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A Survey of Machine Learning for Big Code and Naturalness
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Research at the intersection of machine learning, programming languages, and software engineering has
recently taken important steps in proposing learnable probabilistic models of source code that exploit code’s
abundance of patterns. In this article, we survey this work. We contrast programming languages against
natural languages and discuss how these similarities and differences drive the design of probabilistic models.
We present a taxonomy based on the underlying design principles of each model and use it to navigate the
literature. Then, we review how researchers have adapted these models to application areas and discuss cross-
cutting and application-specific challenges and opportunities.

CCS Concepts: • Computing methodologies → Machine learning; Natural language processing; • Soft-
ware and its engineering → Software notations and tools; • General and reference → Surveys and

overviews;

Additional KeyWords and Phrases: Big Code, Code Naturalness, Software Engineering Tools, Machine Learn-

ing

1 INTRODUCTION

Software is ubiquitous in modern society. Almost every aspect of life, including healthcare, en-
ergy, transportation, public safety, and even entertainment, depends on the reliable operation of
high-quality software. Unfortunately, developing software is a costly process: software engineers
need to tackle the inherent complexity of software while avoiding bugs, and still delivering highly
functional software products on time. There is therefore an ongoing demand for innovations in
software tools that help make software more reliable and maintainable. New methods are con-
stantly sought, to reduce the complexity of software and help engineers construct better software.
Research in this area has been dominated by the formal, or logico-deductive, approach. Practi-

tioners of this approach hold that, since software is constructed in mathematically well-defined
programming languages, software tools can be conceived in purely formal terms. The design of
software tools is to be approached using formal methods of definition, abstraction, and deduction.
Properties of tools thus built should be proven using rigorous proof techniques such as induction
over discrete structures. This logico-deductive approach has tremendous appeal in programming
languages research, as it holds the promise of proving facts and properties of the program. Many
elegant and powerful abstractions, definitions, algorithms, and proof techniques have been de-
veloped, which have led to important practical tools for program verification, bug finding, and
refactoring [24, 42, 45]. It should be emphasized that these are theory-first approaches. Software
constructions are viewed primarily as mathematical objects, and when evaluating software tools
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built using this approach, the elegance and rigor of definitions, abstractions, and formal proofs-of-
properties are of dominant concern. The actual varieties of use of software constructs, in practice,
become relevant later, in case studies, that typically accompany presentations in this line of work.
Of late, another valuable resource has arisen: the large and growing body of successful, widely

used, open-source software systems. Open-source software systems such as Linux,MySQL, Django,
Ant, and OpenEJB have become ubiquitous. These systems publicly expose not just source code,
but also meta-data concerning authorship, bug-fixes, and review processes. The scale of available
data is massive: billions of tokens of code and millions of instances of meta-data, such as changes,
bug-fixes, and code reviews (“big code”). The availability of “big code” suggests a new, data-driven
approach to developing software tools: why not let the statistical distributional properties, esti-
mated over large and representative software corpora, also influence the design of development
tools? Thus rather than performing well in the worst case, or in case studies, our tools can perform
well in most cases, thus delivering greater advantages in expectation. The appeal of this approach
echoes that of earlier work in computer architecture: Amdahl’s law [15], for example, tells us to
focus on the common case. This motivates a similar hope for development tools, that tools for
software development and program analysis can be improved by focusing on the common cases
using a fine-grained estimate of the statistical distribution of code. Essentially, the hope is that an-
alyzing the text of thousands of well-written software projects can uncover patterns that partially
characterize software that is reliable, easy to read, and easy to maintain.
The promise and power of machine learning rests on its ability to generalize from examples and

handle noise. To date, software engineering (SE) and programming languages (PL) research has
largely focused on using machine learning (ML) techniques as black boxes to replace heuristics and
find features, sometimes without appreciating the subtleties of the assumptions these techniques
make. A key contribution of this survey is to elucidate these assumptions and their consequences.
Just as natural language processing (NLP) research changed focus from brittle rule-based expert
systems that could not handle the diversity of real-life data to statistical methods [99], SE/PL should
make the same transition, augmenting traditional methods that consider only the formal structure
of programs with information about the statistical properties of code.

Structure. First, in Section 2, we discuss the basis of this area, which we call the “naturalness
hypothesis”. We then review recent work on machine learning methods for analyzing source code,
focusing on probabilistic models, such as n-gram language models and deep learning methods.1

We also touch on other types of machine learning-based source code models, aiming to give a
broad overview of the area, to explain the core methods and techniques, and to discuss applica-
tions in programming languages and software engineering. We focus on work that goes beyond
a “bag of words” representation of code, modeling code using sequences, trees, and continuous
representations. We describe a wide range of emerging applications, ranging from recommender
systems, debugging, program analysis, and program synthesis. The large body of work on se-
mantic parsing [138], is not the focus of this survey but we include some methods that output
code in general-purpose programming languages (rather than carefully crafted domain-specific
languages). This review is structured as follows. We first discuss the different characteristics of
natural language and source code to motivate the design decisions involved in machine learning
models of code (Section 3). We then introduce a taxonomy of probabilistic models of source code
(Section 4). Then we describe the software engineering and programming language applications

1It may be worth pointing out that deep learning and probabilistic modeling are not mutually exclusive. Indeed, many of
the currently most effective methods for language modeling, for example, are based on deep learning.
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of probabilistic source code models (Section 5). Finally, we mention a few overlapping research
areas (Section 7), and we discuss challenges and interesting future directions (Section 6).

Related Reviews and other Resources. There have been short reviews summarizing the progress
and the vision of the research area, from both software engineering [52] and programming lan-
guages perspectives [28, 195]. However, none of these articles can be considered extensive lit-
erature reviews, which is the purpose of this work. Ernst [57] discusses promising areas of ap-
plying natural language processing to software development, including error messages, variable
names, code comments, and user questions. Some resources, datasets and code can be found at
http://learnbigcode.github.io/. An online version of the work reviewed here — which we will keep
up-to-date by accepting external contributions — can be found at https://ml4code.github.io.

2 THE NATURALNESS HYPOTHESIS

Many aspects of code, such as names, formatting, the lexical order of methods, etc. have no impact
on program semantics. This is precisely why we abstract them in most program analyses. But then,
why should statistical properties of code matter at all? To explain this, we recently suggested a
hypothesis, called the naturalness hypothesis. The inspiration for the naturalness hypothesis can
be traced back to the “literate programming” concept of D. Knuth, which draws from the insight
that programming is a form of human communication: “Let us change our traditional attitude to the
construction of programs: Instead of imagining that our main task is to instruct a computer what to
do, let us concentrate rather on explaining to human beings what we want a computer to do...” [105]
The naturalness hypothesis, then, holds that

The naturalness hypothesis. Software is a form of human communication; soft-
ware corpora have similar statistical properties to natural language corpora; and these
properties can be exploited to build better software engineering tools.

The exploitation of the statistics of human communication is a mature and effective technology,
with numerous applications [99]. Large corpora of human communication, viz. natural language
corpora, have been extensively studied, and highly refined statistical models of these corpora have
been used to great effect in speech recognition, translation, error-correction, etc..
The naturalness hypothesis holds that, because coding is an act of communication, one might

expect large code corpora to have rich patterns, similar to natural language, thus allowing software
engineering tools to exploit probabilistic ML models. The first empirical evidence of this hypothe-
sis, showing that models originally developed for natural language were surprisingly effective for
source code, was presented by Hindle et al. [87, 88]. More evidence and numerous applications of
this approach have followed, which are the subject of this review.
The naturalness hypothesis, then, inspires the goal to apply machine learning approaches to cre-

ate probabilistic source code models that learn how developers naturally write and use code. These
models can be used to augment existing tools with statistical information and enable new machine
learning-based software engineering tools, such as recommender systems and program analyses.
At a high level, statistical methods allow a system to make hypotheses, along with probabilistic
confidence values, of what a developer might want to do next or what formal properties might be
true of a chunk of code. Probabilistic methods also provide natural ways of learning correspon-
dences between code and other types of documents, such as requirements, blog posts, comments,
etc.— such correspondences will always be uncertain, because natural language is ambiguous, and
so the quantitative measure of confidence provided by probabilities is especially natural. As we dis-
cuss in Section 5, one could go so far as to claim that almost every area of software engineering and
programming language research has potential opportunities for exploiting statistical properties.

http://learnbigcode.github.io/
https://ml4code.github.io
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Although the “naturalness hypothesis” may not seem surprising, one should appreciate the root
cause of “naturalness”. Naturalness of code seems to have a strong connection with the fact that
developers prefer to write [5] and read [85] code that is conventional, idiomatic, and familiar be-
cause it helps understanding and maintaining software systems. Code that takes familiar forms is
more transparent, in that its meaning is more readily apparent to an experienced reader. Thus, the
naturalness hypothesis leads seamlessly to a “code predictability” notion, suggesting that code ar-
tifacts — from simple token sequences to formal verification statements — contain useful recurring
and predictable patterns that can be exploited. “Naturalness” and “big code” should be viewed as
instances of a more general concept that there is exploitable regularity across human-written code
that can be “absorbed” and generalized by a learning component that can transfer its knowledge
and probabilistically reason about new code.
This article reviews the emerging area of machine learning and statistical natural language pro-

cessing methods applied to source code. We focus on probabilistic models of code, that is, methods
that estimate a distribution over all possible source files. Machine learning in probabilistic models
has seen wide application throughout artificial intelligence, including natural language processing,
robotics, and computer vision, because of its ability to handle uncertainty and to learn in the face
of noisy data. One might reasonably ask why it is necessary to handle uncertainty and noise in
software development tools, when in many cases the program to be analyzed is known (there is no
uncertainty about what the programmer has written) and is deterministic. In fact, there are several
interesting motivations for incorporating probabilistic modeling into machine learning methods
for software development. First, probabilistic methods offer a principled method for handling un-
certainty and fusing multiple, possibly ambiguous, sources of information. Second, probabilistic
models provide a natural framework for connecting prior knowledge to data — providing a natu-
ral framework to design methods based on abstractions of statistical properties of code corpora.
In particular, we often wish to infer relationships between source code and natural language text,
such as comments, bug reports, requirements documents, documentation, search queries, and so
on. Because natural language text is ambiguous, it is useful to quantify uncertainty in the cor-
respondence between code and text. Finally, when predicting program properties, probabilities
provide a way to relax strict requirements on soundness: we can seek unsound methods that pre-
dict program properties based on statistical patterns in the code, using probabilities as a way to
quantify the method’s confidence in its predictions.

3 TEXT, CODE AND MACHINE LEARNING

Programming languages narrow the gap between computers and the human mind: they construct
palatable abstractions out of a multitude of minute state transitions. Source code has two audi-
ences and is inherently bimodal: it communicates along two channels: one with humans, and one
with computers. Humans must understand code to read and write it; computers must be able to
execute it. The bimodality of code drives the similarities and differences between it and text. Be-
low, we discuss these similarities and differences with forward pointers to how they have been
exploited, handled, or remain open. Although code and text are similar, code written in a general-
purpose programming languages, is a relatively new problem domain for existing ML and NLP
techniques. Hindle et al. [87] not only showed that exploitable similarity exists between the two
via an n-gram language model, but that code is even less surprising than text. Although it may
seem manifestly obvious that code and text have many differences, it is useful to enumerate these
differences carefully, as this allows us to gain insight into when techniques from NLP need to be
modified to deal with code. Perhaps the most obvious difference is that code is executable and has
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formal syntax and semantics. We close by discussing how source code bimodality manifests itself
as synchronization points between the algorithmic and explanatory channels.

