarity metric discrimi-
natively, with application to face verification. In CVPR, 2005.

Chuan, Shi. JavaScript Patterns Collection. http://shichuan.github.io/
javascript-patterns/, 2014. Visited Sep 2016.

Cohn, Trevor, Blunsom, Phil, and Goldwater, Sharon. Inducing tree-substitution gram-
mars. Journal of Machine Learning Research (JMLR), 2010.

Collobert, Ronan and Weston, Jason. A unified architecture for natural language pro-
cessing: deep neural networks with multitask learning. In Proceedings of the Inter-
national Conference on Machine Learning (ICML), 2008.

Corbi, Thomas A. Program understanding: Challenge for the 1990s. IBM Systems
Journal, 1989.

Corley, Christopher S, Damevski, Kostadin, and Kraft, Nicholas A. Exploring the use of
deep learning for feature location. In Software Maintenance and Evolution (ICSME),
2015 IEEE International Conference on, 2015.

Cowan, Nelson. The magical number 4 in short-term memory: A reconsideration of
mental storage capacity. Behavioral and Brain Sciences, 2001.

Dam, Hoa Khanh, Tran, Truyen, and Pham, Trang. A deep language model for software
code. arXiv preprint arXiv:1608.02715, 2016.

De Lucia, Andrea, Di Penta, Massimiliano, Oliveto, Rocco, Panichella, Annibale, and
Panichella, Sebastiano. Using IR methods for labeling source code artifacts: Is it
worthwhile? In Proceedings of the International Conference on Program Compre-
hension (ICPC), 2012.

http://shichuan.github.io/javascript-patterns/
http://shichuan.github.io/javascript-patterns/

Bibliography 203

Deissenboeck, Florian and Pizka, Markus. Deißenböck, and consistent naming. Soft-
ware Quality Journal, 2006.

Devanbu, Premkumar. New initiative: the naturalness of software. In Proceedings of
the International Conference on Software Engineering (ICSE), 2015.

Dong, Jing, Zhao, Yajing, and Peng, Tu. A review of design pattern mining techniques.
International Journal of Software Engineering and Knowledge Engineering, 2009.

Dyer, Chris, Ballesteros, Miguel, Ling, Wang, Matthews, Austin, and Smith, Noah A.
Transition-based dependency parsing with stack long short-term memory. In Pro-
ceedings of the Annual Meeting of the Association for Computational Linguistics
(ACL), 2015.

Eclipse-Contributors. Eclipse JDT. eclipse.org/jdt, 2014. Visited Sep 2016.

Eddy, Brian P, Robinson, Jeffrey A, Kraft, Nicholas A, and Carver, Jeffrey C. Evaluating
source code summarization techniques: Replication and expansion. In Proceedings
of the International Conference on Program Comprehension (ICPC), 2013.

Eshkevari, Laleh M, Arnaoudova, Venera, Di Penta, Massimiliano, Oliveto, Rocco,
Guéhéneuc, Yann-Gaël, and Antoniol, Giuliano. An exploratory study of identi-
fier renamings. In Proceedings of the Working Conference on Mining Software
Repositories (MSR), 2011.

Fast, Ethan, Steffee, Daniel, Wang, Lucy, Brandt, Joel R, and Bernstein, Michael S.
Emergent, crowd-scale programming practice in the IDE. In Proceedings of the
Annual ACM Conference on Human Factors in Computing Systems, 2014.

Fowkes, Jaroslav and Sutton, Charles. Parameter-free probabilistic API mining at github
scale. In Proceedings of the International Symposium on Foundations of Software
Engineering (FSE), 2015.

Fowkes, Jaroslav, Ranca, Razvan, Allamanis, Miltiadis, Lapata, Mirella, and Sut-
ton, Charles. Autofolding for source code summarization. arXiv preprint
arXiv:1403.4503, 2014.

Fowkes, Jaroslav, Chanthirasegaran, Pankajan, Ranca, Razvan, Allamanis, Miltiadis,
Lapata, Mirella, and Sutton, Charles. TASSAL: autofolding for source code summa-
rization. In Proceedings of the International Conference on Software Engineering
(ICSE), 2016.

Fowler, Martin. Refactoring: improving the design of existing code. 2009.

Franks, Christine, Tu, Zhaopeng, Devanbu, Premkumar, and Hellendoorn, Vincent.
Cacheca: A cache language model based code suggestion tool. In Proceedings
of the International Conference on Software Engineering (ICSE), 2015.

Gabel, Mark and Su, Zhendong. A study of the uniqueness of source code. In Proceed-
ings of the International Symposium on Foundations of Software Engineering (FSE),
2010.

http://www.eclipse.org/jdt/

204 Bibliography

Gabel, Mark Gregory. Inferring Programmer Intent and Related Errors from Software.
PhD thesis, University of California, 2011.

Gallardo-Valencia, Rosalva E and Elliott Sim, Susan. Internet-scale code search. In
Proceedings of the 2009 ICSE Workshop on Search-Driven Development-Users, In-
frastructure, Tools and Evaluation, 2009.

Gamma, Erich, Helm, Richard, Johnson, Ralph, and Vlissides, John. Design Patterns:
Elements of Reusable Object Oriented Software. 1995.

Gelman, Andrew, Carlin, John, Stern, Hal, Dunson, David, Vehtari, Aki, and Rubin,
Donald. Bayesian data analysis. CRC Press, 2013.

Gershman, Samuel J and Blei, David M. A tutorial on Bayesian nonparametric models.
Journal of Mathematical Psychology, 2012.

Glassman, Elena L, Scott, Jeremy, Singh, Rishabh, Guo, Philip J, and Miller, Robert C.
Overcode: Visualizing variation in student solutions to programming problems at
scale. ACM Transactions on Computer-Human Interaction (TOCHI), 2015.

Google. Google C++ style guide. https://google.github.io/styleguide/
cppguide.html, 2010. Visited Sep 2016.

Gousios, Georgios and Spinellis, Diomidis. GHTorrent: GitHub’s data from a firehose.
In Proceedings of the Working Conference on Mining Software Repositories (MSR),
2012.

Graves, Alex, Wayne, Greg, and Danihelka, Ivo. Neural Turing machines. arXiv
preprint arXiv:1410.5401, 2014.

