8 research outputs found

    Iz stranih ฤasopisa

    Get PDF
    U tekstu je dan popis radova koji su objavljeni u stranim ฤasopisima

    A personal route prediction system based on trajectory data mining

    Get PDF
    This paper presents a system where the personal route of a user is predicted using a probabilistic model built from the historical trajectory data. Route patterns are extracted from personal trajectory data using a novel mining algorithm, Continuous Route Pattern Mining (CRPM), which can tolerate different kinds of disturbance in trajectory data. Furthermore, a clientโ€“server architecture is employed which has the dual purpose of guaranteeing the privacy of personal data and greatly reducing the computational load on mobile devices. An evaluation using a corpus of trajectory data from 17 people demonstrates that CRPM can extract longer route patterns than current methods. Moreover, the average correct rate of one step prediction of our system is greater than 71%, and the average Levenshtein distance of continuous route prediction of our system is about 30% shorter than that of the Markov model based method

    ฮ™ฮดฮนฯ‰ฯ„ฮนฮบฯŒฯ„ฮทฯ„ฮฑ ฯƒฯ„ฮทฮฝ ฮตฮพฯŒฯฯ…ฮพฮท ฮณฮฝฯŽฯƒฮทฯ‚ ฯ„ฯฮฟฯ‡ฮนฯŽฮฝ ฮบฮนฮฝฮฟฯ…ฮผฮญฮฝฯ‰ฮฝ ฮฑฮฝฯ„ฮนฮบฮตฮนฮผฮญฮฝฯ‰ฮฝ

    Get PDF
    ฮฃฮทฮผฮตฮฏฯ‰ฯƒฮท: ฮดฮนฮฑฯ„ฮฏฮธฮตฯ„ฮฑฮน ฯƒฯ…ฮผฯ€ฮปฮทฯฯ‰ฮผฮฑฯ„ฮนฮบฯŒ ฯ…ฮปฮนฮบฯŒ ฯƒฮต ฮพฮตฯ‡ฯ‰ฯฮนฯƒฯ„ฯŒ ฮฑฯฯ‡ฮตฮฏฮฟ

