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Abstract—People are rated and ranked, towards algorithmic
decision making in an increasing number of applications, typi-
cally based on machine learning. Research on how to incorporate
fairness into such tasks has prevalently pursued the paradigm
of group fairness: ensuring that each ethnic or social group
receives its fair share in the outcome of classifiers and rankings.
In contrast, the alternative paradigm of individual fairness
has received relatively little attention. This paper introduces a
method for probabilistically clustering user records into a low-
rank representation that captures individual fairness yet also
achieves high accuracy in classification and regression models.
Our notion of individual fairness requires that users who are
similar in all task-relevant attributes such as job qualification,
and disregarding all potentially discriminating attributes such
as gender, should have similar outcomes. Since the case for
fairness is ubiquitous across many tasks, we aim to learn general
representations that can be applied to arbitrary downstream use-
cases. We demonstrate the versatility of our method by applying
it to classification and learning-to-rank tasks on two real-world
datasets. Our experiments show substantial improvements over
the best prior work for this setting.

I. INTRODUCTION

Motivation: People are rated, ranked and selected or not se-
lected in an increasing number of online applications, towards
algorithmic decisions based on machine learning models.
Examples are approvals or denials of loans or visas, predicting
recidivism for law enforcement, or rankings in job portals. As
algorithmic decision making becomes pervasive in all aspects
of our daily life, societal and ethical concerns [1, 2, 3, 4] are
rapidly growing. A basic approach is to establish policies that
disallow the inclusion of potentially discriminating attributes
such as gender or race (i.e., ethnic background) and ensure
that classifiers and rankings operate solely on task-relevant
attributes such as job qualifications.

The problem has garnered significant attention in the data-
mining and machine-learning communities. Most of this work
considers so-called group fairness models, most notably, the
statistical parity of outcomes in binary classification tasks,
as a notion of fairness. Typically, classifiers are extended to
incorporate demographic groups in their loss functions, or
include constraints on the fractions of groups in the accepted
class [5, 6, 7, 8, 9, 10]. For example, computing a shortlist
of people invited for job interviews should have a gender mix
that is proportional to the base population of job applicants.

Obviously, this means that the classifier objective is faced
with a fundamental trade-off between utility (i.e., typically
accuracy) and fairness, and needs to aim for a good compro-
mise. Recently, other definitions of group fairness have been
proposed [11, 12, 13]. Also, variants of group fairness have
been applied to learning-to-rank tasks [14, 15, 16]. In all these
cases, fair classifiers or regression models need an explicit
specification of sensitive attributes such as gender, and often
the identification of a specific protected attribute-value group
such as gender equals female (protected groups for short).
The Case for Individual Fairness: Dwork et al. [17] argued
that group fairness, while being appropriate for policies re-
garding demographic groups, does not really capture the real-
world goal of treating individual people in a fair manner. This
led to the definition of individual fairness: similar individuals
should be treated similarly. In settings with binary classifiers,
this means that individuals who are similar on the task-relevant
attributes (e.g., job qualifications) should have nearly the same
probability of being accepted by the classifier. This kind
of fairness is very intuitive and captures aspects that group
fairness alone does not handle. It does not rely on an explicit
choice of “protected groups”, and is thus more flexible and
versatile. Unfortunately, this rationale for capturing fairness
has not received much follow-up work (the most notable
exception being [18] as discussed below).
Example: Table I presents a real-world example showcasing
the issue of unfairness for individual people. We randomly
select 3 (of 57) popular job search queries on a well-known
job search engine in Germany named Xing (www.xing.com);
that data was originally used in Zehlike et al. [14]. For each
query we randomly select a user who belongs to a “protected”
minority group, for example, “female” for query “Field Engi-
neer” and “male” for query “Daycare”. We then compute the
k nearest neighbors set (k = 10) of this individual, in terms
of job qualifications and disregarding the gender attribute.
Table I presents the attributes of randomly selected individuals
from this candidate set. We do not have knowledge about the
workings of the proprietary algorithm that has produced the
ranking. However, we observe that (nearly) equally qualified
candidates have largely dissimilar outcomes. This situation
cannot be resolved by any notion of group fairness, but calls
for individual fairness.
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Candidate Job Work Experience (months) Education Experience (months) Profile Views Xing Rank Minority Group

male Field Engineer 301 49 374 4 female
female Field Engineer 319 51 857 15 female

male Front End Developer 30 0 154 4 female
female Front End Developer 30 25 128 18 female

female Daycare 333 83 780 13 male
male Daycare 541 89 1027 33 male

TABLE I: Ranking results from www.xing.com (Jan 2017) for a variety of job search queries.