Executability. All code is executable; text often is not. So code is often semantically brittle —
small changes (e.g. swapping function arguments) can drastically change the meaning of code;
whereas natural language is more robust in that readers can often understand text even if it con-
tains mistakes. Despite the bimodal nature of code and its human-orientedmodality, the sensitivity
of code semantics to “noise” necessitates the combination of probabilistic and formal methods. For
example, existing work builds probabilistic models then applies strict formal constraints to filter
their output (Section 4.1) or uses them to guide formal methods (Section 5.8). Nevertheless, further
research on bridging formal and probabilistic methods is needed (Section 6.1).
Whether it is possible to translate between natural languages in a way that completely preserves

meaning is a matter of debate. Programming languages, on the other hand, can be translated be-
tween each other exactly, as all mainstream programming languages are Turing-complete. (That
said, porting real-world programs to new languages and platforms remains challenging in prac-
tice [32]). ML techniques have not yet comprehensively tackled such problems and are currently
limited to solely translating among languages with very similar characteristics, e.g. Java and C#
(Section 6.1). Programming languages differ in their expressivity and intelligibility, ranging from
Haskell to Malbolge2, with some especially tailored for certain problem domains; in contrast, nat-
ural languages are typically used to communicate across a wide variety of domains. Executability
of code induces control and data flows within programs, which have only weak analogs in text.
Finally, executability gives rise to additional modalities of code — its static and dynamic views
(e.g. execution traces), which are not present in text. Learning over traces or flows are promising
directions (Section 6.1).

Formality. Programming languages are formal languages, whereas formal languages are only
mathematical models of natural language. As a consequence, programming languages are de-
signed top-down by a few designers for many users. Natural languages, in contrast, emerge, bot-
tom up, “through social dynamics” [46]. Natural languages change gradually, while programming
languages exhibit punctuated change: new releases, like Python 3, sometimes break backward
compatibility. Formatting can also be meaningful in code: Python’s whitespace sensitivity is the
canonical example. Text has a robust environmental dependence, whereas code suffers from bit rot
— the deterioration of software’s functionality through time because of changes in its environment
(e.g. dependencies) — because all its explicit environmental interactions must be specified upfront
and execution environments evolve much more quickly than natural languages.
Source code’s formality facilities reuse. Solving a problem algorithmically is cognitively expen-

sive, so developers actively try to reuse code [95], moving common functionality into libraries to
facilitate reuse. As a result, usually functions are semantically unique within a project. Coding com-
petitions or undergraduate projects are obvious exceptions. In contrast, one can find thousands of
news articles describing an important global event. On the other hand, Gabel and Su [67] have
found that locally, code is more pattern dense than text (Section 4.1). This has led to important
performance improvements on some applications, such as code completion (Section 5.1).
Because programming languages are automatically translated into machine code, they must be

syntactically, even to a first approximation semantically, unambiguous3. In contrast to NLP mod-
els, which must always account for textual ambiguity, probabilistic models of code can and do

2https://en.wikipedia.org/wiki/Malbolge
3Exceptions exist, like http://po-ru.com/diary/ruby-parsing-ambiguities/ and https://stackoverflow.com/questions/38449606/ambiguity-in-multiple-inheritance,
but these rarely matter in practice.

https://en.wikipedia.org/wiki/Malbolge
http://po-ru.com/diary/ruby-parsing-ambiguities/
https://stackoverflow.com/questions/38449606/ambiguity-in-multiple-inheritance
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take advantage of the rich and unambiguous code structure. Although it is less pervasive, ambigu-
ity remains a problem in the analysis of code, because of issues like polymorphism and aliasing.
Section 4.2 and Section 5.4 discuss particularly notable approaches to handling them. Co-reference
ambiguities can arise when viewing code statically, especially in dynamically typed languages
(Section 6.1). The undefined behavior that some programming languages permit can cause seman-
tic ambiguity and, in the field, syntactic problems can arise due to nonstandard compilers [24];
however, the dominance of a handful of compilers/interpreters for most languages ameliorates
both problems.

Cross-Channel Interaction. Code’s two channels, the algorithmic and the explanatory channels,
interact through their semantic units, but mapping code units to textual units remains an open
problem. Natural semantic units in code are identifiers, statements, blocks, and functions. None of
these universally maps to textual semantic units. For example, identifiers, even verbose function
names that seek to describe their function, carry less information than words like “Christmas” or
“set”. In general, statements in code and sentences in text differ in how much background knowl-
edge the reader needs in order to understand them in isolation; an arbitrary statement is far more
likely to use domain-specific, even project-specific, names or neologisms than an arbitrary sen-
tence is. Blocks vary greatly in length and semantics richness and often lack clear boundaries to a
human reader. Functions are clearly delimited and semantically rich, but long. In text, a sentence is
the natural multiword semantic unit and usually contains fewer than 50 words (tokens). Unfortu-
nately, one cannot, however, easily equate them. A function differs from a sentence or a sequence
of sentences, i.e. a paragraph, in that it is named and called, while, in general settings, sentences
or paragraphs rarely have names or are referred to elsewhere in a text. Further, a single function
acts on the world, so it is like a single action sentence, but is usually much longer, often containing
hundreds of tokens, and usually performs multiple actions, making a function closer to a sequence
of sentences, or a paragraph, but paragraphs are rarely solely composed of action sentences.
Additionally, parse trees of sentences in text tend to be diverse, short, and shallow compared to

abstract syntax trees of functions, which are usually much deeper with repetitive internal struc-
ture. Code bases are multilingual (i.e. contain code in more than one programming language, e.g.
Java and SQL) with different tasks described in different languages, more frequently than text
corpora; this can drastically change the shape and frequency of its semantic units. Code has a
higher neologism rate than text. Almost 70% of all characters are identifiers and a developer must
choose a name for each one [50]; when writing text, an author rarely names new things but usu-
ally chooses an existing word to use. Existing work handles code’s neologism rate by introducing
cache mechanisms or decomposing identifiers at a subtoken level (Section 4.1).
Determining which semantic code unit is most useful for which task is an open question. Con-

sider the problem of automatically generating comments that describe code, which can be formal-
ized as amachine translation problem from code to text. Statistical machine translation approaches
learn from an aligned corpus. Statement-granular alignment yields redundant comments, while
function granular alignment has saliency issues (Section 5.5). As another example, consider code
search, where search engines must map queries into semantic code units. Perhaps the answer will
be in maps from code to text whose units vary by granularity or context (Section 6.1).

4 PROBABILISTIC MODELS OF CODE

In this section, we turn our attention to probabilistic machine learning models of source code. A
probabilistic model of source code is a probability distribution over code artifacts. As all models do,
probabilistic machine learning models make simplifying assumptions about the modeled domain.
These assumptions make the models tractable to learn and use, but introduce error. Since each
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model makes different assumptions, each model has its own strengths and weaknesses and is more
suitable for some applications. In this section, we group existing work into families of models and
discuss their assumptions. To group these family of models in terms of shared design choices, we
separate these models into three categories, based on the form of the equation of the modeled
probability distribution and their inputs and outputs, with the caveat that some models fall into
multiple categories. We also discuss how and why these models differ from their natural language
counterparts. In Section 5, we discuss applications of these models in software engineering and
programming languages.

Code-generating Models define a probability distribution over code by stochastically mod-
eling the generation of smaller and simpler parts of code, e.g. tokens or AST nodes.

Representational Models of Code take an abstract representation4 of code as input. Ex-
ample representations include token contexts or data flow. The resulting model yields a
conditional probability distribution over code element properties, like the types of vari-
ables, and can predict them.

Pattern Mining Models infer, without supervision, a likely latent structure within code.
These models are an instantiation of clustering in the code domain; they can find reusable
and human-interpretable patterns.

Code-generating models find analogues in generative models of text, such as language mod-
els and machine translation models. Code representational models are analogous to systems for
named entity recognition, text classification, and sentiment analysis in NLP. Finally, code pattern
mining models are analogous to probabilistic topic models and ML techniques for mining struc-
tured information (e.g. knowledge-bases) from text. To simplify notation below, we use c to denote
an arbitrary code abstraction, like an AST.

4.1 Code-generating Probabilistic Models of Source Code

Code-generating probabilistic models of code are probability distributions that describe a stochas-
tic process for generating valid code, i.e. they model how code is written. Given training data D,
an output code representation c, and a possibly empty context C(c), these models learn the prob-
ability distribution PD(c|C(c)) and sample PD to generate code. When C(c) = �, the probability
distribution PD is a language model of code, i.e. it models how code is generated when no exter-
nal context information is available. When C(c) is a non-code modality (e.g. natural language),
PD describes a code-generative multimodal model of code. When C(c) is also code, the probability
distribution PD is a transducer model of code. In addition to generating code, by definition, code
generating probabilistic models act as a scoring function, assigning a non-zero probability to ev-
ery possible snippet of code. This score, sometimes referred to as “naturalness” of the code [87],
suggests how probable the code is under a learned model.
Since code-generating models predict the complex structure of code, they make simplifying as-

sumptions about the generative process and iteratively predict elements of the code to generate a
full code unit, e.g. code file or method. Because of code’s structural complexity and the simplifying
assumptions these models make to cope with it, none of the existing models in the literature gen-
erate code that always parses, compiles, and executes. Some of the models do, however, impose
constraints that take code structure into account to remove some inconsistencies; for instance,
[126] only generate variables declared within each scope.

4 In the machine learning literature, representation, applied to code, is roughly equivalent to abstraction in programming
language research: a lossy encoding that preserves a semantic property of interest.
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We structure the discussion about code-generating models of code as follows. We first discuss
how models in this category generate code and then we show how the three different types of
models (language, transducer and multimodal models) differ.

4.1.1 Representing Code in Code-Generating Models. Probabilistic models for generating struc-
tured objects are widely in use in machine learning and natural language processing with a wide
range of applications. Machine learning research is considering a wide range of structures from
natural language sentences to chemical structures and images. Within the source code domain,
we can broadly find three categories of models based on the way they generate code’s structure:
token-level models that generate code as a sequence of tokens, syntactic models that generate code
as a tree and semantic models that generate graph structures. Note that this distinction is about the
generative process and not about the information used within this process. For example Nguyen
et al. [144] uses syntactic context, but is classified as a token-level model that generates tokens.