Grefenstette, Edward, Hermann, Karl Moritz, Suleyman, Mustafa, and Blunsom, Phil.
Learning to transduce with unbounded memory. In Proceedings of the Annual Con-
ference on Neural Information Processing Systems (NIPS), 2015.

Gruau, Frédéric, Ratajszczak, Jean-Yves, and Wiber, Gilles. A neural compiler. Theo-
retical Computer Science, 1995.

Gruska, Natalie, Wasylkowski, Andrzej, and Zeller, Andreas. Learning from 6,000
projects: lightweight cross-project anomaly detection. In Proceedings of the Interna-
tional Symposium on Software Testing and Analysis (ISSTA), 2010.

Gu, Xiaodong, Zhang, Hongyu, Zhang, Dongmei, and Kim, Sunghun. Deep API learn-
ing. In Proceedings of the International Symposium on Foundations of Software
Engineering (FSE), 2016.

Gulwani, Sumit and Marron, Mark. NLyze: Interactive programming by natural lan-
guage for spreadsheet data analysis and manipulation. In Proceedings of the 2014
ACM SIGMOD International Conference on Management of Data, 2014.

Gupta, Rahul, Pal, Soham, Kanade, Aditya, and Shevade, Shirish. DeepFix: Fixing
common C language errors by deep learning. In Proceedings of the Conference of
Artificial Intelligence (AAAI), 2017.

https://google.github.io/styleguide/cppguide.html
https://google.github.io/styleguide/cppguide.html

Bibliography 205

Gupta, Samir, Malik, Sana, Pollock, Lori, and Vijay-Shanker, K. Part-of-speech tag-
ging of program identifiers for improved text-based software engineering tools. In
Proceedings of the International Conference on Program Comprehension (ICPC),
2013.

Gutmann, Michael U and Hyvärinen, Aapo. Noise-contrastive estimation of unnor-
malized statistical models, with applications to natural image statistics. Journal of
Machine Learning Research (JMLR), 2012.

Gvero, Tihomir and Kuncak, Viktor. Synthesizing java expressions from free-form
queries. In Proceedings of the Conference on Object-Oriented Programming, Sys-
tems, Languages & Applications (OOPSLA), 2015.

Gyori, Alex, Franklin, Lyle, Dig, Danny, and Lahoda, Jan. Crossing the gap from
imperative to functional programming through refactoring. In Proceedings of the
International Symposium on Foundations of Software Engineering (FSE), 2013.

Haiduc, Sonia, Aponte, Jairo, and Marcus, Andrian. Supporting program comprehen-
sion with source code summarization. In Proceedings of the International Confer-
ence on Software Engineering (ICSE), 2010a.

Haiduc, Sonia, Aponte, Jairo, Moreno, Laura, and Marcus, Andrian. On the use of auto-
mated text summarization techniques for summarizing source code. In Proceedings
of the Working Conference on Reverse Engineering (WCRE), 2010b.

Hatton, Les. Safer language subsets: an overview and a case history, MISRA C. Infor-
mation and Software Technology, 2004.

He, Kaiming, Zhang, Xiangyu, Ren, Shaoqing, and Sun, Jian. Delving deep into recti-
fiers: Surpassing human-level performance on imagenet classification. In Proceed-
ings of the IEEE International Conference on Computer Vision, 2015.

Hellendoorn, Vincent J, Devanbu, Premkumar T, and Bacchelli, Alberto. Will they like
this?: Evaluating code contributions with language models. In Proceedings of the
Working Conference on Mining Software Repositories (MSR), 2015.

Hendrix, Dean, Cross, JH, and Maghsoodloo, Saeed. The effectiveness of control struc-
ture diagrams in source code comprehension activities. IEEE Transactions on Soft-
ware Engineering (TSE), 2002.

Hettinger, Raymond. Transforming code into beautiful, idiomatic Python. https:
//www.youtube.com/watch?v=OSGv2VnC0go, 2013. Visited Sep 2016.

Hindle, Abram, Godfrey, Michael W., and Holt, Richard C. Reading beside the lines:
Using indentation to rank revisions by complexity. Science of Computer Program-
ming, 2009.

Hindle, Abram, Barr, Earl T, Su, Zhendong, Gabel, Mark, and Devanbu, Premkumar.
On the naturalness of software. In Proceedings of the International Conference on
Software Engineering (ICSE), 2012.

https://www.youtube.com/watch?v=OSGv2VnC0go
https://www.youtube.com/watch?v=OSGv2VnC0go

206 Bibliography

Hinton, Geoffrey, Srivastava, Nitsh, and Swersky, Kevin. Neural networks for machine
learning. Online Course at coursera. org, Lecture, 6, 2012.

Hinton, Geoffrey E. Distributed representations. 1984.

Hjort, Nils Lid. Bayesian Nonparametrics. Cambridge University Press, 2010.

Hohpe, Gregor and Woolf, Bobby. Enterprise integration patterns: Designing, building,
and deploying messaging solutions. Addison-Wesley Professional, 2004.

Holmes, Reid, Walker, Robert J, and Murphy, Gail C. Strathcona example recommen-
dation tool. In ACM SIGSOFT Software Engineering Notes, 2005.

Holmes, Reid, Walker, Robert J, and Murphy, Gail C. Approximate structural context
matching: An approach to recommend relevant examples. IEEE Transactions on
Software Engineering (TSE), 2006.

Høst, Einar W. and Østvold, Bjarte M. Debugging method names. In In European
Conference on Object-Oriented Programming (ECOOP), 2009.

Hsiao, Chun-Hung, Cafarella, Michael, and Narayanasamy, Satish. Using web corpus
statistics for program analysis. In ACM SIGPLAN Notices, 2014.

Iyer, Srinivasan, Konstas, Ioannis, Cheung, Alvin, and Zettlemoyer, Luke. Summarizing
source code using a neural attention model. In Proceedings of the Annual Meeting
of the Association for Computational Linguistics (ACL), 2016.

Java Idioms Editors. Java idioms. http://c2.com/ppr/wiki/JavaIdioms/
JavaIdioms.html, 2014. Visited Sep 2016.