Search Work Education Profile Candidate Xing
query experience experience views ranking

Brand Strategist 146 57 12992 male 1
Brand Strategist 327 0 4715 female 2
Brand Strategist 502 74 6978 male 3
Brand Strategist 444 56 1504 female 4
Brand Strategist 139 25 63 male 5
Brand Strategist 110 65 3479 female 6
Brand Strategist 12 73 846 male 7
Brand Strategist 99 41 3019 male 8
Brand Strategist 42 51 1359 female 9
Brand Strategist 220 102 17186 female 10

TABLE II: Top k results on www.xing.com (Jan 2017) for the
job serach query “Brand Strategist”.

Consider the top-10 ranked results for the query “Brand
Strategist” on Xing presented in Table II. It is easy to observe
that the Xing ranking satisfies group fairness, as defined by
Zehlike et al. [14]. According to that work, a top-k ranking
τ is fair if for every prefix τ |i =< τ(1), τ(2), · · · τ(i) >
where 1 ≤ i ≤ k, the set τ |i satisfies statistical parity with
statistical significance α. However the outcomes in Table II are
far from being fair for the individual users. This demonstrates
that applications can cursorily satisfy group-fairness policies,
while still being unfair to individuals.
State of the Art and its Limitations: Prior work on fairness
for ranking tasks has exclusively focused on group fairness
[14, 15, 16], disregarding the dimension of individual fairness.
For the restricted setting of binary classifiers, the most notable
work on individual fairness is [18]. That work addresses
the fundamental trade-off between utility and fairness by
defining a combined loss function to learn a low-rank data
representation. The loss function reflects a (hyper-parameter-
)weighted sum of classifier accuracy, statistical parity for a
single pre-specified protected group, and individual fairness in
terms of reconstruction loss of data. This model, called LFR,
is powerful and elegant, but has major limitations:

• It is geared for binary classifiers and does not gener-
alize to a wider class of machine-learning tasks. Most
importantly, there is no support for regression models,
i.e., learning-to-rank tasks.

• Its data representation is tied to a specific use case
with a single protected group that needs to be specified
upfront. So, once learned, the representation cannot be

dynamically adjusted to different settings later, for ex-
ample, when the attribute-value for the protected group
varies (e.g., female for some jobs, but male for others)
or a new, initially unforeseen, application mandates the
inclusion of further attributes into the sensitive set.
• Its objective function strives for a compromise over three

components: application utility (i.e., classifier accuracy),
group fairness and individual fairness. While this ap-
pears most comprehensive on first glance, it tends to
burden the learning with too many aspects that cannot
be reconciled.

Our approach, presented in this paper, overcomes these
limitations by developing a more flexibile and versatile model
for representation learning.
Approach and Contribution: The approach that we put
forward in this paper, called iFair, is to learn a generalized
data representation that preserves the fairness-aware similarity
between individual records while also aiming to minimize or
bound the data loss. This way, we aim to reconcile individual
fairness and application utility, and we intentionally disregard
group fairness as an explicit criterion.

iFair resembles the model of [18] in that we also learn
a representation via probabilistic clustering, using a form
of gradient descent for optimization. However, our approach
differs from [18] on a number of major aspects:
• iFair learns flexible and versatile representations, instead

of committing to a specific downstream application like
binary classifiers. This way, we open up applicability to
arbitrary classifiers and support regression tasks (e.g.,
rating and ranking people) as well.
• iFair does not depend on a pre-specified protected group.

Instead, it supports multiple sensitive attributes where
the “protected values” are known only at run-time after
the application is deployed. For example, we can easily
handle situations where the critical value for gender is
female for some ranking queries and male for others.
• iFair does not consider any notion of group fairness

in its objective function. However, as we empirically
demonstrate in this paper, optimizing for individual
fairness also helps group-fairness criteria like equal-odds
or equal-opportunity [11]. This design choice relaxes
the optimization problem, and we achieve much better
utility with very good fairness in both classification and
ranking tasks.

www.xing.com
www.xing.com


Original User Records
xi

User Records with
Protected Data Masked

x∗i

Learn Fair
Representation

Utility: xi ≈ x̃i
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Fig. 1: Overview of decision-making pipeline. iFair learns data representations in an application-agnostic way, which can be
used to train and apply any machine learning model.

The novel contributions of the iFair model are: 1) the first
method, to the best of our knowledge, that provides individual
fairness for learning-to-rank tasks; 2) an application-agnostic
framework for learning low-rank data representations that
reconcile individual fairness and utility such that application-
specific choices on sensitive attributes and values do not
require learning another representation; 3) experimental stud-
ies with classification and regression tasks for downstream
applications, empirically showing that iFair can indeed rec-
oncile strong individual fairness with high utility. The overall
decision-making pipeline, including our representation learn-
ing component, is illustrated in Figure 1.