    User Behavior Reasoning and Next Location Prediction Based on Life Log Mining

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์‚ฐ์—…๊ณตํ•™๊ณผ, 2016. 2. ๋ฐ•์ข…ํ—Œ.์ตœ๊ทผ ์Šค๋งˆํŠธํฐ๊ณผ ํƒœ๋ธ”๋ฆฟ๊ณผ ๊ฐ™์€ ์Šค๋งˆํŠธ ๋ชจ๋ฐ”์ผ ๊ธฐ๊ธฐ๋“ค์˜ ๊ธ‰์†ํ•œ ๋ณด๊ธ‰์œผ๋กœ ์ธํ•ด ๊ฐœ์ธ ๋ณ„๋กœ ํ•˜๋‚˜ ์ด์ƒ์˜ ๋ชจ๋ฐ”์ผ ๊ธฐ๊ธฐ๋ฅผ ํœด๋Œ€ํ•˜๊ณ  ๋‹ค๋‹ˆ๋Š” ๊ฒƒ์ด ์ผ์ƒ์ ์ธ ์ƒํ™ฉ์ด ๋˜์—ˆ๋‹ค. ์ด์— ๋”ฐ๋ผ ์›น์„œํ•‘์ด๋‚˜ ๋ฉ”์‹œ์ง•, ๊ฒŒ์ž„ ๋“ฑ์˜ ๊ธฐ๋Šฅ๋“ค์„ ํ™œ์šฉํ•˜๋Š” ๊ฒƒ์ด ์ž์—ฐ์Šค๋Ÿฌ์šด ์ƒํ™ฉ์ด ๋˜์—ˆ์œผ๋ฉฐ, ํ•ด๋‹น ๊ธฐ๊ธฐ๋กœ๋ถ€ํ„ฐ ํš๋“ ๊ฐ€๋Šฅํ•œ ๊ฐœ์ธ ์ผ์ƒ์— ๋Œ€ํ•œ ์งยท๊ฐ„์ ‘ ์ •๋ณด๋ฅผ ํ™œ ์šฉํ•˜๋Š” ๋ผ์ดํ”„ ๋กœ๊ทธ ๋งˆ์ด๋‹ ์—ฐ๊ตฌ๊ฐ€ ์ฃผ๋ชฉ ๋ฐ›๊ฒŒ ๋˜์—ˆ๋‹ค. ๋ผ์ดํ”„ ๋กœ๊ทธ๋กœ๋ถ€ํ„ฐ ์‚ฌ์šฉ์ž์˜ ํ–‰์œ„๋ฅผ ์ถ”๋ก ํ•˜๊ณ  ๋ชฉ์ ์ง€๋ฅผ ์˜ˆ์ธก ํ•˜๋Š” ์—ฐ๊ตฌ๋Š” ๋ผ์ดํ”„ ๋กœ๊ทธ ๋งˆ์ด๋‹ ์—ฐ๊ตฌ์˜ ๋ถ„์•ผ๋“ค ์ค‘ ํ•˜๋‚˜๋กœ ์‹ค์ œ ์ƒํ™œ์— ๋ฐ€์ ‘ํ•œ ๊ด€๋ จ์ด ์žˆ๊ณ  ์ง€๋Šฅํ˜• ์„œ๋น„์Šค๋ฅผ ์ œ๊ณตํ•˜๋Š” ๊ธฐ๋ฐ˜์ด ๋œ๋‹ค๋Š” ์ ์—์„œ ์ค‘์š”์„ฑ๊ณผ ํ™œ์šฉ์„ฑ์ด ๋†’์€ ์—ฐ๊ตฌ๋“ค์ด๋‹ค. ํ•˜์ง€๋งŒ ์Šค๋งˆํŠธ ๊ธฐ๊ธฐ๊ฐ€ ์ฃผ๋ณ€ ํ™˜๊ฒฝ ์ •๋ณด๋‚˜ ๊ณผ๊ฑฐ ๋ฐฉ๋ฌธ ๊ธฐ๋ก ๋“ฑ๊ณผ ๊ฐ™์€ ๊ฐ„์ ‘ ์ •๋ณด๋งŒ ํš๋“ ๊ฐ€๋Šฅํ•˜๋‹ค๋Š” ์ ๊ณผ ๊ฐœ์ธ์˜ ํ–‰์œ„์™€ ๋ชฉ์ ์ง€๋Š” ๊ด€์ธก ๊ฐ€๋Šฅํ•œ ์š”์ธ ์ด์™ธ์˜ ์™ธ๋ถ€์ ์ธ ์š”์ธ์˜ ์˜ํ–ฅ์„ ๋ฏธ์น  ์ˆ˜ ์žˆ๋‹ค๋Š” ์ ์—์„œ ์ด๋ฅผ ์ฃผ์–ด์ง„ ์ •๋ณด๋กœ๋ถ€ํ„ฐ ์ถ”๋ก ํ•˜๋Š” ๋ฐ์— ์–ด๋ ค์›€์ด ์กด์žฌํ•œ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์œ„์˜ ๋ฌธ์ œ ์ ์„ ๊ณ ๋ คํ•˜์—ฌ ๋ผ์ดํ”„ ๋กœ๊ทธ๋กœ๋ถ€ํ„ฐ ์‚ฌ์šฉ์ž์˜ ํ–‰์œ„์™€ ๋ชฉ์ ์ง€๋ฅผ ์ถ”๋ก  ํ•˜๋Š” ๋ฐฉ๋ฒ•์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๋ฅผ ์ˆ˜ํ–‰ํ•œ๋‹ค. ์ผ๋ จ์˜ ์—ฐ๊ตฌ๋ฅผ ์ˆ˜ํ–‰์„ ์œ„ํ•ด์„œ๋Š” ๋ผ์ดํ”„ ๋กœ๊ทธ๋ฅผ ์ˆ˜์ง‘ํ•  ์ˆ˜ ์žˆ๋Š” ํ™˜๊ฒฝ์˜ ๊ตฌ์ถ•์ด ์„ ํ–‰๋˜์–ด์•ผ ํ•œ๋‹ค. ๊ธฐ์กด ๋ผ์ดํ”„ ๋กœ๊ทธ ์—ฐ๊ตฌ๋“ค์€ ์—ฐ๊ตฌ๋“ค ๊ฐ๊ฐ์— ๋Œ€ํ•ด ๋ผ์ดํ”„ ๋กœ๊ทธ ์ˆ˜์ง‘ ํ™˜๊ฒฝ์„ ๊ฐœ๋ณ„์ ์œผ๋กœ ๊ตฌ์ถ•ํ•˜๊ณ  ์ˆ˜์ž…ํ•˜๋Š” ๊ฒฝ์šฐ๊ฐ€ ๋‹ค์ˆ˜์˜€๋‹ค. ๋‹ค์–‘ํ•œ ์—ฐ๊ตฌ๋“ค์˜ ์š”๊ตฌ์‚ฌํ•ญ์— ๋”ฐ๋ผ ์œ ์—ฐ ํ•˜๊ฒŒ ์„ค์ • ๊ฐ€๋Šฅํ•œ ํ”Œ๋žซํผ์„ ๊ตฌ์ถ•์„ ํ†ตํ•ด ๋‹ค์–‘ํ•œ ๋ผ์ดํ”„ ๋กœ๊ทธ ์—ฐ๊ตฌ ์— ๊ธฐ๋ฐ˜์œผ๋กœ์จ ์‹ ์†ํ•˜๊ฒŒ ์—ฐ๊ตฌ๋ฅผ ์ง„ํ–‰ํ•  ์ˆ˜ ์žˆ๋Š” ๊ธฐ๋ฐ˜์„ ์ œ๊ณตํ•œ๋‹ค. ๋ผ์ดํ”„ ๋กœ๊ทธ ์—ฐ๊ตฌ์—์„œ ๊ณต๊ฐ„์  ์ •๋ณด์˜ ์ ์ ˆํ•œ ํš๋“ ๋ฐ ํ™œ์šฉ์€ ์ค‘์š”ํ•œ ์š”์†Œ ์ค‘ ํ•˜๋‚˜์ด๋‹ค. ๋ผ์ดํ”„ ๋กœ๊ทธ์—์„œ๋Š” GPS ์„ผ์„œ์™€ ๊ฐ™์€ ์žฅ๋น„๋ฅผ ํ†ตํ•ด ์œ„์น˜ ์ •๋ณด๋ฅผ ๋ฌผ๋ฆฌ์ ์ธ ์œ„์น˜๋ฅผ ๋‚˜ํƒ€๋‚ด๋Š” ์ขŒํ‘œ์˜ ํ˜•ํƒœ๋กœ ํš๋“๋˜์ง€๋งŒ, ๋ณธ ์—ฐ๊ตฌ์—์„œ ์ˆ˜ํ–‰ํ•˜๋Š” ์‚ฌ์šฉ์ž ํ–‰์œ„ ์ถ”๋ก  ์—ฐ๊ตฌ๋‚˜ ๋ชฉ์ ์ง€ ์˜ˆ์ธก ์—ฐ๊ตฌ ๋“ฑ๊ณผ ๊ฐ™์ด ์‚ฌ์šฉ์ž์˜ ์›€์ง์ž„์ด๋‚˜ ์ƒํƒœ๋ฅผ ์ถ”๋ก ํ•˜๋Š” ์—ฐ๊ตฌ์—์„œ๋Š” ๋ฌผ๋ฆฌ์ ์ธ ์œ„์น˜์—์„œ ๋” ๋‚˜์•„๊ฐ€ ํ•ด๋‹น ์œ„์น˜๊ฐ€ ์–ด๋–ค ์žฅ์†Œ์ธ์ง€๋ฅผ ์ธ์ง€ํ•˜๊ณ  ํ™œ์šฉํ•˜๋Š” ๊ฒƒ์ด ์ค‘์š”ํ•˜๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์ด๋ฅผ ์œ„ํ•ด ๋ผ์ดํ”„ ๋กœ๊ทธ๋กœ๋ถ€ํ„ฐ ํš๋“ํ•œ ๋ถˆ๊ทœ์น™์ ์ธ ์œ„์น˜ ์ขŒํ‘œ ์ •๋ณด๋กœ๋ถ€ํ„ฐ ์‘์šฉ์˜ ๊ด€์ ์—์„œ ์ ํ•ฉํ•œ ์ค‘์š” ์žฅ์†Œ๋“ค์„ ์ถ”์ถœํ•˜๋Š” ํด๋Ÿฌ์Šคํ„ฐ๋ง ๊ธฐ๋ฐ˜ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ œ์•ˆ ํ•œ๋‹ค. ์‚ฌ์šฉ์ž ํ–‰์œ„ ์ถ”๋ก ์€ ์œ„์—์„œ ์†Œ๊ฐœํ•œ ๋ผ์ดํ”„ ๋กœ๊ทธ ์ˆ˜์ง‘ ํ”Œ๋žซํผ ์ƒ์—์„œ ์‹คํ—˜์„ ์ˆ˜ํ–‰ํ•˜๊ณ  ์ œ์•ˆํ•œ ์žฅ์†Œ ์ถ”์ถœ ๋ฐฉ๋ฒ•๋ก ์„ ํ†ตํ•ด ์žฅ์†Œ๋ฅผ ํš ๋“ํ•œ ํ›„ ์ด๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ์‚ฌ์šฉ์ž ํ–‰์œ„๋ฅผ ์ถ”๋ก ํ•˜๋Š” ๋ฐฉ๋ฒ•๋ก ์„ ์ œ์•ˆํ•œ๋‹ค. ์‚ฌ์šฉ์ž๊ฐ€ ์ผ์ƒ ์ƒํ™œ์—์„œ ์ˆ˜ํ–‰ํ•˜๋Š” ๋‹ค์–‘ํ•œ ๊ณ ์ฐจ์› ํ–‰์œ„๋“ค์— ๋Œ€ํ•ด ์‹ค ์ƒํ™œ์—์„œ ํš๋“ํ•œ ๋ผ์ดํ”„ ๋กœ๊ทธ ๋ฐ ํƒœ๊น…๋œ ํ–‰์œ„ ์ •๋ณด๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ์ถ”๋ก ํ•˜๋Š” ๋ฐฉ๋ฒ•๋ก ์„ ์ œ์‹œํ•œ๋‹ค. ์‚ฌ์šฉ์ž๊ฐ€ ๋ฐฉ๋ฌธํ•  ๋‹ค์Œ ๋ชฉ์ ์ง€ ์˜ˆ์ธก์„ ์‹ค์ œ์  ์ƒํ™ฉ์—์„œ ์ˆ˜ํ–‰ํ•˜๊ธฐ ์œ„ํ•ด ๋ผ์ดํ”„ ๋กœ๊ทธ๋กœ๋ถ€ํ„ฐ ํŒจํ„ด์„ ํš๋“ํ•˜๊ณ  ์ด๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ์‚ฌ์šฉ์ž์˜ ๋ผ์ดํ”„ ๋กœ๊ทธ๋ฅผ ์ƒˆ๋กœ์šด ํ˜•ํƒœ๋กœ์˜ ๋งตํ•‘์„ ํ†ตํ•ด ๋ชฉ์ ์ง€๋ฅผ ์˜ˆ์ธกํ•˜๋Š” ๋ฐฉ๋ฒ•๋ก ์„ ์ œ์‹œํ•œ๋‹ค. ์ œ์‹œํ•œ ๋ฐฉ๋ฒ•๋ก ์€ ์ƒํ™œ ๊ณต๊ฐ„์—์„œ์˜ ๋ชฉ์ ์ง€ ์˜ˆ์ธก ๋ฌธ์ œ๋ฅผ ํ’€๊ณ ์ž ํ•œ ๊ฒƒ์œผ๋กœ ์‚ฌ์šฉ์ž์˜ ์‹ค์ œ ์ƒํ™œ์— ๋ฐ€์ ‘ํ•œ ์„ธ์„ธํ•œ ๋ ˆ๋ฒจ ์—์„œ์˜ ๋ชฉ์ ์ง€ ์˜ˆ์ธก์„ ์ˆ˜ํ–‰ํ•˜์˜€์œผ๋ฉฐ ๊ธฐ์กด ๋ฐฉ๋ฒ•๋ก  ๋Œ€๋น„ ๊ฐœ์„ ๋œ ์„ฑ๋Šฅ์„ ๋ณด์ž„์„ ํ™•์ธํ•˜์˜€๋‹ค.1. ์„œ๋ก  