JetBrains. High-speed coding with custom live tem-
plates. https://blog.jetbrains.com/webide/2012/10/
high-speed-coding-with-custom-live-templates/, 2014. Visited
Sep 2016.

JetBrains. Resharper. http://www.jetbrains.com/resharper/, 2015. URL
http://www.jetbrains.com/resharper/.

Jiang, Lingxiao, Misherghi, Ghassan, Su, Zhendong, and Glondu, Stephane. Deckard:
Scalable and accurate tree-based detection of code clones. In Proceedings of the
International Conference on Software Engineering (ICSE), 2007.

Jiménez, Aída, Berzal, Fernando, and Cubero, Juan-Carlos. Frequent tree pattern min-
ing: A survey. Intelligent Data Analysis, 2010.

Joshi, Aravind K and Schabes, Yves. Tree-adjoining grammars. In Handbook of Formal
Languages. Springer, 1997.

Joulin, Armand and Mikolov, Tomas. Inferring algorithmic patterns with stack-
augmented recurrent nets. In Proceedings of the Annual Conference on Neural
Information Processing Systems (NIPS), 2015.

http://c2.com/ppr/wiki/JavaIdioms/JavaIdioms.html
http://c2.com/ppr/wiki/JavaIdioms/JavaIdioms.html
https://blog.jetbrains.com/webide/2012/10/high-speed-coding-with-custom-live-templates/
https://blog.jetbrains.com/webide/2012/10/high-speed-coding-with-custom-live-templates/
http://www.jetbrains.com/resharper/
http://www.jetbrains.com/resharper/

Bibliography 207

Jurafsky, Dan. Speech & Language Processing. Pearson Education, 2000.

Kaiser, Łukasz and Sutskever, Ilya. Neural GPUs learn algorithms. In Proceedings of
the International Conference on Learning Representations (ICLR), 2016.

Kalchbrenner, Nal, Grefenstette, Edward, and Blunsom, Phil. A convolutional neural
network for modelling sentences. In Proceedings of the Annual Meeting of the
Association for Computational Linguistics (ACL), 2014.

Karaivanov, Svetoslav, Raychev, Veselin, and Vechev, Martin. Phrase-based statistical
translation of programming languages. In International Symposium on New Ideas,
New Paradigms, and Reflections on Programming & Software, 2014.

Karpathy, Andrej, Johnson, Justin, and Li, Fei-Fei. Visualizing and understanding re-
current networks. arXiv preprint arXiv:1506.02078, 2015.

Kiros, Ryan, Zemel, R, and Salakhutdinov, Ruslan. Multimodal neural language models.
In Proceedings of the Annual Conference on Neural Information Processing Systems
(NIPS), 2013.

Kontogiannis, Kostas A, DeMori, Renator, Merlo, Ettore, Galler, M, and Bernstein, Mor-
ris. Pattern matching for clone and concept detection. In Proceedings of the Working
Conference on Reverse Engineering (WCRE). Springer, 1996.

Kremenek, Ted, Ng, Andrew Y, and Engler, Dawson R. A factor graph model for soft-
ware bug finding. In Proceedings of the International Joint Conference on Artifical
intelligence (IJCAI), 2007.

Krizhevsky, Alex, Sutskever, Ilya, and Hinton, Geoffrey E. Imagenet classification with
deep convolutional neural networks. In Proceedings of the Annual Conference on
Neural Information Processing Systems (NIPS), 2012.

Kuhn, Roland and De Mori, Renato. A cache-based natural language model for speech
recognition. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 1990.

Kurach, Karol, Andrychowicz, Marcin, and Sutskever, Ilya. Neural random-access
machines. arXiv preprint arXiv:1511.06392, 2015.

Kushman, Nate and Barzilay, Regina. Using semantic unification to generate regular
expressions from natural language. In Proceedings of Annual Conference of the
North American Chapter of the Association for Computational Linguistics: Human
Language Technologies (NAACL-HLT), 2013.

Kuzborskij, Ilja. Large-scale pattern mining of computer program source code. Master’s
thesis, University of Edinburgh, 2011.

Langley, Adam. Apple’s SSL/TLS bug. bit.ly/MMvx6b, 2014. Visited Jun 2016.

Lau, Tessa. Programming by demonstration: a machine learning approach. PhD thesis,
University of Washington, 2001.

http://bit.ly/MMvx6b

208 Bibliography

Lawrie, Dawn, Feild, Henry, and Binkley, David. Syntactic identifier conciseness and
consistency. In Proceedings of the International Working Conference on Source
Code Analysis and Manipulation (SCAM), 2006a.

Lawrie, Dawn, Morrell, Christopher, Feild, Henry, and Binkley, David. What’s in a
name? A study of identifiers. In Proceedings of the International Conference on
Program Comprehension (ICPC), 2006b.

Lawrie, Dawn, Feild, Henry, and Binkley, David. An empirical study of rules for well-
formed identifiers: Research articles. Journal of Software Maintenance Evolution:
Research and Practice, 2007.

Le, Quoc V and Mikolov, Tomas. Distributed representations of sentences and docu-
ments. In Proceedings of the International Conference on Machine Learning (ICML),
2014.

LeCun, Y., Boser, B., Denker, J. S., Howard, R. E., Habbard, W., Jackel, L. D., and Hen-
derson, D. Proceedings of the annual conference on neural information processing
systems (nips). chapter Handwritten Digit Recognition with a Back-propagation
Network. 1990.

LeCun, Yann, Bottou, Leon, Bengio, Yoshua, and Haffner, Patrick. Gradient-based
learning applied to document recognition. Proceedings of the IEEE, 1998.

Li, Yujia, Tarlow, Daniel, Brockschmidt, Marc, and Zemel, Richard. Gated graph se-
quence neural networks. Proceedings of the International Conference on Learning
Representations (ICLR), 2016.

Liang, Percy, Jordan, Michael I, and Klein, Dan. Learning programs: A hierarchical
Bayesian approach. In Proceedings of the International Conference on Machine
Learning (ICML), 2010a.

Liang, Percy, Jordan, Michael I, and Klein, Dan. Type-based MCMC. In Human
Language Technologies: Annual Conference of the North American Chapter of the
Association for Computational Linguistics (HLT/NAACL), 2010b.