II. RELATED WORK

Fairness Definitions and Measures: Much of the work
in algorithmic fairness has focused on supervised machine
learning, specifically on the case of binary classification tasks.
To this end, several notions of group fairness have been
proposed in the literature. The most widely used notion of
fairness is statistical parity and its variants [5, 6, 7, 8, 9, 10].
Intuitively, statistical parity states that the predictions Ŷ of
a classifier are fair if members of sensitive subgroups, such
as people of certain nationalities or ethnic backgrounds, have
an acceptance likelihood proportional to their share in the
entire data population. This is equivalent to requiring that
apriori knowledge of the classification outcome of an individ-
ual should provide no information about her membership to
such subgroups. However, for many applications, such as risk
assessment for credit worthiness, statistical parity is neither
feasible nor desirable as it would mandate that the fractions
of positive outcomes across groups be the same irrespective
of their data properties.

Various alternative notions of group fairness have been
defined. Hardt et al. [11] proposed equal odds as a fairness
goal which requires that the rates of true positives and false
positives be the same across groups. Intuitively, this punishes
classifiers which perform well only on specific groups. Hardt
et al. [11] also proposed a relaxed version of equal odds
called equal opportunity which demands only the equality
of true positive rates. Other definitions of group fairness
proposed in the literature include calibration [19, 20] and
disparate mistreatment [12]. A recent line of work highlights
the inherent incompatibility between several notions of group
fairness and the impossibility of achieving them simultane-
ously [20, 21, 22, 23].

Dwork et al. [17] gave the first broader definition of
fairness independent of a specific machine-learning task. Their
definition of fairness, appropriately named individual fairness,
argues for the fairness of outcomes for individuals and not
merely as a group statistic. Individual fairness mandates that
similar individuals should be treated similarly. [17] further
develops a theoretical framework for mapping individuals to
a probability distribution over outcomes, which satisfies the
Lipschitz property (i.e., distance preservation) in the mapping.
In this paper, we follow up on this definition of individual
fairness and present a generalized framework for learning
individually fair representations of the data.
Fairness in Machine Learning: A parallel line of work
in the area of algorithmic fairness uses a specific definition
of fairness in order to design fairness models that achieve
fair outcomes. To this end, there are two general strategies.
The first strategy consists of de-biasing the input data by
appropriate preprocessing [6, 8, 9]. This typically involves data
perturbation such as modifying the value of sensitive attributes
or class labels in the training data to satisfy certain fairness
conditions, such as equal proportion of positive (negative)
class labels in both protected and non-protected groups . The
second strategy consists of designing fair algorithmic models -
based on constrained optimization [5, 7, 11, 12]. Here, fairness
constraints are usually introduced as regularization terms in the
objective function.
Fairness in IR: Recently, definitions of group fairness have
been extended to learning-to-rank tasks. Yang and Stoyanovich
[15] introduced statistical parity in rankings. Zehlike et al.
[14] built on [15] and proposed to ensure statistical parity at
all top-k prefixes of the ranked results. Singh and Joachims
[16] proposed a generalized fairness framework for a larger
class of group fairness definitions (e.g., disparate treatment
and disparate impact). However, all this prior work has fo-
cused on group fairness alone. It implicitly assumes that
individual fairness is taken care of by the ranking quality,
disregarding situations where trade-offs arise between these
two dimensions. The recent work of Biega et al. [24] addresses
individual fairness in rankings from the perspective of giving
fair exposure to items over a series of rankings, thus mitigating
the position bias in click probabilities. In their approach they
explicitly assume to have access to scores that are already
individually fair. As such, their work is complementary to ours
as they do not address how such a score, which is individually
fair can be computed.



Repesentation Learning: The line of work most related to
this paper is the learning of fair data representations. In this
space, the work of Zemel et al. [18] is the closest to ours in
that it is also learns low-rank representations by probabilistic
mapping of data records. However, the methods deviates from
our in important ways. First, its fair representations are tied
to a particular classifier by assuming a binary classification
problem with pre-specified labeling target attribute and a single
protected group. In contrast, the representations learned by
iFair are agnostic to the downstream learning tasks and thus
easily deployable for new applications. Second, the optimiza-
tion in [18] aims to combine three competing objectives:
classifier accuracy, statistical parity, and data loss (as a proxy
for individual fairness). The iFair approach, on the other hand,
addresses a more streamlined objective function by focusing
on classifier accuracy and individual fairness.

Approaches similar to [18] have been applied to learn
censored representations for fair classifiers via adversarial
training [25, 26]. In particular, group fairness definitions
(statistical parity and its variants) are optimized in the presence
of an adversary. These approaches do not consider individual
fairness at all.