Token-level Models (sequences). Sequence-basedmodels are commonly used because of their sim-
plicity. They view code as a sequence of elements, usually code tokens or characters, i.e. c =

t1 . . . tM . Predicting a large sequence in a single step is infeasible due to the exponential number
of possible sequences; for a set of V elements, there are |V |N sequences of length N . Therefore,
most sequence-based models predict sequences by sequentially generating each element, i.e. they
model the probability distribution P(tm |t1 . . . tm−1, C(c)). However, directly modeling this distri-
bution is impractical and all models make different simplifying assumptions.
The n-gram model has been a widely used sequence-based model, most commonly used as a

language model. It is an effective and practical LM for capturing local and simple statistical depen-
dencies in sequences. n-gram models assume that tokens are generated sequentially, left-to-right
and that the next token can be predicted using only the previous n− 1 tokens. The consequence of
capturing a short context is that n-gram models cannot handle long-range dependencies, notably
scoping information. Formally, the probability of a token tm , is conditioned on the context C(c)
(if any) and the generated sequence so far t1 . . . tm−1, which is assumed to depend on only the
previous n − 1 tokens. Under this assumption, we write

PD(c|C(c)) = P(t1 . . . tM |C(c)) =

M∏

m=1

P(tm |tm−1 . . . tm−n+1, C(c)). (1)

To use this equation, we need to know the conditional probabilities P(tm |tm−1 . . . tm−n+1, C(c)) for
each possible n-gram and context. This is a table of |V |n numbers for each context C(c). These are
the parameters of the model that we learn from the training corpus. The simplest way to estimate
the model parameters is to set P(tm |tm−1 . . . tm−n+1) to the proportion of times that tm follows
tm−1 . . . tm−n+1. In practice, this simple estimator does not work well, because it assigns zero prob-
ability to n-grams that do not occur in the training corpus. Instead, n-gram models use smoothing
methods [40] as a principled way for assigning probability to unseen n-grams by extrapolating
information from m-grams (m < n). Furthermore, considering n-gram models with non-empty
contexts C(c) exacerbates sparsity rendering these models impractical. Because of this, n-grams
are predominantly used as language models. The use of n-gram LMs in software engineering orig-
inated with the pioneering work of Hindle et al. [88] who used an n-gram LM with Kneser-Ney
[104] smoothing. Most subsequent research has followed this practice.
In contrast to text, code tends to be more verbose [88] and much information is lost within the

n − 1 tokens of the context. To tackle this problem, Nguyen et al. [144] extended the standard
n-gram model by annotating the code tokens with parse information that can be extracted from
the currently generated sequence. This increases the available context information allowing the
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n-gram model to achieve better predictive performance. Following this trend, but using concrete
and abstract semantics of code, Raychev et al. [166] create a token-level model that treats code
generation as a combined synthesis and probabilistic modeling task.
Tu et al. [180] and later, Hellendoorn and Devanbu [84] noticed that code has a high degree of

localness, where identifiers (e.g. variable names) are repeated often within close distance. In their
work, they adapted work in speech and natural language processing [109] adding a cache mech-
anism that assigns higher probability to tokens that have been observed most recently, achieving
significantly better performance compared to other n-gram models. Modeling identifiers in code
is challenging [6, 11, 29, 126]. The agglutinations of multiple subtokens (e.g. in getFinalResults)
when creating identifiers is one reason. Following recent NLP work that models subword structure
(e.g.morphology) [174], explicitly modeling subtoken in identifiers may improve the performance
of generative models. Existing token-level code-generating models do not produce syntactically
valid code. Raychev et al. [166] added additional context in the form of constraints — derived from
program analysis — to avoid generating some incorrect code.
More recently, sequence-based codemodels have turned to deep recurrent neural network (RNN)

models to outperform n-grams. These models predict each token sequentially, but loosen the fixed-
context-size assumption, instead representing the context using a distributed vector representation
(Section 4.2). Following this trend, Karpathy et al. [103] and Cummins et al. [48] use character-
level LSTMs [91]. Similarly, White et al. [188] and Dam et al. [49] use token-level RNNs. Recently,
Bhoopchand et al. [26] used a token sparse pointer-based neural model of Python that learns to
copy recently declared identifiers to capture very long-range dependencies of identifiers, outper-
forming standard LSTM models5.
Although neural models usually have superior predictive performance, training them is signifi-

cantly more costly compared to n-gram models usually requiring orders of magnitude more data.
Intuitively, there are two reasons why deep learning methods have proven successful for language
models. First, the hidden state in an RNN can encode longer-range dependencies of variable-length
beyond the short context ofn-grammodels. Second, RNN languagemodels can learn a much richer
notion of similarity across contexts. For example, consider an 13-gram model over code, in which
we are trying to estimate the distribution following the context for(int i=N; i>=0; i--). In a
corpus, few examples of this pattern may exist because such long contexts occur rarely. A simple n-
gram model cannot exploit the fact that this context is very similar to for(int j=M; j>=0; j--).
But a neural network can exploit it, by learning to assign these two sequences similar vectors.

Syntactic Models (trees). Syntactic (or structural) code-generatingmodels model code at the level
of abstract syntax trees (ASTs). Thus, in contrast to sequence-based models, they describe a sto-
chastic process of generating tree structures. Such models make simplifying assumptions about
how a tree is generated, usually following generative NLP models of syntactic trees: they start
from a root node, then sequentially generate children top-to-bottom and left-to-right. Syntactic
models generate a tree node conditioned on context defined as the forest of subtrees generated
so far. In contrast to sequence models, these models — by construction — generate syntactically
correct code. In general, learning models that generate tree structures is harder compared to gen-
erating sequences: it is relatively computationally expensive, especially for neural models, given
the variable shape and size of the trees that inhibit efficient batching. In contrast to their wide
application in NLP, probabilistic context free grammars (PCFG) have been found to be unsuitable
as language models of code [126, 164]. This may seem surprising, because most parsers assume

5This work differs from the rest from the fact that it anonymizes/normalizes identifiers, creating a less sparse problem.
Because of the anonymization, the results are not directly comparable with other models.
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that programming languages are context-free. But the problem is that the PCFGs are not a good
model of statistical dependencies between code tokens, because nearby tokens may be far away in
the AST. So it is not that PCFGs do not capture long-range dependencies (n-gram-basedmodels do
not either), but that they do not even capture close-range dependencies that matter [29]. Further,
ASTs tend to be deeper and wider than text parse trees due to the highly compositional nature of
code.
Maddison and Tarlow [126] and Allamanis et al. [13] increase the size of the context considered

by creating a non-context-free log-bilinear neural network grammar, using a distributed vector
representation for the context. Additionally, Maddison and Tarlow [126] restricts the generation to
generate variables that have been declared. To achieve this, they use the deterministically-known
information and filter out invalid output. This simple process always produces correct code, even
when the network does not learn to produce it. In contrast, Amodio et al. [16] create a significantly
more complex model that aims to learn to enforce deterministic constraints of the code generation,
rather than enforcing them on the directly on the output.We further discuss the issue of embedding
constraints and problem structure in models vs. learning the constraints in Section 6.
Bielik et al. [29], Raychev et al. [164] increase the context by annotating PCFGs with a learned

program that uses features from the code. Although the programs can, in principle, be arbitrary,
they limit themselves to synthesizing decision tree programs. Similarly, Wang et al. [185], Yin and
Neubig [196] use an LSTM over AST nodes to achieve the same goal. Allamanis and Sutton [12]
also create a syntactic model learning Bayesian TSGs [43, 156] (see Section 4.3).

Semantic Models (graphs). Semantic code-generating models view code as a graph. Graphs are a
natural representation of source code that require little abstraction or projection. Therefore, graph
model can be thought as generalizations of sequence and tree models. However, generating com-
plex graphs is hard, since there is no natural “starting” point or generative process, as reflected by
the limited number of graphs models in the literature. We refer the interested reader to the related
work section of Johnson [98] for a discussion of recent models in the machine learning literature.
To our knowledge, there are no generative models that directly generate graph representations
of realistic code (e.g. data-flow graphs). Nguyen and Nguyen [139] propose a generative model,
related to graph generative models in NLP, that suggests application programming interface (API)
completions. They train their model over API usages. However, they predict entire graphs as com-
pletions and perform no smoothing, so their model will assign zero probability to unseen graphs.
In this way, their model differs from graph generating models in NLP, which can generate arbitrary
graphs.

4.1.2 Types of Code Generating Models. We use external context C(c) to refine code generating
models into three subcategories.

Language Models. Language models model the language itself, without using any external con-
text, i.e. C(c) = �. Although LMs learn the high-level structure and constraints of programming
languages fairly easily, predicting and generating source code identifiers (e.g. variable and method
names), long-range dependencies and taking into account code semantics makes the language
modeling of code a hard and interesting research area. We discuss these and other differences and
their implications for probabilistic modeling in Section 6.
Code LMs are evaluated like LMs in NLP, using perplexity (or equivalently cross-entropy) and

word error rate. Cross-entropyH is themost commonmeasure. Languagemodels — asmost predic-
tive machine learning models — can be seen as compression algorithms where the model predicts
the full output (i.e. decompresses) using extra information. Cross-entropy measures the average
number of extra bits of information per token of code that a model needs to decompress the correct
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output using a perfect code (in the information-theoretic sense)

H (c, PD) = −
1

M
log2 PD (c) (2)

whereM is the number of tokens within c. By convention, the average is reported per-token, even
for non-token models. Thus, a “perfect” model, correctly predicting all tokens with probability 1,
would require no additional bits of information because, in a sense, already “knows” everything.
Cross-entropy allows comparisons across different models. Other, application-specific measures,
are used when the LM was trained for a specific task, such as code completion (Section 5.1).

Code Transducer Models. Inspired by statistical machine translation (SMT), transducer models
translate/transduce code from one format into another (i.e. C(c) is also code), such as translating
code from one source language into another, target language. They have the form PD (c|s), where c

is the target source code that is generated and C(c) = s is the source source code. Most code trans-
ducer models use phrase-based machine translation. Intuitively, phrase-based models assume that
small chunks from the source input can directly be mapped to chunks in the output. Although this
assumption is reasonable in NLP and many source code tasks, these models present challenges in
capturing long-range dependencies within the source and target. For example, as we will mention
in the next section, transducing code from an imperative source language to a functional target
is not currently possible because of the source and target are related with a significantly more
complicated relation that simply matching “chunks” of the input code to “chunks” in the output.
These types of models have found application within code migration [2, 102, 141], pseudocode

generation [146] and code fixing [160]. Traditionally transducer models have followed a noisy
channel model, in which they combine a languagemodel PD(c) of the target languagewith a trans-
lation/transduction model PD (s|c) to match elements between the source and the target. These
methods pick the optimal transduction c∗ such that c∗ = argmaxPD (c|s) = argmaxPD(s|c)PD (c),

where the second equality derives from the Bayes equation. Again, these probabilistic generative
models of code do not necessarily produce valid code, due to the simplifying assumptions they
make in both PD(c) and PD(s|c). More recently, machine translation methods based on phrase-
based models and the noisy channel model have been outperformed by neural network-based
methods that directly model PD (c|s).
Transducer models can be evaluated with SMT evaluation measures, such as BLEU [150] —

commonly used in machine translation as an approximate measure of translation quality — or
programming and logic-related measures (e.g. “Does the translated code parse/compile?” and “Are
the two snippets equivalent?” ).