Liblit, Ben, Naik, Mayur, Zheng, Alice X, Aiken, Alex, and Jordan, Michael I. Scalable
statistical bug isolation. In ACM SIGPLAN Notices, 2005.

Liblit, Ben, Begel, Andrew, and Sweetser, Eve. Cognitive perspectives on the role of
naming in computer programs. In Proceedings of the 18th Annual Psychology of
Programming Workshop, 2006.

Ling, Wang, Grefenstette, Edward, Hermann, Karl Moritz, Kocisky, Tomas, Senior, An-
drew, Wang, Fumin, and Blunsom, Phil. Latent predictor networks for code genera-
tion. arXiv preprint arXiv:1603.06744, 2016.

Liu, Han. Towards better program obfuscation: optimization via language models. In
Proceedings of the 38th International Conference on Software Engineering Compan-
ion, 2016.

Bibliography 209

Livshits, Benjamin and Zimmermann, Thomas. Dynamine: finding common error pat-
terns by mining software revision histories. In ACM SIGSOFT Software Engineering
Notes, 2005.

Maas, Andrew L., Hannun, Awni Y., and Ng, Andrew Y. Rectified linear units improve
restricted Boltzmann machines. In ICML Workshop on Deep Learning for Audio,
Speech, and Language Processing, 2013.

Maddison, Chris and Tarlow, Daniel. Structured generative models of natural source
code. In Proceedings of the International Conference on Machine Learning (ICML),
2014.

Mangal, Ravi, Zhang, Xin, Nori, Aditya V, and Naik, Mayur. A user-guided approach
to program analysis. In Proceedings of the International Symposium on Foundations
of Software Engineering (FSE), 2015.

Manning, Christopher D., Raghavan, Prabhakar, and Schütze, Hinrich. Introduction to
Information Retrieval. Cambridge University Press, 2008.

Marguerie, Fabrice, Eichert, Steve, and Wooley, Jim. LINQ in Action. Manning, 2008.

Marron, Mark, Stefanovic, Darko, Kapur, Deepak, and Hermenegildo, Manuel V. Iden-
tification of heap-carried data dependence via explicit store heap models. In Lan-
guages and Compilers for Parallel Computing, 2008.

Martin, Robert C. Clean code: a handbook of agile software craftsmanship. Pearson
Education, 2008.

McCabe, Thomas J. A complexity measure. IEEE Transactions on Software Engineer-
ing (TSE), 1976.

McConnell, Steve. Code Complete. Microsoft Press, 2004.

Mcmillan, Collin, Poshyvanyk, Denys, Grechanik, Mark, Xie, Qing, and Fu, Chen. Port-
folio: Searching for relevant functions and their usages in millions of lines of code.
ACM Transactions on Software Engineering and Methodology (TOSEM), 2013.

Meijer, Erik. The world according to LINQ. Queue, 2011.

Menon, Aditya, Tamuz, Omer, Gulwani, Sumit, Lampson, Butler, and Kalai, Adam. A
machine learning framework for programming by example. In Proceedings of the
International Conference on Machine Learning (ICML), 2013.

Mens, Kim and Lozano, Angela. Source code-based recommendation systems. In
Recommendation Systems in Software Engineering. Springer, 2014.

Microsoft Research. High-speed coding with Custom Live Templates. http://
research.microsoft.com/apps/video/dl.aspx?id=208961, 2014. Visited
Sep 2016.

Mikolov, Tomas, Chen, Kai, Corrado, Greg, and Dean, Jeffrey. Efficient estimation of
word representations in vector space. arXiv preprint arXiv:1301.3781, 2013a.

http://research.microsoft.com/apps/video/dl.aspx?id=208961
http://research.microsoft.com/apps/video/dl.aspx?id=208961

210 Bibliography

Mikolov, Tomas, Yih, Wen-tau, and Zweig, Geoffrey. Linguistic regularities in con-
tinuous space word representations. In Proceedings of Annual Conference of the
North American Chapter of the Association for Computational Linguistics: Human
Language Technologies (NAACL-HLT), 2013b.

Miller, George A. The magical number seven, plus or minus two: some limits on our
capacity for processing information. Psychological Review, 1956.

Mishne, Alon, Shoham, Sharon, and Yahav, Eran. Typestate-based semantic code search
over partial programs. In ACM SIGPLAN Notices, 2012.

Mnih, Andriy and Hinton, Geoffrey. Three new graphical models for statistical language
modelling. In Proceedings of the International Conference on Machine Learning
(ICML), 2007.

Mnih, Andriy and Teh, Yee W. A fast and simple algorithm for training neural proba-
bilistic language models. In Proceedings of the International Conference on Machine
Learning (ICML), 2012.

Mnih, Volodymyr, Heess, Nicolas, Graves, Alex, et al. Recurrent models of visual at-
tention. In Proceedings of the Annual Conference on Neural Information Processing
Systems (NIPS), 2014.

Mou, Lili, Li, Ge, Zhang, Lu, Wang, Tao, and Jin, Zhi. Convolutional neural networks
over tree structures for programming language processing. In Conference on Artifi-
cial Intelligence, 2016.

Movshovitz-Attias, Dana and Cohen, William W. KB-LDA: Jointly learning a knowl-
edge base of hierarchy, relations, and facts. In Proceedings of the 53rd Annual
Meeting of the Association for Computational Linguistics and the 7th International
Joint Conference on Natural Language Processing, 2015.

Movshovitz-Attias, Dana, Cohen, WW, and W. Cohen, William. Natural language mod-
els for predicting programming comments. In Proceedings of the Annual Meeting of
the Association for Computational Linguistics (ACL), 2013.

Murphy, Kevin P. Machine Learning: A Probabilistic Perspective. MIT Press, 2012.

Murphy-Hill, Emerson, Parnin, Chris, and Black, Andrew P. How we refactor, and how
we know it. IEEE Transactions on Software Engineering (TSE), 2012.

Nagappan, Nachiappan and Ball, Thomas. Using software dependencies and churn
metrics to predict field failures: An empirical case study. In Empirical Software
Engineering (ESEM), 2007.

