4,723 research outputs found

    A Comparison of the Quality of Rule Induction from Inconsistent Data Sets and Incomplete Data Sets

    Get PDF
    In data mining, decision rules induced from known examples are used to classify unseen cases. There are various rule induction algorithms, such as LEM1 (Learning from Examples Module version 1), LEM2 (Learning from Examples Module version 2) and MLEM2 (Modified Learning from Examples Module version 2). In the real world, many data sets are imperfect, either inconsistent or incomplete. The idea of lower and upper approximations, or more generally, the probabilistic approximation, provides an effective way to induce rules from inconsistent data sets and incomplete data sets. But the accuracies of rule sets induced from imperfect data sets are expected to be lower. The objective of this project is to investigate which kind of imperfect data sets (inconsistent or incomplete) is worse in terms of the quality of rule induction. In this project, experiments were conducted on eight inconsistent data sets and eight incomplete data sets with lost values. We implemented the MLEM2 algorithm to induce certain and possible rules from inconsistent data sets, and implemented the local probabilistic version of MLEM2 algorithm to induce certain and possible rules from incomplete data sets. A program called Rule Checker was also developed to classify unseen cases with induced rules and measure the classification error rate. Ten-fold cross validation was carried out and the average error rate was used as the criterion for comparison. The Mann-Whitney nonparametric tests were performed to compare, separately for certain and possible rules, incompleteness with inconsistency. The results show that there is no significant difference between inconsistent and incomplete data sets in terms of the quality of rule induction

    The Importance of Being Clustered: Uncluttering the Trends of Statistics from 1970 to 2015

    Full text link
    In this paper we retrace the recent history of statistics by analyzing all the papers published in five prestigious statistical journals since 1970, namely: Annals of Statistics, Biometrika, Journal of the American Statistical Association, Journal of the Royal Statistical Society, series B and Statistical Science. The aim is to construct a kind of "taxonomy" of the statistical papers by organizing and by clustering them in main themes. In this sense being identified in a cluster means being important enough to be uncluttered in the vast and interconnected world of the statistical research. Since the main statistical research topics naturally born, evolve or die during time, we will also develop a dynamic clustering strategy, where a group in a time period is allowed to migrate or to merge into different groups in the following one. Results show that statistics is a very dynamic and evolving science, stimulated by the rise of new research questions and types of data

    Automated Discovery in Econometrics

    Get PDF
    Our subject is the notion of automated discovery in econometrics. Advances in computer power, electronic communication, and data collection processes have all changed the way econometrics is conducted. These advances have helped to elevate the status of empirical research within the economics profession in recent years and they now open up new possibilities for empirical econometric practice. Of particular significance is the ability to build econometric models in an automated way according to an algorithm of decision rules that allow for (what we call here) heteroskedastic and autocorrelation robust (HAR) inference. Computerized search algorithms may be implemented to seek out suitable models, thousands of regressions and model evaluations may be performed in seconds, statistical inference may be automated according to the properties of the data, and policy decisions can be made and adjusted in real time with the arrival of new data. We discuss some aspects and implications of these exciting, emergent trends in econometrics.Automation, discovery, HAC estimation, HAR inference, model building, online econometrics, policy analysis, prediction, trends
    corecore