Multimodal Models. Code-generating multimodal models correlate code with one or more non-
code modalities, such as comments, specifications, or search queries. These models have the form
PD(c|m) i.e. C(c) = m is a representation of one or more non-code modalities. Multimodal models
are closely related to representational models (discussed in Section 4.2):multimodal code-generating
models learn an intermediate representation of the non-code modalities m and use it to generate
code. In contrast, code representational models create an intermediate representation of the code
but are not concerned with code generation.
Multimodal models of code have been used for code synthesis, where the non-code modalities

are leveraged to estimated a conditional generativemodel of code, e.g. synthesis of code given a nat-
ural language description by Gulwani and Marron [77] andmore recently by Yin and Neubig [196].
The lattermodel is a syntacticmodel that accepts natural language. Recently, Beltramelli [23], Deng
et al. [51], Ellis et al. [55] designed multimodal model that accept visual input (the non-codemodal-
ity) and generate code in a DSL describing how the input (hand-drawn image, GUI screenshot) was
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constructed. Another use of these models is to score the co-appearance of the modalities, e.g. in
code search, to score the probability of some text given a textual query [13]. This stream of research
is related to work in NLP and computer vision where one seeks to generate a natural language
description for an image. These models are closely related to the other code generating models,
since they generate code. These models make also assume that the input modality conditions the
generation process. Multimodal models combine an assumption with a design choice. Like lan-
guage models, these models assume that probabilistic models can capture the process by which
developers generate code; unlike language models, they additionally bias code generation using
information from the input modalitym. The design choice is how to transform the input modality
into an intermediate representation. For example, Allamanis et al. [13] use a bag-of-words assump-
tion averaging the words’ distributed representations. However, this limits the expressivity of the
models because the input modality has to fit in whole within the distributed representation. To
address this issue, Ling et al. [120] and Yin and Neubig [196] use neural attention mechanisms to
selectively attend to information within the input modality without the need to “squash” all the
information into a single representation. Finally, the text-to-code problem, in which we take the
input modalitym to be natural language text and the other modality c to be code, is closely related
to the problem of semantic parsing in NLP; see Section 5.5.

4.2 Representational Models of Source Code

Generative models recapitulate the process of generating source code, but cannot explicitly pre-
dict facts about the code that may be directly useful to engineers or useful for other downstream
tasks, such as static analyses. To solve this problem, researchers have built models to learn inter-
mediate, not necessarily human-interpretable, encodings of code, like a vector embedding. These
models predict the probability distribution of properties of code snippets, like variable types. We
call them representational code models. They learn the conditional probability distribution of a
code property π as PD (π | f (c)), where f is a function that transforms the code c into a target
representation and π can be an arbitrary set of features or other (variable) structures. These mod-
els use a diverse set of machine learning methods and are often application-specific. Table 2 lists
representational code model research. Below we discuss two types of models. Note that they are
not mutually exclusive and models frequently combine distributed representations and structured
prediction.

4.2.1 Distributed Representations. Distributed representations [89] are widely used in NLP to
encode natural language elements. For example, Mikolov et al. [131] learn distributed represen-
tations of words, showing that such representations can learn useful semantic relationships and
Le and Mikolov [112] extend this idea to sentences and documents. Distributed representations
refer to arithmetic vectors or matrices where the meaning of an element is distributed across mul-
tiple components (e.g. the “meaning” of a vector is distributed in its components). This contrasts
with local representations, where each element is uniquely represented with exactly one compo-
nent. Distributed representations are commonly used in machine learning and NLP because they
tend to generalize better and have recently become extremely common due to their omnipresence
in deep learning. Models that learn distributed representations assume that the elements being
represented and their relations can be encoded within a multidimensional real-valued space and
that the relation (e.g. similarity) between two representations can be measured within this space.
Probabilistic code models widely use distributed representations. For example, models that use dis-
tributed vector representations learn a function of the form c → R

D that maps code elements to
a D-dimensional vector. Such representations are usually the (learned) inputs or output of (deep)
neural networks.
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Table 1. Research on Source Code Generating Models PD (c|C(c)) (sorted alphabetically), describing the

process of generating source code. References annotated with ∗ are also included in other categories.

Reference Type Representation PD Application

Aggarwal et al. [2] PD (c |s) Token Phrase Migration
Allamanis and Sutton [11] PD (c) Token n-gram —
Allamanis et al. [5] PD (c) Token + Location n-gram Coding Conventions
Allamanis and Sutton [12]∗ PD (c) Syntax Grammar (pTSG) —
Allamanis et al. [13]∗ PD (c |m) Syntax Grammar (NN-LBL) Code Search/Synthesis
Amodio et al. [16] PD (c) Syntax+Constraints RNN —
Barone and Sennrich [21] PD (c |m) Token Neural SMT Documentation
Beltramelli [23] PD (c |m) Token NN (Encoder-Decoder) GUI Code Synthesis
Bhatia and Singh [25] PD (c) Token RNN (LSTM) Syntax Error Correction
Bhoopchand et al. [26] PD (c) Token NN (Pointer Net) Code Completion
Bielik et al. [29] PD (c) Syntax PCFG + annotations Code Completion
Campbell et al. [35] PD (c) Token n-gram Syntax Error Detection
Cerulo et al. [37] PD (c) Token Graphical Model

(HMM)
Information Extraction

Cummins et al. [48] PD (c) Character RNN (LSTM) Benchmark Synthesis
Dam et al. [49] PD (c) Token RNN (LSTM) —
Gulwani and Marron [77] PD (c |m) Syntax Phrase Model Text-to-Code
Gvero and Kuncak [82] PD (c) Syntax PCFG + Search Code Synthesis
Hellendoorn et al. [85] PD (c) Token n-gram Code Review
Hellendoorn and Devanbu [84] PD (c) token n-gram (cache) –
Hindle et al. [88] PD (c) Token n-gram Code Completion
Hsiao et al. [93] PD (c) PDG n-gram Program Analysis
Lin et al. [118] PD (c |m) Tokens NN (Seq2seq) Synthesis
Ling et al. [120] PD (c |m) Token RNN + Attention Code Synthesis
Liu [121] PD (c) Token n-gram Obfuscation
Karaivanov et al. [102] PD (c |s) Token Phrase Migration
Karpathy et al. [103] PD (c) Characters RNN (LSTM) —
Kushman and Barzilay [110] PD (c |m) Token Grammar (CCG) Code Synthesis
Maddison and Tarlow [126] PD (c) Syntax with scope NN —
Menon et al. [129] PD (c |m) Syntax PCFG + annotations Code Synthesis
Nguyen et al. [140] PD (c |s) Token Phrase Migration
Nguyen et al. [144] PD (c) Token + parse info n-gram Code Completion
Nguyen et al. [141] PD (c |s) Token + parse info Phrase SMT Migration
Nguyen and Nguyen [139] PD (c) Partial PDG n-gram Code Completion
Oda et al. [146] PD (c |s) Syntax + Token Tree-to-String + Phrase Pseudocode Generation
Patra and Pradel [153] PD (c) Syntax Annotated PCFG Fuzz Testing
Pham et al. [154] PD (c) Bytecode Graphical Model

(HMM)
Code Completion

Pu et al. [160] PD (c |s) Token NN (Seq2seq) Code Fixing
Rabinovich et al. [162]∗ PD (c |m) Syntax NN (LSTM-based) Code Synthesis
Raychev et al. [166] PD (c) Token +Constraints n-gram/ RNN Code Completion
Ray et al. [163] PD (c) Token n-gram (cache) Bug Detection
Raychev et al. [164] PD (c) Syntax PCFG + annotations Code Completion
Saraiva et al. [173] PD (c) Token n-gram —
Sharma et al. [175] PD (c) Token n-gram Information Extraction
Tu et al. [180] PD (c) Token n-gram (cache) Code Completion
Vasilescu et al. [181] PD (c |s) Token Phrase SMT Deobfuscation
Wang et al. [185] PD (c) Syntax NN (LSTM) Code Completion
White et al. [188] PD (c) Token NN (RNN) —
Yadid and Yahav [194] PD (c) Token n-gram Information Extraction
Yin and Neubig [196] PD (c |m) Syntax NN (Seq2seq) Synthesis

Abbreviations: • pTSG: probabilistic tree substitution grammar • NN: neural network • LBL: log-bilinear • SMT: statitstical machine

translation • PCFG: probabilistic context-free grammar • HMM: hidden Markov model • LSTM: long short-term memory • RNN:

recurrent neural network • CCG: combinatory categorial grammar • Seq2seq: sequence-to-sequence neural network
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Allamanis et al. [6] learn distributed vector representations for variable and methods usage
contexts and use them to predict a probability distribution over their names. Such distributed
representations are quite similar to those produced by word2vec [131]; the authors found that the
distributed vector representations of variables and methods learn common semantic properties,
implying that some form of the distributional hypothesis in NLP also holds for code.
Gu et al. [76] use a sequence-to-sequence deep neural network [177], originally introduced for

SMT, to learn intermediate distributed vector representations of natural language queries which
they use to predict relevant API sequences. Mou et al. [132] learn distributed vector representations
using custom convolutional neural networks to represent features of snippets of code, then they
assume that student solutions to various coursework problems have been intermixed and seek to
recover the solution-to-problem mapping via classification.
Li et al. [115] learn distributed vector representations for the nodes of a memory heap and

use the learned representations to synthesize candidate formal specifications for the code that
produced the heap. Li et al. [115] exploit heap structure to define graph neural networks, a new
machine learning model based on gated recurrent units (GRU, a type of RNN [41]) to directly learn
from heap graphs. Piech et al. [155] and Parisotto et al. [151] learn distributed representations of
source code input/output pairs and use them to assess and review student assignments or to guide
program synthesis from examples.
Neural code-generative models of code also use distributed representations to capture context,

a common practice in NLP. For example, the work of Maddison and Tarlow [126] and other neural
language models (e.g. LSTMs in Dam et al. [49]) describe context distributed representations while
sequentially generating code. Ling et al. [120] and Allamanis et al. [13] combine the code-context
distributed representation with a distributed representations of other modalities (e.g. natural lan-
guage) to synthesize code. While all of these representations can, in principle, encode unbounded
context, handling all code dependencies of arbitrary length is an unsolved problem. Some neu-
ral architectures, such as LSTMs [91], GRUs [41] and their variants, have made progress on this
problem and can handle moderately long-range dependencies.

4.2.2 Structured Prediction. Structured prediction is the problem of predicting a set of interde-
pendent variables, given a vector of input features. Essentially, structured prediction generalizes
standard classification to multiple output variables. A simple example of structured prediction
is to predict a part-of-speech tag for each word in a sentence. Often the practitioner defines a
dependency structure among the outputs, e.g., via a graph, as part of the model definition. Struc-
tured prediction has been widely studied within machine learning and NLP, and are omnipresent
in code. Indeed, structured prediction is particularly well-suited to code, because it can exploit
the semantic and syntactic structure of code to define the model. Structured prediction is a gen-
eral framework to which deep learning methods have been applied. For example, the celebrated
sequence-to-sequence (seq2seq) learning models [19, 177] are general methods for tackling the re-
lated structured prediction problem. In short, structured prediction and distributed representations
are not mutually exclusive.
One of the most well-known applications of structured prediction to source code is Raychev

et al. [165], who represent code as a variable dependency network, represent each JavaScript vari-
able as a single node, and model their pairwise interactions as a conditional random field (CRF).
They train the CRF to jointly predict the types and names of all variables within a snippet of code.
Proksch et al. [159] use a directed graphical model to represent the context of an (incomplete)
usage of an object to suggest a method invocation (viz. constructor) autocompletion in Java.
Structured prediction, such as predicting a sequence of elements, can be combined with dis-

tributed representations. For example, Allamanis et al. [6, 10] use distributed representations to
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predict sequences of identifier sub-tokens to build a single token and Gu et al. [76] predict the
sequence of API calls. Li et al. [115] learn distributed representations for the nodes of a fixed
heap graph by considering its structure and the interdependencies among the nodes. Kremenek
et al. [108] use a factor graph to learn and enforce API protocols, like the resource usage specifi-
cation of the POSIX file API, as do Livshits et al. [122] for information flow problems. Allamanis
et al. [8] predict the data flow graph of code by learning to paste snippets of code into existing
code and adapting the variables used.