Nair, Vinod and Hinton, Geoffrey E. Rectified linear units improve restricted boltzmann
machines. In Proceedings of the International Conference on Machine Learning
(ICML), 2010.

Nazara, Najam, Hua, Yan, and Jianga, He. Summarizing software artifacts: Classifica-
tions, methods, and applications. Submitted to Knowledge-Based Systems, 2015.

Bibliography 211

Neelakantan, Arvind, Le, Quoc V, and Sutskever, Ilya. Neural programmer: Inducing la-
tent programs with gradient descent. In Proceedings of the International Conference
on Learning Representations (ICLR), 2015.

Neto, João Pedro, Siegelmann, Hava T, and Costa, J Félix. Symbolic processing in
neural networks. Journal of the Brazilian Computer Society, 2003.

Neubig, Graham. Survey of methods to generate natural language from source code.
http://www.languageandcode.org/nlse2015/neubig15nlse-survey.
pdf, 2016.

Nguyen, Anh Tuan and Nguyen, Tien N. Graph-based statistical language model for
code. In Proceedings of the International Conference on Software Engineering
(ICSE), 2015.

Nguyen, Anh Tuan, Nguyen, Tung Thanh, and Nguyen, Tien N. Lexical statistical
machine translation for language migration. In Proceedings of the International
Symposium on Foundations of Software Engineering (FSE), 2013a.

Nguyen, Anh Tuan, Nguyen, Tung Thanh, and Nguyen, Tien N. Divide-and-conquer
approach for multi-phase statistical migration for source code. In Proceedings of the
International Conference on Automated Software Engineering (ASE), 2015.

Nguyen, Anh Tuan, Nguyen, Hoan Anh, and Nguyen, Tien N. A large-scale study on
repetitiveness, containment, and composability of routines in open-source projects.
In Proceedings of the Working Conference on Mining Software Repositories (MSR),
2016a.

Nguyen, Trong Duc, Nguyen, Anh Tuan, and Nguyen, Tien N. Mapping API elements
for code migration with vector representations. In Proceedings of the International
Conference on Software Engineering (ICSE), 2016b.

Nguyen, Tung Thanh, Nguyen, Hoan Anh, Pham, Nam H, Al-Kofahi, Jafar M, and
Nguyen, Tien N. Graph-based mining of multiple object usage patterns. In Proceed-
ings of the Joint Meeting of the European Software Engineering Conference and the
Symposium on the Foundations of Software Engineering (ESEC/FSE), 2009.

Nguyen, Tung Thanh, Nguyen, Anh Tuan, Nguyen, Hoan Anh, and Nguyen, Tien N.
A statistical semantic language model for source code. In Proceedings of the Joint
Meeting of the European Software Engineering Conference and the Symposium on
the Foundations of Software Engineering (ESEC/FSE), 2013b.

Niu, Haoran, Keivanloo, Iman, and Zou, Ying. Learning to rank code examples for
code search engines. Empirical Software Engineering (ESEM), 2016.

Oda, Yusuke, Fudaba, Hiroyuki, Neubig, Graham, Hata, Hideaki, Sakti, Sakriani, Toda,
Tomoki, and Nakamura, Satoshi. Learning to generate pseudo-code from source code
using statistical machine translation. In Proceedings of the International Conference
on Automated Software Engineering (ASE), 2015.

http://www.languageandcode.org/nlse2015/neubig15nlse-survey.pdf
http://www.languageandcode.org/nlse2015/neubig15nlse-survey.pdf

212 Bibliography

Oh, Hakjoo, Yang, Hongseok, and Yi, Kwangkeun. Learning a strategy for adapting
a program analysis via Bayesian optimisation. In Proceedings of the Conference
on Object-Oriented Programming, Systems, Languages & Applications (OOPSLA),
2015.

Ohba, Masaru and Gondow, Katsuhiko. Toward mining concept keywords from iden-
tifiers in large software projects. In ACM SIGSOFT Software Engineering Notes,
2005.

Omar, Cyrus. Structured statistical syntax tree prediction. In Proceedings of the Confer-
ence on Systems, Programming, Languages and Applications: Software for Humanity
(SPLASH), 2013.

Oracle. Code conventions for the Java programming language. http://www.
oracle.com/technetwork/java/codeconvtoc-136057.html, 1999. Visited
June, 2016.

Orbanz, P. and Teh, Y. W. Bayesian nonparametric models. In Encyclopedia of Machine
Learning. Springer, 2010.

Papineni, Kishore, Roukos, Salim, Ward, Todd, and Zhu, Wei-Jing. BLEU: a method for
automatic evaluation of machine translation. In Proceedings of the Annual Meeting
of the Association for Computational Linguistics (ACL), 2002.

Parr, Terence and Vinju, Jurgin. Technical report: Towards a universal code formatter
through machine learning. arXiv preprint arXiv:1606.08866, 2016.

Pham, Hung Viet, Vu, Phong Minh, Nguyen, Tung Thanh, et al. Learning API usages
from bytecode: a statistical approach. In Proceedings of the International Conference
on Software Engineering (ICSE), 2016.

Piech, Chris, Huang, Jonathan, Nguyen, Andy, Phulsuksombati, Mike, Sahami, Mehran,
and Guibas, Leonidas J. Learning program embeddings to propagate feedback on
student code. In Proceedings of the International Conference on Machine Learning
(ICML), 2015.

Post, Matt and Gildea, Daniel. Bayesian learning of a tree substitution grammar. In
Proceedings of the Annual Meeting of the Association for Computational Linguistics
(ACL), 2009.

Proksch, Sebastian, Lerch, Johannes, and Mezini, Mira. Intelligent code completion
with Bayesian networks. ACM Transactions on Software Engineering and Method-
ology (TOSEM), 2015.

Proksch, Sebastian, Amann, Sven, Nadi, Sarah, and Mezini, Mira. Evaluating the eval-
uations of code recommender systems: a reality check. In Proceedings of the Inter-
national Conference on Automated Software Engineering (ASE), 2016.

