75,546 research outputs found

    Explanation-Based Auditing

    Full text link
    To comply with emerging privacy laws and regulations, it has become common for applications like electronic health records systems (EHRs) to collect access logs, which record each time a user (e.g., a hospital employee) accesses a piece of sensitive data (e.g., a patient record). Using the access log, it is easy to answer simple queries (e.g., Who accessed Alice's medical record?), but this often does not provide enough information. In addition to learning who accessed their medical records, patients will likely want to understand why each access occurred. In this paper, we introduce the problem of generating explanations for individual records in an access log. The problem is motivated by user-centric auditing applications, and it also provides a novel approach to misuse detection. We develop a framework for modeling explanations which is based on a fundamental observation: For certain classes of databases, including EHRs, the reason for most data accesses can be inferred from data stored elsewhere in the database. For example, if Alice has an appointment with Dr. Dave, this information is stored in the database, and it explains why Dr. Dave looked at Alice's record. Large numbers of data accesses can be explained using general forms called explanation templates. Rather than requiring an administrator to manually specify explanation templates, we propose a set of algorithms for automatically discovering frequent templates from the database (i.e., those that explain a large number of accesses). We also propose techniques for inferring collaborative user groups, which can be used to enhance the quality of the discovered explanations. Finally, we have evaluated our proposed techniques using an access log and data from the University of Michigan Health System. Our results demonstrate that in practice we can provide explanations for over 94% of data accesses in the log.Comment: VLDB201

    Privacy-Preserving Trust Management Mechanisms from Private Matching Schemes

    Full text link
    Cryptographic primitives are essential for constructing privacy-preserving communication mechanisms. There are situations in which two parties that do not know each other need to exchange sensitive information on the Internet. Trust management mechanisms make use of digital credentials and certificates in order to establish trust among these strangers. We address the problem of choosing which credentials are exchanged. During this process, each party should learn no information about the preferences of the other party other than strictly required for trust establishment. We present a method to reach an agreement on the credentials to be exchanged that preserves the privacy of the parties. Our method is based on secure two-party computation protocols for set intersection. Namely, it is constructed from private matching schemes.Comment: The material in this paper will be presented in part at the 8th DPM International Workshop on Data Privacy Management (DPM 2013

    iFair: Learning Individually Fair Data Representations for Algorithmic Decision Making

    Get PDF
    People are rated and ranked, towards algorithmic decision making in an increasing number of applications, typically based on machine learning. Research on how to incorporate fairness into such tasks has prevalently pursued the paradigm of group fairness: giving adequate success rates to specifically protected groups. In contrast, the alternative paradigm of individual fairness has received relatively little attention, and this paper advances this less explored direction. The paper introduces a method for probabilistically mapping user records into a low-rank representation that reconciles individual fairness and the utility of classifiers and rankings in downstream applications. Our notion of individual fairness requires that users who are similar in all task-relevant attributes such as job qualification, and disregarding all potentially discriminating attributes such as gender, should have similar outcomes. We demonstrate the versatility of our method by applying it to classification and learning-to-rank tasks on a variety of real-world datasets. Our experiments show substantial improvements over the best prior work for this setting.Comment: Accepted at ICDE 2019. Please cite the ICDE 2019 proceedings versio

    A Relational Hyperlink Analysis of an Online Social Movement

    Get PDF
    In this paper we propose relational hyperlink analysis (RHA) as a distinct approach for empirical social science research into hyperlink networks on the World Wide Web. We demonstrate this approach, which employs the ideas and techniques of social network analysis (in particular, exponential random graph modeling), in a study of the hyperlinking behaviors of Australian asylum advocacy groups. We show that compared with the commonly-used hyperlink counts regression approach, relational hyperlink analysis can lead to fundamentally different conclusions about the social processes underpinning hyperlinking behavior. In particular, in trying to understand why social ties are formed, counts regressions may over-estimate the role of actor attributes in the formation of hyperlinks when endogenous, purely structural network effects are not taken into account. Our analysis involves an innovative joint use of two software programs: VOSON, for the automated retrieval and processing of considerable quantities of hyperlink data, and LPNet, for the statistical modeling of social network data. Together, VOSON and LPNet enable new and unique research into social networks in the online world, and our paper highlights the importance of complementary research tools for social science research into the web
    • …
    corecore