4.3 Pa�ern Mining Models of Source Code

Pattern mining models aim to discover a finite set of human-interpretable patterns from source
code, without annotation or supervision, and present the mined patterns to software engineers.
Broadly, these models cluster source code into a finite set of groups. Probabilistic pattern mining
models of code infer the likely latent structure of a probability distribution

PD(f (c)) =
∑

l

PD (д(c)|l)P(l) (3)

where д is a deterministic function that returns a (possibly partial, e.g. API calls only) view of the
code and l represents a set of latent variables that the model introduces and aims to infer. Appli-
cations of such models are common in the mining software repositories community and include
documentation (e.g. API patterns), summarization, and anomaly detection. Table 3 lists this work.
Unsupervised learning is one of the most challenging areas in machine learning. This hardness
stems from the need to automatically distinguish important patterns in the code from spurious
patterns that may appear to be significant because of limited and noisy data. When designing un-
supervised models, the core assumption lies in the objective function being used and often we
resort to using a principle from statistics, information theory or a proxy supervised task. Like all
machine learning models, they require assumptions about how the data is represented. An impor-
tant issue with unsupervised methods is the hardness of evaluating the output, since the quality
of the output is rarely quantifiable. A vast literature on non-probabilistic methods exploits data
mining methods, such as frequent pattern mining and anomaly detection [190]. We do not dis-
cuss these models here, since they are not probabilistic models of code. Classic probabilistic topic
models [30], which usually views code (or other software engineering artifacts) as a bag-of-words,
have also been heavily investigated. Since these models and their strengths and limitations are
well-understood, we omit them here.

Allamanis and Sutton [12] learn a tree substitution grammar (TSG) using Bayesian nonparamet-
rics, a technique originally devised for natural language grammars. TSGs learn to group commonly
co-appearing grammar productions (tree fragments). Although TSGs have been used in NLP to im-
prove parsing performance (which is ambiguous in text), Allamanis and Sutton [12] observe that
the inferred fragments represent common code usage conventions and name them idioms. Later,
Allamanis et al. [4] extend this technique to mine semantic code idioms by modifying the input
code representation and adapting the inference method.
In a similar fashion, Fowkes and Sutton [63] learn the latent variables of a graphical model to

infer common API usage patterns. Their method automatically infers the most probable grouping
of API elements. This is in stark contrast to frequency-basedmethods [192] that suffer from finding
frequent but not necessarily “interesting” patterns. Finally, Movshovitz-Attias and Cohen [134]
infer the latent variables of a graphical model that models a software ontology.
As in NLP and machine learning in general, evaluating pattern mining models is hard, since the

quality of the discovered latent structure is subjective. Thus, researchers often resort to extrinsic,
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Table 2. Research on RepresentationalModels of Source CodePD (π | f (c)) (sorted alphabetically). References

annotated with ∗ are also included in other categories. GM refers to graphical models

Reference Input Code Rep-
resentation (c)

Target (π ) Intermediate Rep-
resentation (f )

Application

Allamanis et al. [6] Token Context Identifier Name Distributed Naming
Allamanis et al. [13]∗ Natural Lan-

guage
LM (Syntax) Distributed Code Search

Allamanis et al. [10] Tokens Method Name Distributed Naming
Allamanis et al. [8] PDG Variable Use Bugs Distributed Program Analysis
Bavishi et al. [22] Token Context Identifier Name Distributed Naming
Bichsel et al. [27] Dependency Net Identifier Name CRF (GM) Deobfuscation
Bruch et al. [33] Partial Object

Use
Invoked Method Localized Code Completion

Chae et al. [38] Data Flow Graph Static Analysis Localized Program Analysis
Corley et al. [44] Tokens Feature Location Distributed Feature Location
Cummins et al. [47] Tokens Optimization Flags Distributed Optimization Heuris-

tics
Dam et al. [49]∗ Token Context LM (Tokens) Distributed —
Gu et al. [76] Natural Lan-

guage
API Calls Distributed API Search

Guo et al. [79] Tokens Traceability link Distributed Traceability
Gupta et al. [81] Tokens Code Fix Distributed Code Fixing
Gupta et al. [80] Tokens Code Fix Distributed Code Fixing
Hu et al. [94] Linearized AST Natural Language Distributed Summarization
Iyer et al. [96] Tokens Natural Language Distributed Summarization
Jiang et al. [97] Tokens (Diff) Natural Language Distributed Commit Message
Koc et al. [106] Bytecode False Positives Distributed Program Analysis
Kremenek et al. [108] Partial PDG Ownership Factor (GM) Pointer Ownership
Levy and Wolf [114] Statements Alignment Distributed Decompiling
Li et al. [115] Memory Heap Separation Logic Distributed Verification
Loyola et al. [124] Tokens (Diff) Natural Language Distributed Explain code changes
Maddison and Tarlow [126]∗ LM AST Context LM (AST) Distributed —
Mangal et al. [127] Logic + Feedback Prob. Analysis MaxSAT Program Analysis
Movshovitz-Attias and Cohen [133] Tokens Code Comments Directed GM Comment Prediction
Mou et al. [132] Syntax Classification Distributed Task Classification
Nguyen et al. [142] API Calls API Calls Distributed Migration
Omar [148] Syntactic Con-

text
Expressions Directed GM Code Completion

Oh et al. [147] Features Analysis Params Static Analysis Program Analysis
Piech et al. [155] Syntax + State Student Feedback Distributed Student Feedback
Pradel and Sen [157] Syntax Bug Detection Distributed Program Analysis
Proksch et al. [159] Inc. Object Usage Object Usage Directed GM Code Completion
Rabinovich et al. [162]∗ LM AST Context LM (AST) Distributed Code Synthesis
Raychev et al. [165] Dependency Net Types + Names CRF (GM) Types + Names
Wang et al. [183] Tokens Defects LM (n-gram) Bug Detection
White et al. [188]∗ Tokens LM (Tokens) Distributed —
White et al. [187]∗ Token + AST — Distributed Clone Detection
Zaremba and Sutskever [197] Characters Execution Trace Distributed —

application-specific measures. For example, Fowkes et al. [62] run a user study to directly assess
the quality of their summarization method.

5 APPLICATIONS

Probabilistic models of source code have found a wide range of applications in software engineer-
ing and programming language research. These models enable the principled use of probabilistic
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Table 3. Research on Pa�ernMining Probabilistic Models of Source Code (sorted alphabetically). These mod-

els have the general form PD (д(c)). References annotated with ∗ are also included in other categories.

Reference Code Representation
(c)

Representation (д) Application

Allamanis and Sutton [12]∗ Syntax Graphical Model Idiom Mining
Allamanis et al. [4] Abstracted AST Graphical Model Semantic Idiom Mining
Fowkes and Sutton [63] API Call Sequences Graphical Model API Mining
Murali et al. [135] Sketch Synthesis Graphical Model Sketch Mining
Murali et al. [136] API Usage Errors Graphical Model Defect Prediction
Movshovitz-Attias and Cohen [134] Tokens Graphical Model Knowledge-BaseMining
Nguyen et al. [143] API Usage Distributed API Mining
Fowkes et al. [62] Tokens Graphical Model Code Summarization
Wang et al. [184] Serialized ASTs Distributed Defect Prediction
White et al. [187]∗ Token & Syntax Distributed Clone Detection

reasoning to handle uncertainty. Common sources of uncertainty are underspecified or inherently
ambiguous data (such as natural language text). In some domains, probabilistic source code mod-
els also simplify or accelerate analysis tasks that would otherwise be too computationally costly
to execute. In this section, our goal is to explain the use of probabilistic models in each area, not
review them in detail. We describe each area’s goals and key problems, then explain how they can
benefit from probabilistic, machine learning-based methods, and how the methods are evaluated.

5.1 Recommender Systems

Software engineering recommender systems [169, 170] make recommendations to assist software
engineering tasks, such as code autocompletion and recommending likely code reviewers for a
given code change. Many of these systems employ data mining and machine learning approaches
on various software engineering artifacts. Probabilistic models of code find application in source
code-based recommender systems [130], such as those that aid developers write or maintain code.
Modeling developer intent is a challenge: even if there were an agreed upon way to formalize

intent, developers are reluctant to formalize their intent separately from their code itself. Proba-
bilistic reasoning is well-suited for inferring intent, since it allows us to quantify the uncertainty
that is inherent to inferring any latent variable. Probabilistic recommender systems extract infor-
mation from the context of (partial) code and use it to probabilistically reason about developer
intent.
The most prominent recommender system and a feature commonly used in integrated devel-

opment environment (IDEs) is code completion. All widely used IDEs, such as Eclipse, IntelliJ and
Visual Studio, have some code completion features. According to Amann et al. [14], code comple-
tion is the most used IDE feature. However, code completion tools typically return suggestions
in alphabetic order, rather than in relative order of predicted relevance to the context. Statistical
code completion aims to improve suggestion accuracy by learning probabilities over the sugges-
tions and providing to the users a ranked list. Some systems focus on automatically completing
specific constructs (e.g.method calls and parameters); others try to complete all code tokens. In all
cases, probabilistic code completion systems use existing code as their training set.
Statistical code completion was first studied by Bruch et al. [33] who extracted features from

code context to suggest completions for method invocations and constructors. Later, Proksch
et al. [159] used Bayesian graphical models (structured prediction) to improve accuracy. This
context-based model captures all usages of an object and models the probability distribution for
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the next call. A version of this research is integrated into the Eclipse IDE under Eclipse Recom-
menders [61].
Source code language models have implicitly and explicitly been used for code completion. Hin-

dle et al. [88] were the first to use a token-level n-gram LM for this purpose, using the previous
n − 1 tokens to represent the completion context at each location. Later, Franks et al. [64], Tu
et al. [180] used a cache n-gram LM and further improved the completion performance, showing
that a local cache acts as a domain adapted n-gram. Nguyen et al. [144] augment the comple-
tion context with semantic information, improving the code completion accuracy of the n-gram
LM. Raychev et al. [166] exploit formal properties of the code in context to limit incorrect (but
statistically probable) API call suggestions. Their method is the first to depart from simple sta-
tistical token completion towards statistical program synthesis of single statements. Apart from
token-level language models for code completion, Bielik et al. [29] andMaddison and Tarlow [126]
create AST-level LMs that can be used for suggestion.
In contrast to work that predicts source code, Movshovitz-Attias and Cohen [133] create a rec-

ommender system to assist comment completion given a source code snippet, using a topic-like
graphical model to model context information. Similarly, the work of Allamanis et al. [5, 6, 10] can
be seen as a recommender systems for suggesting names for variables, methods, and classes by
using relevant code tokens as the context.

5.2 Inferring Coding Conventions

Coding conventions are syntactic constraints on code beyond those imposed by the grammar of
a programming language. They govern choices like formatting (brace and newline placement) or
Hungarian notation vs. CamelCase naming. They seek to prevent some classes of bugs and make
code easier to comprehend, navigate, and maintain [5]. In massive, open, online courses, coding
conventions help teachers identify and understand common student errors [71]. Enforcing coding
conventions is tedious. Worse, it is sometimes difficult to achieve consensus on what they should
be, a prerequisite for their codification in rule-based systems. Inferring coding conventions with
machine learning solves this problem by learning emergent conventions directly from a codebase.
This can help software teams to determine the coding conventions a codebase uses without the
need to define rules rule upfront or configure existing convention enforcing tools.
Machine learning models of source code that look at the surface structure (e.g. tokens, syntax)

are inherently well-suited for this task. Using the source code as data, they can infer the emergent
conventions while quantifying uncertainty over those decisions. An important challenge in this
application domain is the sparsity of the code constructs, caused by the diverse and non-repeatable
form of source code within projects and domains. Allamanis et al. [5, 6, 10], Bavishi et al. [22]
exploit the statistical similarities of code’s surface structure to learn and suggest variable, method,
and class naming conventions, while Allamanis and Sutton [12] and Allamanis et al. [4] mine
conventional syntactic and semantic patterns of code constructs that they call idioms. They show
that these idioms are useful for documentation and can help software engineering tool designers
achieve better coverage of their tools. To handle code formatting conventions, Parr and Vinju [152]
learn a source code formatter from data by using a set of hand-crafted features from the AST and
a k-NN classifier.