Ratiu, Daniel and Deißenböck, Florian. From reality to programs and (not quite) back
again. In Proceedings of the International Conference on Program Comprehension
(ICPC), 2007.

http://www.oracle.com/technetwork/java/codeconvtoc-136057.html
http://www.oracle.com/technetwork/java/codeconvtoc-136057.html

Bibliography 213

Ray, Baishakhi, Hellendoorn, Vincent, Godhane, Saheel, Tu, Zhaopeng, Bacchelli, Al-
berto, and Devanbu, Premkumar. On the naturalness of buggy code. In Proceedings
of the International Conference on Software Engineering (ICSE), 2016.

Raychev, Veselin, Vechev, Martin, and Yahav, Eran. Code completion with statistical
language models. In Proceedings of the Symposium on Programming Language
Design and Implementation (PLDI), 2014.

Raychev, Veselin, Vechev, Martin, and Krause, Andreas. Predicting program properties
from “big code”. In Proceedings of the Symposium on Principles of Programming
Languages (POPL), 2015.

Raychev, Veselin, Bielik, Pavol, Vechev, Martin, and Krause, Andreas. Learning pro-
grams from noisy data. In Proceedings of the Symposium on Principles of Program-
ming Languages (POPL), 2016.

Recommenders, Eclipse. Eclipse SnipMatch. http://www.eclipse.org/
recommenders/manual/#snipmatch, 2014. Visited Sep 2016.

Reed, Scott and de Freitas, Nando. Neural programmer-interpreters. In Proceedings of
the International Conference on Learning Representations (ICLR), 2016.

Riedel, Sebastian, Bošnjak, Matko, and Rocktäschel, Tim. Programming with a differ-
entiable Forth interpreter. arXiv preprint arXiv:1605.06640, 2016.

Rigby, Peter C. and Bird, Christian. Convergent software peer review practices. In
Proceedings of the Joint Meeting of the European Software Engineering Conference
and the Symposium on the Foundations of Software Engineering (ESEC/FSE), 2013.

Robillard, Martin, Walker, Robert, and Zimmermann, Thomas. Recommendation sys-
tems for software engineering. Software, IEEE, 2010.

Robillard, Martin P, Maalej, Walid, Walker, Robert J, and Zimmermann, Thomas. Rec-
ommendation systems in software engineering. Springer, 2014.

Rossum, Guido van, Warsaw, Barry, and Coghlan, Nick. PEP 8–Style Guide for Python
Code. http://www.python.org/dev/peps/pep-0008/, 2013. Visited June,
2015.

Roy, Chanchal K, Cordy, James R, and Koschke, Rainer. Comparison and evaluation
of code clone detection techniques and tools: A qualitative approach. Science of
Computer Programming, 2009.

Roy, Chanchal Kumar and Cordy, James R. A survey on software clone detection
research. Technical report, Queen’s University at Kingston, Ontario, 2007.

Rubin, Julia and Chechik, Marsha. A survey of feature location techniques. In Domain
Engineering. Springer, 2013.

Russell, Stuart and Norvig, Peter. Artificial Intelligence: A Modern Approach. Prentice
Hall, 1995.

http://www.eclipse.org/recommenders/manual/#snipmatch
http://www.eclipse.org/recommenders/manual/#snipmatch
http://www.python.org/dev/peps/pep-0008/

214 Bibliography

Sadowski, Caitlin, Stolee, Kathryn T, and Elbaum, Sebastian. How developers search for
code: a case study. In Proceedings of the International Symposium on Foundations
of Software Engineering (FSE), 2015.

Saraiva, Juliana, Bird, Christian, and Zimmermann, Thomas. Products, developers, and
milestones: how should i build my n-gram language model. In Proceedings of the
International Symposium on Foundations of Software Engineering (FSE), 2015.

Sethuraman, Jayaram. A constructive definition of Dirichlet priors. Technical report,
DTIC Document, 1991.

Sharma, Abhishek, Tian, Yuan, and Lo, David. NIRMAL: Automatic identification of
software relevant tweets leveraging language model. In Proceedings of the Inter-
national Conference on Software Analysis, Evolution, and Reengineering (SANER),
2015.

Siegelmann, Hava T. Neural programming language. In Proceedings of the 12th
National Conference on Artificial Intelligence, 1994.

Siegmund, Janet, Kästner, Christian, Apel, Sven, Parnin, Chris, Bethmann, Anja, Le-
ich, Thomas, Saake, Gunter, and Brechmann, André. Understanding understanding
source code with functional magnetic resonance imaging. In Proceedings of the
International Conference on Software Engineering (ICSE), 2014.

Silva, Danilo, Tsantalis, Nikolaos, and Valente, Marco Tulio. Why we refactor? con-
fessions of github contributors. In Proceedings of the International Symposium on
Foundations of Software Engineering (FSE), 2016.

Simonyi, Charles. Hungarian notation. http://msdn.microsoft.com/en-us/
library/aa260976(VS.60).aspx, 1999. Visited June, 2016.

Singh, Rishabh and Gulwani, Sumit. Predicting a correct program in programming by
example. In International Conference on Computer Aided Verification, 2015.

Snoek, Jasper, Larochelle, Hugo, and Adams, Ryan P. Practical bayesian optimization
of machine learning algorithms. In Proceedings of the Annual Conference on Neural
Information Processing Systems (NIPS), 2012.

Socher, Richard, Pennington, Jeffrey, Huang, Eric H, Ng, Andrew Y, and Manning,
Christopher D. Semi-supervised recursive autoencoders for predicting sentiment
distributions. In Proceedings of the Conference on Empirical Methods for Natural
Language Processing (EMNLP), 2011.

Socher, Richard, Huval, Brody, Manning, Christopher D, and Ng, Andrew Y. Semantic
compositionality through recursive matrix-vector spaces. In Proceedings of the Con-
ference on Empirical Methods for Natural Language Processing (EMNLP), 2012.

Socher, Richard, Perelygin, Alex, Wu, Jean Y, Chuang, Jason, Manning, Christopher D,
Ng, Andrew Y, and Potts, Christopher. Recursive deep models for semantic composi-
tionality over a sentiment treebank. In Proceedings of the Conference on Empirical
Methods for Natural Language Processing (EMNLP), 2013.

http://msdn.microsoft.com/en-us/library/aa260976(VS.60).aspx
http://msdn.microsoft.com/en-us/library/aa260976(VS.60).aspx

Bibliography 215

Soloway, Elliot and Ehrlich, Kate. Empirical studies of programming knowledge. IEEE
Transactions on Software Engineering (TSE), 1984.