1 1.1. ์—ฐ๊ตฌ์˜ ๋ฐฐ๊ฒฝ ๋ฐ ๋ชฉ์  1 1.2. ์—ฐ๊ตฌ์˜ ๋ฒ”์œ„ ๋ฐ ๊ตฌ์„ฑ 5 2. ๊ด€๋ จ ์—ฐ๊ตฌ 7 2.1. ๋ผ์ดํ”„ ๋กœ๊ทธ ์ˆ˜์ง‘ ํ”Œ๋žซํผ 7 2.2. ์ค‘์š” ์žฅ์†Œ ์ถ”์ถœ ์—ฐ๊ตฌ 10 2.3. ํ–‰์œ„ ์ถ”๋ก  ์—ฐ๊ตฌ 13 2.4. ๋ชฉ์ ์ง€ ์˜ˆ์ธก ์—ฐ๊ตฌ 17 3. ๋ผ์ดํ”„ ๋กœ๊ทธ ๋งˆ์ด๋‹ ํ”Œ๋žซํผ 19 3.1. ํ”Œ๋žซํผ ์†Œ๊ฐœ ๋ฐ ํŠน์ง• 21 3.2. ํ”Œ๋žซํผ ๊ด€๋ จ ๊ณ ๋ ค ์‚ฌํ•ญ 29 3.2.1. ๋ฐ์ดํ„ฐ ์ˆ˜์ง‘ ๊ด€๋ จ ์ด์Šˆ 29 3.2.2. ๊ธฐ๊ธฐ ์‚ฌ์šฉ์„ฑ ๊ด€๋ จ ์ด์Šˆ 30 3.2.3. ๊ฐœ์ธ์ •๋ณด ๋ณดํ˜ธ ๋ฐ ๋ณด์•ˆ 32 4. ์ค‘์š” ์žฅ์†Œ ์ถ”์ถœ ์•Œ๊ณ ๋ฆฌ์ฆ˜ 34 4.1. ๋ฌธ์ œ ์ •์˜ 34 4.2. ์ œ์•ˆ ๊ธฐ๋ฒ• 38 4.2.1. ์‚ฌ์šฉ์ž ์œ„์น˜ ๋ฐ์ดํ„ฐ 40 4.2.2. ์ •์ง€ ์œ„์น˜ ์ธ์ง€ 41 4.2.3. ๊ด€์ธก ์žฅ์†Œ ์ถ”์ถœ 47 4.2.4. ์‹ค์ œ ์žฅ์†Œ ์ถ”์ถœ 52 4.3. ์‹คํ—˜ ๋ฐ ์‹คํ—˜ ๊ฒฐ๊ณผ 56 4.3.1. ์‹คํ—˜ ๋ฐ์ดํ„ฐ 56 4.3.2. ์‹คํ—˜ ํ™˜๊ฒฝ ์„ค์ • 56 4.3.3. ์‹คํ—˜ ๊ฒฐ๊ณผ 59 5. ํ–‰์œ„ ์ถ”๋ก  63 5.1. ๋ฌธ์ œ ์ •์˜ 63 5.2. ๋ฐ์ดํ„ฐ ์ˆ˜์ง‘ ๋ฐ ๋ถ„์„ 65 5.3. ๊ธฐ์กด ๋ฐฉ๋ฒ•๋ก  ์ ์šฉ ํ…Œ์ŠคํŠธ 81 5.4. ์ œ์•ˆ ๋ฐฉ๋ฒ•๋ก  84 5.5. ์‹คํ—˜ ๊ฒฐ๊ณผ 87 6. ๋ชฉ์ ์ง€ ์˜ˆ์ธก 91 6.1. ๋ฌธ์ œ ์ •์˜ 91 6.2. ์ œ์•ˆ ๋ฐฉ๋ฒ• 94 6.2.1. ST ๊ฒฝ๋กœ ์ƒ์„ฑ 95 6.2.2. STP ํŒจํ„ด ์ถ”์ถœ 97 6.2.3. STP ๊ฒฝ๋กœ ๊ตฌ์„ฑ 102 6.2.4. ๊ฐญ ์‹œํ€€์Šค ๋งˆ์ด๋‹ 105 6.2.5. ๋ชฉ์ ์ง€ ์˜ˆ์ธก 106 6.3. ์‹คํ—˜ ๋ฐ ์‹คํ—˜ ๊ฒฐ๊ณผ 110 7. ๊ฒฐ๋ก  ๋ฐ ํ–ฅํ›„ ์—ฐ๊ตฌ ๋ฐฉํ–ฅ 117 7.1. ๊ฒฐ๋ก  117 7.2. ํ–ฅํ›„ ์—ฐ๊ตฌ ๋ฐฉํ–ฅ 119 ์ฐธ๊ณ  ๋ฌธํ—Œ 121 Abstract 132Docto