5.3 Code Defects

Probabilistic models of source code assign high probability to code that appears often in practice,
i.e. is natural. Therefore, code considered very improbable may be buggy. This is analogous to
anomaly detection using machine learning [39]. Finding defects is a core problem in software
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engineering and programming language research. The challenge in this domain rests in correctly
characterizing source code that contains a defects with high precision and recall. This is especially
difficult because of the rarity of defects and the extreme diversity of (correct) source code.
Preliminary work suggests that the probability assigned by language models can indicate code

defects. Allamanis and Sutton [11] suggest that n-gram LMs can be seen as complexity measures
and Ray et al. [163] present evidence that buggy code tends to have lower probability (is less
“natural”) than correct code and show that LMs find defects as well as popular tools like FindBugs.

Wang et al. [184] use deep belief networks to automatically learn token-level source code fea-
tures that predict code defects. Fast et al. [58] and Hsiao et al. [93] learn statistics from large
numbers of code to detect potentially erroneous code and perform program analyses while Wang
et al. [183] learn coarse-grained n-gram language models to detect uncommon usages of code.
Thesemodels implicitly assume that a simple set of statistics or an LM can capture anomalous/unusual
contexts. Recently, Murali et al. [136] use a combination of topic models to bias a recurrent neural
network that models the sequences of API calls in a learned probabilistic automaton. They use the
model to detect highly improbable sequences of API calls detecting real-world bugs in Android
code. Allamanis et al. [8], Pradel and Sen [157] use various elements from code context to detect
specific kinds of bugs, such as variable and operator misuses.
Because of the sparsity of source code, work on detecting code defects uses different abstrac-

tion levels of source code. For example, Wang et al. [183] create coarse-grained n-grams, while
Murali et al. [136] focus on possible paths (that remove control flow dependencies) over API calls.
Therefore, each model captures a limited family of defects, determined by the model designers’
choice of abstraction to represent. Pu et al. [160] and Gupta et al. [81] create models for detecting
and fixing defects but only for student submissions where data sparsity is not a problem. Other
data-mining based methods (e.g. Wasylkowski et al. [186]) also exist, but are out-of-scope from
this review since they do not employ probabilistic methods.
Also related is the work of Campbell et al. [35] and Bhatia and Singh [25]. These researchers

use source code LMs to identify and correct syntax errors. Detecting syntax errors is an easier and
more well defined task. The goal of these models is not to detect the existence of such an error
(that can be deterministically found) but to efficiently localize the error and suggest a fix.

The earlier work of Liblit et al. [117], Zheng et al. [199] use traces for statistical bug isolation.
Kremenek et al. [108] learn factor graphs (structured prediction) to model resource-specific bugs
by modeling resource usage specifications. These models use an efficient representation to cap-
ture bugs, but can fail on interprocedural code that requires more complex graph representations.
Finally, Patra and Pradel [153] use an LM of source code to generate input for fuzz testing browsers.
Not all anomalous behavior is a bug (it may simply be rare behavior), but anomalous behavior

in often executed code almost certainly is [56]. Thus, probabilistic models of source code seem a
natural fit for finding defective code. They have not, however, seen much industrial uptake. One
possible cause is their imprecision. The vast diversity of code constructs entails sparsity, from
which all anomaly detection methods suffer. Methods based on probabilistic models are no excep-
tion: they tend to consider rare, but correct, code anomalous.

5.4 Code Translation, Copying, and Clones

The success of statistical machine translation (SMT) among (natural) languages has inspired re-
searchers to use machine learning to translate code from one source language (e.g. Java) to an-
other (e.g. C#). Although rule-based rewriting systems can be (and have been) used, it is tedious
to create and maintain these rules, in the face of language evolution. SMT models are well suited
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for this task, although they tend to produce invalid code. To reduce these errors during translation
Karaivanov et al. [102] and Nguyen et al. [141] add semantic constraints to the translation process.
Existing research has applied widely used SMT models for text. Although these models learn

mappings between different language constructs such as APIs, they have only been used for trans-
lating between programming languages of similar paradigms and structure (C# and Java are both
object-oriented languages with managed memory). This is an important limitation; machine learn-
ing innovations are required to translate between languages of different types (e.g. Java to Haskell
or assembly to C) or even languages with different memory management (e.g. Java to C). Existing
per-statement SMT from Java to C does not track memory allocations and therefore fails to emit
memory de-allocations that C’s lack of garbage collection requires. Similarly, translating object-
oriented code to functional languages will require learning the conceptual differences of the two
paradigms while preserving semantics, such as learning to translate a loop to a map-reduce func-
tional. Researchers evaluate translation models by scoring exact matches, measuring the syntactic
or semantic correctness of the translated code, or using BLEU [150]. We discuss this and other
measure-related issues in Section 6.
Developers often copy code during development. This practice requires fixups to rename vari-

ables and handle name collisions; it can also create code clones, similar code snippets in different
locations of a code base [107]. Allamanis and Brockschmidt [7] automate naming cleanups after
copying; they use structured prediction and distributed representations to adapt/port a pasted snip-
pet’s variables into the target context. Their method probabilistically represents semantic informa-
tion about variable use to predict the correct name adaptations without external information (e.g.
tests). Clones may indicate refactoring opportunities (that allow reusing the cloned code). White
et al. [187] use autoencoders and recurrent neural networks [72] to find clones as code snippets that
share similar distributed representations. Using distributed vector representations allows them to
learn a continuous similarity metric between code locations, rather than using edit distance.

5.5 Code to Text and Text to Code

Linking natural language text to source code has many useful applications, such as program syn-
thesis, traceability, search and documentation. However, the diversity of both text and code, the
ambiguity of text, the compositional nature of code and the layered abstractions in software make
interconnecting text and code a hard problem. Probabilistic machine learning models provide a
principled method for modeling and resolving ambiguities in text and in code.
Generating natural language from source code, i.e. code-to-text, has applications to code docu-

mentation and readability. For example, Oda et al. [146] translate Python code to pseudocode (in
natural language) using machine translation techniques, with the goal of producing a more read-
able generation of the code. Iyer et al. [96] design a neural attention model that summarizes code
as text. Movshovitz-Attias and Cohen [133] generate comments from code using n-gram models
and topic models.
The reverse direction, text-to-code, aims to help people, both developers and end users, write

programs more easily. This area is closely related to semantic parsing in NLP. Semantic parsing
is the task of converting a natural language utterance into a representation of its meaning, often
database or logical queries that could subsequently be used for question answering [99]. We do
not have space to fully describe the large body of work that has been done in semantic parsing in
NLP, but instead will focus on text-to-code methods that output code in languages that are used
by human software developers. This area has attracted growing interest, with applications such as
converting natural language to Excelmacros [77], Java expressions [82], shell commands [118, 119],
simple if-then programs [161], regular expressions [110] and to SQL queries [200]. Finally, Yin and
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Neubig [196] have recently presented a neural architecture for general-purpose code generation.
For more details, Neubig [138] provides an informal survey of code generation methods.

5.6 Documentation, Traceability and Information Retrieval

Improving documentation and code search are central questions in software engineering. Prob-
abilistic models are particularly natural here because, as we have seen, they allow integrating
information between NL text and code. Although the more general code-to-text and text-to-code
models from the previous sections could clearly be applied here, researchers have often found, as
in the NL domain, that more specialized solutions are currently effective for these problems.
Code search — a common activity for software engineers [14, 172] — can employ natural lan-

guage queries. Software engineering researchers have focused on the code search problem using
information retrieval (IR) methods [68, 92, 128, 178]. Niu et al. [145] has used learning-to-rank
methods but with manually extracted features. Within the area of statistical models of source code,
Gu et al. [76] train a sequence-to-sequence (seq2seq) neural network to map natural language into
API sequences. Allamanis et al. [13] learn a bimodal, generative model of code, conditioned on
natural language text and use it to rank code search results. All of these methods use rank-based
measures (e.g. mean reciprocal rank) to evaluate their performance.
Documentation is text that captures requirements, specifications, and descriptions of code. En-

gineers turn to it to prioritize new features and to understand code during maintenance. Search-
ing, formalizing, reasoning about, and interlinking code to (i.e. the traceability problem of Go-
tel et al. [74]) documentation are seminal software engineering problems. Mining common API
patterns is a recurring theme and there is a large literature of non-probabilistic methods (e.g.
frequency-based) for mining and synthesizing API patterns [34, 192], which are out-of-scope of
this review. Also out-of-scope is work that combines natural language information with APIs. For
example, Treude and Robillard [179] extract phrases from StackOverflow using heuristics (manu-
ally selected regular expressions) and use off-the-self classifiers on a set of hand-crafted features.
We refer the reader to Robillard et al. [169] for all probabilistic and non-probabilistic recommender
systems. Within this domain, there are a few probabilistic code models that mine API sequences.
Gu et al. [76] map natural language text to commonly used API sequences, Allamanis and Sut-
ton [12] learn fine-grained source code idioms, that may include APIs. Fowkes and Sutton [63]
uses a graphical model to mine interesting API sequences.
Documentation is also related to information extraction from (potentially unstructured) doc-

uments. Cerulo et al. [37] use a language model to detect code “islands” in free text. Sharma
et al. [175] use a language model over tweets to identify software-relevant tweets.

5.7 Program Synthesis

Program synthesis is concerned with generating full or partial programs from a specification [78].
Traditionally, a specification is a formal statement in an appropriate logic.More recently, researchers
have considered partial or incomplete specifications, such as input/output pairs [111] or a natural
language description. Program synthesis generates full or partial programs from a specification.
When the specification is a natural language description, this is the semantic parsing task (see
Section 5.5). Program synthesis (e.g. from examples or a specification) has received a great deal
of attention in programming language research. The core challenge is searching the vast space of
possible programs to find one that complies with the specification. Probabilistic machine learning
models help guiding the search process to more probable programs.
Research on programming by example (PBE) leverages machine learning methods to synthesize

code. Liang et al. [116] use a graphical model to learn commonalities of programs across similar
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tasks with the aim to improve program synthesis search. Menon et al. [129] use features from
the input/output examples to learn a parameterized PCFG to speed up synthesis. Singh and Gul-
wani [176] extract features from the synthesized program to learn a supervised classifier that can
predict the correct program and use it to re-rank synthesis suggestions. The recent work of Balog
et al. [20] and Parisotto et al. [151] combine ideas from existing enumerative search techniques
with learned heuristics to learn to efficiently synthesize code, usually written within a DSL. Nee-
lakantan et al. [137] and Reed and de Freitas [167] introduce neural differentiable architectures
for program induction. This is an interesting emerging area of research [101], but does not yet
scale to the types of problems considered by the programming language and software engineer-
ing community [59, 69]; also see Devlin et al. [53], Gaunt et al. [69] for a comparison of neural
program induction and program synthesis methods. Finally, the code completion work of Raychev
et al. [166] can be seen as a limited program synthesis of method invocations at specific locations.
Although program synthesis is usually referred in the context of generating a program that com-

plies to some form of specification, probabilistic models have been used to synthesize random —
but functioning — programs for benchmarks and compiler fuzzing. Cummins et al. [48] synthesize
automatically a large number of OpenCL benchmarks by learning a character-level LSTM over
valid OpenCL code. Their goal is to generate reasonable-looking code, rather than synthesize a
program that complies with a specification. To ease their task, they normalize the code by consis-
tently alpha-renaming variables andmethod names. Finally, they filter invalid intermediate output
so they, in the end, generate only valid programs. In a similar manner, Patra and Pradel [153] syn-
thesize JavaScript programs for fuzz testing JavaScript interpreters.