Spinellis, Diomidis. Code reading: the open source perspective. Addison-Wesley
Professional, 2003.

Sridhara, Giriprasad. Automatic generation of descriptive summary comments for meth-
ods in object-oriented programs. University of Delaware, 2012.

Sridhara, Giriprasad, Hill, Emily, Muppaneni, Divya, Pollock, Lori, and Vijay-Shanker,
K. Towards automatically generating summary comments for Java methods. In
Proceedings of the International Conference on Automated Software Engineering
(ASE), 2010.

Sridhara, Giriprasad, Pollock, Lori, and Vijay-Shanker, K. Automatically detecting and
describing high level actions within methods. In Proceedings of the International
Conference on Software Engineering (ICSE), 2011.

Srivastava, Nitish, Hinton, Geoffrey, Krizhevsky, Alex, Sutskever, Ilya, and Salakhut-
dinov, Ruslan. Dropout: A simple way to prevent neural networks from overfitting.
Journal of Machine Learning Research (JMLR), 2014.

Strunk Jr, William and White, E.B. The Elements of Style. Macmillan, 3rd edition,
1979.

Sălcianu, Alexandru and Rinard, Martin. Purity and side effect analysis for Java pro-
grams. In Proceedings of the 6th International Conference on Verification, Model
Checking, and Abstract Interpretation, VMCAI’05, 2005.

Sutskever, Ilya, Martens, James, Dahl, George, and Hinton, Geoffrey. On the importance
of initialization and momentum in deep learning. In Proceedings of the International
Conference on Machine Learning (ICML), 2013.

Takang, Armstrong A, Grubb, Penny A, and Macredie, Robert D. The effects of com-
ments and identifier names on program comprehensibility: an experimental investi-
gation. Journal of Programming Languages, 1996.

Teh, Y. W. and Jordan, M. I. Hierarchical Bayesian nonparametric models with ap-
plications. In Hjort, N., Holmes, C., Müller, P., and Walker, S. (eds.), Bayesian
Nonparametrics: Principles and Practice. Cambridge University Press, 2010.

Termier, Alexandre, Rousset, Marie-Christine, and Sebag, Michèle. Treefinder: a first
step towards XML data mining. In International Conference on Data Mining (ICDM).
IEEE, 2002.

Thummalapenta, Suresh and Xie, Tao. Parseweb: a programmer assistant for reusing
open source code on the web. In Proceedings of the International Conference on
Automated Software Engineering (ASE), 2007.

216 Bibliography

Tu, Zhaopeng, Su, Zhendong, and Devanbu, Premkumar. On the localness of soft-
ware. In Proceedings of the International Symposium on Foundations of Software
Engineering (FSE), 2014.

Uddin, Gias, Dagenais, Barthélémy, and Robillard, Martin P. Analyzing temporal API
usage patterns. In Proceedings of the International Conference on Automated Soft-
ware Engineering (ASE).

van der Maaten, Laurens and Hinton, Geoffrey. Visualizing data using t-SNE. Journal
of Machine Learning Research (JMLR).

Velez, Martin, Qiu, Dong, Zhou, You, Barr, Earl T, and Su, Zhendong. A study of
“wheat” and “chaff” in source code. arXiv preprint arXiv:1502.01410, 2015.

Vinyals, Oriol, Fortunato, Meire, and Jaitly, Navdeep. Pointer networks. In Proceedings
of the Annual Conference on Neural Information Processing Systems (NIPS), 2015.

Waldron, Rick. Principles of Writing Consistent, Idiomatic JavaScript. https://
github.com/rwaldron/idiomatic.js/, 2014. Visited Sep 2016.

Wang, Jue, Dang, Yingnong, Zhang, Hongyu, Chen, Kai, Xie, Tao, and Zhang, Dong-
mei. Mining succinct and high-coverage API usage patterns from source code. In
Proceedings of the Working Conference on Mining Software Repositories (MSR),
2013.

Wang, Song, Chollak, Devin, Movshovitz-Attias, Dana, and Tan, Lin. Bugram: bug
detection with n-gram language models. In Proceedings of the International Confer-
ence on Automated Software Engineering (ASE), 2016a.

Wang, Song, Liu, Taiyue, and Tan, Lin. Automatically learning semantic features for
defect prediction. In Proceedings of the International Conference on Software Engi-
neering (ICSE), 2016b.

Wang, Xiaoran, Pollock, Lori, and Vijay-Shanker, K. Automatic segmentation of
method code into meaningful blocks to improve readability. In Proceedings of the
Working Conference on Reverse Engineering (WCRE), 2011.

Wang, Xin, Liu, Chang, Shin, Richard, Gonzalez, Joseph E., and Song, Dawn. Neural
code completion. https://openreview.net/pdf?id=rJbPBt9lg, 2016c.

Wasylkowski, Andrzej, Zeller, Andreas, and Lindig, Christian. Detecting object usage
anomalies. In Proceedings of the Joint Meeting of the European Software Engineer-
ing Conference and the Symposium on the Foundations of Software Engineering
(ESEC/FSE), 2007.

White, Martin, Vendome, Christopher, Linares-Vásquez, Mario, and Poshyvanyk,
Denys. Toward deep learning software repositories. In Proceedings of the Working
Conference on Mining Software Repositories (MSR), 2015.

https://github.com/rwaldron/idiomatic.js/
https://github.com/rwaldron/idiomatic.js/
https://openreview.net/pdf?id=rJbPBt9lg

Bibliography 217

White, Martin, Tufano, Michele, Vendome, Christopher, and Poshyvanyk, Denys. Deep
learning code fragments for code clone detection. In Proceedings of the International
Conference on Automated Software Engineering (ASE), 2016.

Wikibooks. More C++ idioms. http://en.wikibooks.org/wiki/More_C%2B%
2B_Idioms, 2013. Visited Sep 2016.

Wikipedia. Coding Conventions. http://en.wikipedia.org/wiki/Coding_

conventions.

Williams, Christopher KI and Rasmussen, Carl Edward. Gaussian Processes for Ma-
chine Learning, 2006.