    Mining Long Sharable Patterns in Trajectories of Moving Objects

    No full text
    The efficient analysis of spatioโ€“temporal data, generated by moving objects, is an essential requirement for intelligent locationโ€“based services. Spatiotemporal rules can be found by constructing spatioโ€“temporal baskets, from which traditional association rule mining methods can discover spatioโ€“temporal rules. When the items in the baskets are spatioโ€“temporal identifiers and are derived from trajectories of moving objects, the discovered rules represent frequently travelled routes. For some applications, e.g., an intelligent ridesharing application, these frequent routes are only interesting if they are long and sharable, i.e., can potentially be shared by several users. This paper presents a database projection based method for efficiently extracting such long, sharable frequent routes. The method prunes the search space by making use of the minimum length and sharable requirements and avoids the generation of the exponential number of subโ€“routes of long routes. Considering alternative modelling options for trajectories, leads to the development of two effective variants of the method. SQLโ€“based implementations are described, and extensive experiments on both real life โ€“ and largeโ€“scale synthetic data show the effectiveness of the method and its variants

    Mining Long, Sharable Patterns in Trajectories of Moving Objects

    No full text

    Semantic Trajectories:Computing and Understanding Mobility Data

    Get PDF
    Thanks to the rapid development of mobile sensing technologies (like GPS, GSM, RFID, accelerometer, gyroscope, sound and other sensors in smartphones), the large-scale capture of evolving positioning data (called mobility data or trajectories) generated by moving objects with embedded sensors has become easily feasible, both technically and economically. We have already entered a world full of trajectories. The state-of-the-art on trajectory, either from the moving object database area or in the statistical analysis viewpoint, has built a bunch of sophisticated techniques for trajectory data ad-hoc storage, indexing, querying and mining etc. However, most of these existing methods mainly focus on a spatio-temporal viewpoint of mobility data, which means they analyze only the geometric movement of trajectories (e.g., the raw โ€นx, y, tโ€บ sequential data) without enough consideration on the high-level semantics that can better understand the underlying meaningful movement behaviors. Addressing this challenging issue for better understanding movement behaviors from the raw mobility data, this doctoral work aims at providing a high-level modeling and computing methodology for semantically abstracting the rapidly increasing mobility data. Therefore, we bring top-down semantic modeling and bottom-up data computing together and establish a new concept called "semantic trajectories" for mobility data representation and understanding. As the main novelty contribution, this thesis provides a rich, holistic, heterogeneous and application-independent methodology for computing semantic trajectories to better understand mobility data at different levels. In details, this methodology is composed of five main parts with dedicated contributions. Semantic Trajectory Modeling. By investigating trajectory modeling requirements to better understand mobility data, this thesis first designs a hybrid spatio-semantic trajectory model that represents mobility with rich data abstraction at different levels, i.e., from the low-level spatio-temporal trajectory to the intermediate-level structured trajectory, and finally to the high-level semantic trajectory. In addition, a semantic based ontological framework has also been designed and applied for querying and reasoning on trajectories. Offline Trajectory Computing. To utilize the hybrid model, the thesis complementarily designs a holistic trajectory computing platform with dedicated algorithms for reconstructing trajectories at different levels. The platform can preprocess collected mobility data (i.e., raw movement tracks like GPS feeds) in terms of data cleaning/compression etc., identify individual trajectories, and segment them into structurally meaningful trajectory episodes. Therefore, this trajectory computing platform can construct spatio-temporal trajectories and structured trajectories from the raw mobility data. Such computing platform is initially designed as an offline solution which is supposed to analyze past trajectories via a batch procedure. Trajectory Semantic Annotation. To achieve the final semantic level for better understanding mobility data, this thesis additionally designs a semantic annotation platform that can enrich trajectories with third party sources that are composed of geographic background information and application domain knowledge, to further infer more meaningful semantic trajectories. Such annotation platform is application-independent that can annotate various trajectories (e.g., mobility data of people, vehicle and animals) with heterogeneous data sources of semantic knowledge (e.g., third party sources in any kind of geometric shapes like point, line and region) that can help trajectory enrichment. Online Trajectory Computing. In addition to the offline trajectory computing for analyzing past trajectories, this thesis also contributes to dealing with ongoing trajectories in terms of real-time trajectory computing from movement data streams. The online trajectory computing platform is capable of providing real-life trajectory data cleaning, compression, and segmentation over streaming movement data. In addition, the online platform explores the functionality of online tagging to achieve fully semantic-aware trajectories and further evaluate trajectory computing in a real-time setting. Mining Trajectories from Multi-Sensors. Previously, the focus is on computing semantic trajectories using single-sensory data (i.e., GPS feeds), where most datasets are from moving objects with wearable GPS-embedded sensors (e.g., mobility data of animal, vehicle and people tracking). In addition, we explore the problem of mining people trajectories using multi-sensory feeds from smartphones (GPS, gyroscope, accelerometer etc). The research results reveal that the combination of two sensors (GPS+accelerometer) can significantly infer a complete life-cycle semantic trajectories of people's daily behaviors, both outdoor movement via GPS and indoor activities via accelerometer
    corecore