5.8 Program Analysis

Program analysis is an important area that seeks to soundly extract semantic properties, like cor-
rectness, from programs. Sound analyses, especially those that scale, can be imprecise and return
unacceptably large numbers of false positives. Probabilistic models of code use probabilistic rea-
soning to alleviate these problems. Three distinct program analysis approaches have exploited
probabilistic models of source code.
First, a family ofmodels relaxes the soundness requirement, yielding probabilistic results instead.

Raychev et al. [165] use a graphical model to predict the probability distribution of JavaScript
variable types by learning statistical patterns of how code is used. Oh et al. [147] and Mangal
et al. [127] use machine learning models to statistically parameterize program analyses to reduce
false positive ratio while maintaining high precision. Chae et al. [38] reduce automatically (without
machine learning) a program to a set of data-flow graphs, manually extract features from them.
Using these features they then learn the appropriate parametrization of a static analysis, using a
traditional classifier. Koc et al. [106] train a classifier, using LSTMs, to predict if a static analysis
warning is a false positive. The neural network learns common patterns that can discriminate
between false and true positives. The second paradigm that has been explored is to use machine
learning to create models that produce plausible hypotheses of formal verification statements that
can be proved. Brockschmidt et al. [31] and Li et al. [115] propose a set of models that generate
separation logic expressions from the heap graph of a program, suitable for formally verifying its
correctness. The third paradigm — although not yet applied directly to source code but to other
forms of formal reasoning — learns heuristics to speed-up the search for a formal automated proof.
The goal of such methods is to replace hard-coded heuristics with a learnable and adaptive module
that can prioritize search tactics per-problem without human intervention. Alemi et al. [3] and
Loos et al. [123] take a first step towards this direction by learning heuristic for automated theorem
proving for mathematical expressions.
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6 CHALLENGES AND FUTURE DIRECTIONS

The development and analysis of codemust contend with uncertainty, in many forms: “What is the
purpose of this code?”, “What does functionality does this unit test test?”, “From this program, can we
infer any of its specification?”, “What is this program’s intended (or likely) input domain?” or “Why
did this program crash here?”. This contrasts with traditional program analysis which is conserva-
tive: it deems that a program has a property, like a bug, if that property is possible, independent
of likelihood. In contrast, machine learning studies robust inference under uncertainty and noise.
Thus, the application of machine learning to code and its development, is an emerging research
topic with the potential to influence programming language and software engineering research.
Here, we list topics where principled probabilistic reasoning promises new advances, focusing on
probabilistic models of code.We also list open challenges, some quite longstanding like long-range
dependency, and speculate about directions for making progress on their resolution.
For each open problem, machine learning is introduced to handle uncertainty, ambiguity, or

avoid hard-coded heuristics. Probabilistic learning systems model these as noise which they han-
dle robustly by training statistical principled models. This in turn has allowed the creation of new
previously impossible systems (e.g. text-to-code systems) or replaced existing, hard-coded heuris-
tics with machine learning systems that promise to be more robust and generalize better. This
course of direction highly resembles that of NLP, where hard-coded “expert” systems have been
successfully replaced by sophisticated machine learning methods.

6.1 The Third Wave of Machine Learning

The first wave of machine learning for source code applied off-the-shelf machine learning tools
with hand-extracted features. The second wave, reviewed here, avoids manual feature extraction
and uses the source code itself within machine learning heavily drawing inspiration from existing
machine learning methods in NLP and elsewhere. The third wave promises new machine learning
models informed by programming language semantics. What form will it take?
At the time of this writing, machine learning, and deep learning in particular, is enjoying rock-

star status among research fields. Despite its current (perhaps ephemeral) popularity, it is not
a panacea. In some cases, a machine learning model may not be required (e.g. when the prob-
lem is deterministic) and, in other cases, simple models can outperform advanced, off-the-self
deep learning methods, designed for non-code domains [65, 84]. Furthermore, over-engineering
or under-engineering machine learning models usually leads to suboptimal results. Selecting a ma-
chine learningmodel for a specific problem necessitates questioning if a specific model is fit for the
target application. Strong baseline methods are needed to estimate if a performance improvement
justifies the added complexity of a model. In short, the right tools should be used for the right job,
and machine learning is no exception.

Bridging Representations and Communities. Programming language research and practice use
a well-defined and widely useful set of representations, usually in a symbolic form. In contrast,
machine learning research customarily works with continuous representations. Bridging the gap
between these representations by allowingmachine learning systems to reason with programming
language representations, is an important challenge. Handling unambiguous code has already led
to a combination of probabilistic methods with “formal” constraints, that limit the probabilistic
model to valid code. For example, Maddison and Tarlow [126] limit theirmodel to generate syntacti-
cally correct and scope-respecting codewhile Raychev et al. [165] easily create a highly-structured
model of a program taking advantage of its unambiguous form. Introducing better representations
that bridge the gap between machine learning and source code will allow the probabilistic models
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of code to reason about the rich structure and semantics of code, without resorting to proxies. The
core problem in this area is the lack of understanding of machine learning from the programming
language community and vice-versa. At the same time, new machine learning methods that can
handle programming language structures in its full complexity at scale need to be researched.
A major obstacle here is engineering systems that efficiently and effectively combine the prob-

abilistic world of machine learning and the formal, logic-based world of code analysis. One ap-
proach, taken by several authors [9, 127, 165, 171], is to relax formal systems into probabilistic.
Such systems, however, lack the guarantees formal systems (e.g. soundness) often provide. Alemi
et al. [3], Balog et al. [20] and Loos et al. [123] follow a second approach that maintains soundness:
they learn input and context-specific heuristics that efficiently guide search-based methods, such
as theorem proving and program synthesis.
All of approaches to source codemodelingmust decide whether to explicitly model the structure

and constraints of source code or to rely on general methodswith adequate capacity. One one hand,
using well-known, domain-generic machine learning methods has the advantage that the models
are well-understood and rarely require significant effort or expertise to apply. On the other hand,
designing models with built-in inductive biases for the problem domain usually performs better
with less data, at the cost of manually designing and debugging domain (even problem-specific)
networks. One such promising direction is modular neural network architectures. Such architec-
tures decompose the network into components that are combined based on the problem instance.
For source code models, such architectures can derive its structure through static analyses. These
architectures have been useful for visual question answering in NLP. Andreas et al. [17] create
neural networks by composing them from “neural modules”, based on the input query structure.
Similarly, we believe that such architectures will be useful within probabilistic models of source
code. An early example is the work of Allamanis et al. [8] who design a neural network based
on the output of data flow analysis. Such architectures should not only be effective for bridging
representations among communities but — as we will discuss next — can combat issues with com-
positionality, sparsity and generalization. Nevertheless, issues that arise in static analyses, such as
path explosion, will still need to be addressed.

Data Sparsity, Compositionality and Strong Generalization. The principle of reusability in soft-
ware engineering creates a form of sparsity in the data, where it is rare to find multiple source
code elements that perform exactly the same tasks. For example, it is rare to find hundreds of
database systems, whereas one can easily find thousands of news articles on a popular piece of
news. The exceptions, like programming competitions and student solutions to programming as-
signments, are quite different from industrial code. This suggests that there aremany opportunities
for researching machine learning models and inference methods that can handle and generalize
from the highly-structured, sparse and composable nature of source code data. Do we believe in
the unreasonable effectiveness of data [83]? Yes, but we do not have sufficient data.
Although code and text are both intrinsically extensible, code pushes the limit of existing ma-

chine learning methods in terms of representing composition. This is because most natural lan-
guage methods rarely define novel, previously unseen, terms, with the possible exception of legal
and scientific texts. In contrast, source code is inherently extensible, with developers constantly
creating new terms (e.g. by defining new functions and classes) and combining them in still higher-
level concepts. Compositionality refers to the idea that the meaning of some element can be un-
derstood by composing the meaning of its constituent parts. Recent work [86] has shown that
deep learning architecture can learn some aspects of compositionality in text. Machine learning
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for highly compositional objects remains challenging, because it has proven hard to capture rela-
tions between objects, especially across abstraction levels. Such challenges arise even when con-
sidering simple code-like expressions [9]. However, if sufficient progress is to be made, represent-
ing source code artifacts in machine learning will improve significantly, positively affecting other
downstream tasks. For example, learning composable models that can combine meaningful repre-
sentations of variables into meaningful representations of expressions and functions will lead to
much stronger generalization performance.
Data sparsity is still an important and unsolved problem. Although finding a reasonably large

amount of source code is relatively easy, it is increasingly hard to retrieve some representations of
source code. Indeed, it is infeasible even to compile all of the projects in a corpus of thousands of
projects, because compiling a project requires understanding how the project handles external de-
pendencies, which can sometimes be idiosyncratic. Furthermore, computing or acquiring semantic
properties of existing, real-world code (e.g. purity of a function [60] or pre-/post- conditions [90])
is hard to do, especially at scale. Scalability also hampers harvesting run-time data from real-world
programs: it is challenging to acquire substantial run-time data even for a single project. Exploring
ways to synthesize or transform “natural” programs that perform the same task in different ways
is a possible way ahead. Another promising direction to tackle this issue is by learning to extrapo-
late from run-time data (e.g. collected via instrumentation of a test-suite) to static properties of the
code [4]. Although this is inherently a noisy process, achieving high accuracy may be sufficient,
thanks to the inherent ability of machine learning to handle small amounts of noise.
Strong generalization also manifests as a deployability problem. Machine learning models, espe-

cially when they have become effective, are often so large that they are too large for a developer’s
machine, but using the cloud raises privacy6 concerns and prevents offline coding. When under
development and tooling is needed, code evolves quickly, subjecting models to constant concept
drift and necessitating frequent retraining which can be extremely slow and costly. Addressing
this deployability concern is an open problem and requires advances in machine learning areas
such as transfer learning and one-shot learning. For example, say a program P uses libraries A and
B, which have been shipped with the modelsMA andMB . Could we save time training a model for
P by transferring knowledge fromMA andMB?

Finally, source code representations are multifaceted. For example, the token-level “view” of
source code is quite different from a data flow view of code. Learning to exploit multiple views
simultaneously can help machine learning models generalize and tackle issues with data sparsity.
Multi-view [193] and multi-modal learning (e.g. Gella et al. [70]), areas actively explored in ma-
chine learning, aim to achieve exactly this. By combining multiple representations of data, they
aim to improve upon the performance on various tasks, learning to generalize using multiple in-
put signals. We believe that this is a promising future direction that may allow us to combine
probabilistic representations of code to achieve better generalization.