Xie, Tao and Pei, Jian. MAPO: Mining API usages from open source repositories. In
Proceedings of the Working Conference on Mining Software Repositories (MSR),
2006.

Xu, Haiying, Pickett, Christopher J. F., and Verbrugge, Clark. Dynamic purity analysis
for Java programs. In Proceedings of the 7th ACM SIGPLAN-SIGSOFT Workshop
on Program Analysis for Software Tools and Engineering, PASTE, 2007.

Xu, Kelvin, Ba, Jimmy, Kiros, Ryan, Cho, Kyunghyun, Courville, Aaron C, Salakhut-
dinov, Ruslan, Zemel, Richard S, and Bengio, Yoshua. Show, attend and tell: Neural
image caption generation with visual attention. In Proceedings of the International
Conference on Machine Learning (ICML), 2015.

Yadid, Shir and Yahav, Eran. Extracting code from programming tutorial videos. In Pro-
ceedings of the 2016 ACM International Symposium on New Ideas, New Paradigms,
and Reflections on Programming and Software, 2016.

Yang, Jinlin, Evans, David, Bhardwaj, Deepali, Bhat, Thirumalesh, and Das, Manuvir.
Perracotta: mining temporal API rules from imperfect traces. In Proceedings of the
International Conference on Software Engineering (ICSE), 2006.

Young, H Peyton. The economics of convention. The Journal of Economic Perspectives,
1996.

Zaki, Mohammed J. Efficiently mining frequent trees in a forest. In Conference on
Knowledge Discovery and Data Mining (KDD), 2002.

Zaki, Mohammed Javeed. Efficiently mining frequent trees in a forest: Algorithms and
applications. IEEE Transactions on Knowledge and Data Engineering, 2005.

Zaremba, Wojciech and Sutskever, Ilya. Learning to execute. arXiv preprint
arXiv:1410.4615, 2014.

Zaremba, Wojciech, Kurach, Karol, and Fergus, Rob. Learning to discover efficient
mathematical identities. In Proceedings of the Annual Conference on Neural Infor-
mation Processing Systems (NIPS), 2014.

http://en.wikibooks.org/wiki/More_C%2B%2B_Idioms
http://en.wikibooks.org/wiki/More_C%2B%2B_Idioms
http://en.wikipedia.org/wiki/Coding_conventions
http://en.wikipedia.org/wiki/Coding_conventions

218 Bibliography

Zhang, Cheng, Yang, Juyuan, Zhang, Yi, Fan, Jing, Zhang, Xin, Zhao, Jianjun, and Ou,
Peizhao. Automatic parameter recommendation for practical API usage. In Proceed-
ings of the International Conference on Software Engineering (ICSE), 2012.

Zhang, Hongyu, Jain, Anuj, Khandelwal, Gaurav, Kaushik, Chandrashekhar, Ge, Scott,
and Hu, Wenxiang. Bing developer assistant: improving developer productivity by
recommending sample code. In Proceedings of the International Symposium on
Foundations of Software Engineering (FSE), 2016.

Zheng, Alice X, Jordan, Michael I, Liblit, Ben, Naik, Mayur, and Aiken, Alex. Statistical
debugging: simultaneous identification of multiple bugs. In Proceedings of the
International Conference on Machine Learning (ICML), 2006.

Zhong, Hao, Xie, Tao, Zhang, Lu, Pei, Jian, and Mei, Hong. MAPO: Mining and
recommending API usage patterns. In ECOOP 2009–Object-Oriented Programming.
2009.

	cover sheet
	allamanisDissertation
	Introduction
	Main Contributions
	Thesis Structure
	Declaration of Previous Work

	Background: Probabilistic Models of Source Code
	Structure and Scope
	Source Code Representations and Derivative Artifacts
	Probabilistic Models of Source Code
	Code Generating Probabilistic Models of Source Code
	Representational Models of Source Code
	Pattern Mining Models of Source Code

	Applications
	Recommender Systems
	Inferring Coding Conventions
	Code Defects and Debugging
	Code Migration
	Source Code and Natural Language
	Program Synthesis
	Documentation and Summarization
	Program Analysis

	Conclusions

	Background: Coding Conventions
	Naming Coding Conventions
	Formatting Coding Conventions
	Coding Patterns
	Enforcing Coding Conventions in Practice
	Conclusions

	Learning Variable Naming Conventions
	Motivating Example
	Use Cases and Tools

	The Naturalize Framework
	The Core of Naturalize

	Choices of Scoring Function
	Using the n-gram Language Model
	Log-bilinear Context Models of Code
	Subtoken Context Models of Code
	Source Code Features for Context Models

	Evaluation
	Quantitative Evaluation
	Suggestions Accepted by Projects

	Learned Representations
	Conclusions

	Learning Method Naming Conventions
	A Convolutional Attention Model
	Learning Attention Features
	Simple Convolutional Attention Model
	Copy Convolutional Attention Model
	Predicting Names

	Evaluation
	Quantitative Evaluation
	Qualitative Evaluation
	Comparison with Log-Bilinear Model

	Learned Representations
	Conclusions

	Learning Continuous Semantic Representations of Symbolic Expressions
	Neural Equivalence Networks
	Neural Equivalence Networks
	Training

	Evaluation
	Quantitative Evaluation
	Qualitative Evaluation

	Related Work in Machine Learning
	Conclusions

	Mining Idiomatic Source Code
	Problem Definition
	Mining Idioms
	Probabilistic Grammars
	Learning TSGs

	Mining Syntactic Idioms
	Syntactic Idioms Evaluation
	Top Idioms
	Code Cloning vs. Code Idioms
	Extrinsic Evaluation of Mined Syntactic Idioms
	Syntactic Idioms and Code Libraries

	Mining Semantic Idioms
	Purity Analysis
	Coiling Loops
	Mining Semantic Idioms
	Semantic Idiom Ranking

	Semantic Idioms Evaluation
	Using Semantic Loop Idioms

	Conclusions

	Conclusions
	Future Work

	List of Published Work
	GitHub Pull Request Discussions
	JUnit Pull Request #834
	Elasticsearch Pull Request #5075
	K9 Pull Request #454
	libgdx Pull Request #1400

	Bibliography