Measures. To train and evaluate machine learning models, we need to easily measure their per-
formance. These measures allow the direct comparison of models and have already lead to im-
provements in multiple areas, such as code completion (Section 5.1). Nonetheless, these measures
are imprecise. For instance, probabilistic recommender systems define a probability density over
suggestions whose cross-entropy can be computed against the empirical distribution in test data.
Although cross-entropy is correlated with suggestion accuracy and confidence, small improve-
ments in cross entropy may not improve accuracy. Sometimes the imprecision is due to unrealistic
use case assumptions. For example, the measures for LM-based code completion tend to assume

6https://www.theregister.co.uk/2017/07/25/kite_flies_into_a_fork/

https://www.theregister.co.uk/2017/07/25/kite_flies_into_a_fork/
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that code is written sequentially, from the first token to the last one. However, developers rarely
write code in such a simple and consistent way [158]. Context-based approaches assume that the
available context (e.g. other object usages in the context) is abundant, which is not true in a real
editing scenarios. Researchers reporting keystrokes saved have usually assumed that code comple-
tion suggestions are continuously presented to the user as she is typing. When the top suggestion
is the target token, the user presses a single key (e.g. return) to complete the rest of the target.
Furthermore, somemetrics that are widely used in NLP are not suited for source code. For exam-

ple, BLEU score is not suitable for measuring the quality of output source code (e.g. in transducer
models) because it fails to account for the fact that the syntax is known in all programming lan-
guages, so the BLEU score may be artificially “inflated” for predicting deterministic syntax. Second,
the granularity over which BLEU is computed (e.g. per-statement vs. per-token) is controversial.
Finally, syntactically diverse answers may be semantically equivalent, yielding a low BLEU score
while being correct. Finding new widely-accepted measures for various tasks will allow the com-
munity to build reliable models with well-understood performance characteristics.

6.2 New Domains

Here, we visit a number of domains to which machine learning has not yet been systematically
applied and yet suffer from uncertainty problems that machine learning is particularly well suited
to address, promising new advances.

Debugging. Debugging is a common task for software engineers [191]. Debugging is like trying
to find a needle in the haystack; a developer has to recognize relevant information from the deluge
of available information. A multitude of tools exist in this area whose main goal is to visualize a
program’s state during its execution. Probabilistic models of source code could help developers,
such as by filtering highly-improbable program states. Statistical debugging models, such as the
work of Zheng et al. [198, 199] and Liblit et al. [117] are indicative of the possibilities within this
area. Further adding learning within debugging models may allow further advances in statistical
debugging. However, progress in this area is impeded by the combination of lack of data at a large
scale and the inherent difficulty of pattern recognition in very high-dimensional spaces. Defects4J
[100] — a curated corpus of bugs — could further prove useful within machine learning for fault
prediction. Furthermore, collecting and filtering execution traces to aid debugging is another chal-
lenge for which machine learning is well-suited. Collection requires expensive instrumentation,
which can introduce Heisenbugs, bugs masked by the overhead of the instrumentation added to
localize them. Here the question is “Can machine learning identify probe points or reconstruct
more complete traces from partial traces?” Concerning filtering traces, machine learning may be
able to find interesting locations, like the root cause of bugs. Future methods should also be able
to generalize across different programs, or even different revisions of the same program, a difficult
task for existing machine learning methods.

Traceability. Traceability is the study of links among software engineering artifacts. Examples
include links that connect code to its specification, the specification to requirements, and fixes
to bug reports. Developers can exploit these links to better understand and maintain their code.
Usually, these links must be recovered. Information retrieval has dominated link recovery. The
work of Guo et al. [79] and Le et al. [113] suggests that learning better (semantic) representations
of artifacts can successfully, automatically solve important traceability problems.
Two major obstacles impede progress: lack of data and a focus on generic text. Tracing dis-

cussions in email threads, online chat rooms (e.g. Slack), documents and source code would be
extremely useful, but no publicly available and annotated data exists. Additionally, to date, NLP
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research has mostly focused onmodeling generic text (e.g. from newspapers); technical text in con-
versational environments (e.g. chatbots) has only begun to be researched. StackOverflow presents
one such interesting target. Although there are hundreds of studies that extract useful artifacts (e.g.
documentation) from StackOverflow, NLP methods — such as dependency parsing, co-reference
analysis and other linguistic phenomena — have not been explored.

Code Completion and Synthesis. Code completion and synthesis using machine learning are two
heavily researched and interrelated areas. Despite this fact, to our knowledge, there has been no
full scale comparison between LM-based [87, 144, 166] and structured prediction-based autocom-
pletion models [33, 159]. Although both types of systems target the same task, the lack of a well-
accepted benchmark, evaluation methodology andmetrics has lead to the absence of a quantitative
comparison that highlights the strengths and weaknesses of each approach. This highlights the ne-
cessity of widely accepted, high-quality benchmarks, shared tasks, and evaluation metrics that can
lead to comparable and measurable improvements to tasks of interest. NLP and computer vision
follow such a paradigm with great success7.
Omar et al. [149] discuss the challenges that arise from the fact that program editors usually

deal with incomplete, partial programs. Although they discuss how formal semantics can extend
to these cases, inherently any reasoning about partial code requires reasoning about the program-
mer’s intent. Lu et al. [125] used information-retrieval methods for synthesizing code completions
showing that simply retrieving snippets from “big code” can be useful when reasoning about code
completion, even without a learnable probabilistic component. This suggests a fruitful area for
probabilistic models of code that can assist editing tools when reasoning about incomplete code’s
semantics, by modeling how code could be completed.

Education. Software engineering education is one area that is already starting to be affected by
this field. The work of Campbell et al. [35] and Bhatia and Singh [25] already provide an automated
method for fixing syntax errors in student code,whereas Piech et al. [155],Wang et al. [182] suggest
advancements towards giving richer feedback to students. Achieving reasonable automation can
help provide high-quality computer science education tomanymore students than is feasible today.
However, there are important challenges associated with this area. This includes the availability of
highly-granular data where machine learning systems can be trained, difficulty with embedding
semantic features of code into machine learning methods and the hardness of creating models
that can generalize to multiple and new tasks. Student coursework submissions are potentially a
ripe application area for machine learning, because here we have available many programs, from
different students, which are meant to perform the same tasks. An especially large amount of
such data is available in Massive Open Online Courses (MOOCs). This opens exciting possibilities,
such as providing granular and detailed feedback, curriculum customization and other intelligent
tutoring systems can significantly change computer science education.

Assistive Tools. Probabilistic models have allowed computer systems to handle noisy inputs such
as speech, and handwritten text input. In the future, probabilistic models of source code may en-
able novel assistive IDEs, creating inclusive tools that improve upon conventional methods of
developer-computer interaction and provide inclusive coding experiences.

7 RELATED RESEARCH AREAS

A variety of related research areas within software engineering and programming languages over-
lap with the area of statistical modeling of code. One of the most closely related research areas is

7See https://qz.com/1034972/ for a popular account of the effect of large-scale datasets in computer vision.

https://stackoverflow.com
https://qz.com/1034972/
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mining software repositories (MSR) and big code. MSR is a well-established, vibrant and active field;
the idea is to mine the large amounts of source code data and meta-data available in open-source
(and commercial) repositories to gain valuable information, and use this information to enhance
both tools and processes. The eponymous flagship conference is now in its 15th iteration. “Big
Code” is a synonymous neologism, created by DARPA’sMUSE program8 to borrow some branding
shine from the well-marketed term “Big Data”. The MSR field’s early successes date back to work
by Zimmermann et al. [201], Williams and Hollingsworth [189], Gabel and Su [66] and Acharya
et al. [1] on mining API protocols from source code bases. These approaches used pragmatic count-
ing techniques, such as frequent item-set mining. Mining software repositories is in one sense a
broader field than statistical models of code, as rather than focusing on code alone, MSR considers
the full spectrum of software engineering data that can be derived from the software engineering
process, such as process measures, requirement traceability, commit logs. Additionally, research
in malware detection is related to probabilistic models of code [18, 36].
Another active area at the intersection machine learning and programming language research

is probabilistic programming [73]. This might appear to be related to statistical models of code,
but in fact there is a fundamental difference; essentially, probabilistic programming works in the
reverse direction. Probabilistic programming seeks to deploy programming language concepts to
make it easier for developers to write new machine learning algorithms. Statistical code models
seek to apply machine learning concepts to make it easier for developers to write new programs.
In some sense, the two areas are dual to each other. That being said, one can certainly imagine com-
pleting the cycle and attempting to develop statistical code models for probabilistic programming
languages. This could be a fascinating endeavor as probabilistic programming grows in popularity
to the extent that large corpora of probabilistic programs become available.
In software engineering, the term modeling often refers to formal specifications of program

behavior, which are clearly a very different kinds of models than those described here. Combining
formal models of semantics with statistical models of source code described in this review would
be an interesting area for future research. There is also some work on probabilistic models of code
that do not have a learning component, such as Liblit et al. [117]. Within machine learning, there
has been an interesting recent line of work on neural abstractmachines [75, 167, 168], which extend
deterministic automata from computer science, such as pushdown automata and Turing machines,
to represent differentiable functions, so that the functions can be estimated by techniques from
machine learning. To the best of our knowledge, this intriguing line of work does not yet consider
source code, unlike thework described in this review. Finally, semantic parsing is a vibrant research
area of NLP that is closely related to the idea of program synthesis from natural language; see
Section 5.5 for more discussion.

8 CONCLUSIONS

Probabilistic models of source code have exciting potential to support new tools in almost every
area of program analysis and software engineering. We reviewed existing work in the area, pre-
senting a taxonomy of probabilistic machine learning source code models and their applications.
The reader may appreciate thatmost of the research contained in this reviewwas conductedwithin
the past few years, indicating a growth of interest in this area among the machine learning, pro-
gramming languages and software engineering communities. Probabilistic models of source code
raise the exciting opportunity of learning from existing code, probabilistically reasoning about
new source code artifacts and transferring knowledge between developers and projects.

8http://science.dodlive.mil/2014/03/21/darpas-muse-mining-big-code/

http://science.dodlive.mil/2014/03/21/darpas-muse-mining-big-code/
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Table 4. Some datasets, available online, used in research of Probabilistic Models of Source Code (sorted

alphabetically). Links are clickable in the digital version.

Reference Short Description Link

Allamanis and Sutton [11] Deduplicated snapshot of all Java GitHub projects with least one fork. link
Allamanis et al. [10] Parsed source code for 11 highly-ranked Java GitHub projects. link
Barone and Sennrich [21] Parallel corpus of 150k Python function declarations, docstrings and bodies. link
Cerulo et al. [37] Free text data with source code “islands”. link
Dyer et al. [54] 800k+ code repositories, software to support queries and mining link
Iyer et al. [96] Source code snippets with their StackOverflow title. link
Kushman and Barzilay [110] Dataset for generating regular expressions from natural language. link
Lin et al. [119] Text to Bash commands corpus. link
Ling et al. [120] Text descriptions and code for card game. link
Raychev et al. [164] A dataset of deduplicated JavaScript files and their ASTs extracted fromGitHub. link
Raychev et al. [164] A dataset of deduplicated Python files and their ASTs extracted from GitHub. link
Oda et al. [146] Parallel corpus of Python code and pseudocode in English and Japanese. link
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