III. MODEL

We consider user records that are fed into a learning
algorithm towards algorithm decision making. A fair algorithm
should make its decisions solely based on non-sensitive at-
tributes (e.g., technical qualification or education) and should
disregard sensitive attributes that bear the risk of discriminat-
ing users (e.g., ethnicity/race). This dichotomy of attributes is
specified upfront, by domain experts and follows legal regu-
lations and policies. Ideally, one should consider also strong
correlations (e.g., geo-area correlated with ethnicity/race), but
this is usually beyond the scope of the specification. We start
with introducing preliminary notations and definitions.

Input Data: The input data for M users with N attributes is
an M × N matrix X with binary or numerical values (i.e.,
after unfolding or encoding categorical attributes). Without
loss of generality, we assume that the attributes 1 .. l are
non-protected and the attributes l + 1 .. N are protected. We
denote the i-th user record consisting of all attributes as xi
and only non-protected attributes as x∗i . Note that, unlike in
prior works, the set of protected attributes is allowed to be
empty (i.e., l = N ). Also, we do not assume any upfront
specification of which attribute values form a protected group.
So a downstream application can flexibly decide on the critical
values (e.g., male vs. female or certain choices of citizenships)
on a case-by-case basis.

Output Data: The goal is to transform the input records xi
into representations x̃i that are directly usable by downstream
applications and have better properties regarding fairness.
Analogously to the input data, we can write the entire output
of x̃i records as an M ×N matrix X̃ .

Individually Fair Representation: Inspired by the Dwork
et al. [17] notion of individual fairness, “individuals who are

similar should be treated similarly”, we propose the following
definition for individual fairness:

Definition 1. (Individual Fairness) Given a distance function
d in the N−dimensional data space, a mapping φ of input
records xi into output records x̃i is individually fair if for
every pair xi, xj we have

|d(φ(xi), φ(xj))− d(x∗i , x∗j )| ≤ ε (1)

The definition requires that individuals who are (nearly)
indistinguishable on their non-sensitive attributes in X should
also be (nearly) indistinguishable in their transformed repre-
sentations X̃ . For example, two people with (almost) the same
technical qualifications for a certain job should have (almost)
the same low-rank representation, regardless of whether they
differ on protected attributes such as gender, religion or ethnic
group. In more technical terms, a distance measure between
user records should be preserved in the transformed space.

Note that this definition intentionally deviates from the
original definition of individual fairness of [17] in that with
x∗i , x

∗
j we consider only the non-protected attributes of the

original user records, as protected attributes should not play a
role in the decision outcomes of an individual.

A. Problem Formulation: Probabilistic Clustering

As individual fairness needs to preserve similarities between
records xi, xj , we cast the goal of computing good representa-
tions x̃i, x̃j into a formal problem of probabilistic clustering.
We aim for K clusters, each given in the form of a prototype
vector vk (k = 1..K), such that records xi are assigned
to clusters by a record-specific probability distribution that
reflects the distances of records from prototypes. This can
be viewed as a low-rank representation of the input matrix
X with K < M , so that we reduce attribute values into a
more compact form. As always with soft clustering, K is a
hyper-parameter.

Definition 2. (Transformed Representation) The fair repre-
sentation X̃ , an M ×N matrix of row-vise output vectors x̃i,
consists of

(i) K < M prototype vectors vk, each of dimensionality
N ,

(ii) a probability distribution ui, of dimensionality K, for
each input record xi where uik is the probability of xi
belonging to the cluster of prototype vk.

The representation x̃i is given by

x̃i =
∑

k=1..K

uik · vk (2)

or equivalently in matrix form: X̃ = U×V T where the rows of
U are the per-record probability distributions and the columns
of V T are the prototype vectors.

Definition 3. (Transformation Mapping) We denote the map-
ping xi → x̃i as φ; that is,



φ(xi) = x̃i =
∑

k=1..K

uik · vk (3)

using Equation 2.

Utility Objective: Without making any assumptions on the
downstream application, the best way of ensuring high utility
is to minimize the data loss induced by φ.

Definition 4. (Data Loss) The reconstruction loss between X
and X̃ is the sum of squared errors

Lutil(X, X̃) =

M∑
i=1

||xi − x̃i||2 =

M∑
i=1

N∑
j=1

(xij − x̃ij)2 (4)

Individual Fairness Objective: Following the rationale for
Definition 1, the desired transformation φ should preserve
pair-wise distances between data records on non-protected
attributes.

Definition 5. (Fairness Loss) For input data X , with row-
wise data records xi, and its transformed representation X̃
with row-wise x̃i, the fairness loss Lfair is

Lfair(X, X̃) =
∑

i,j=1..M

(
d(x̃i, x̃j)− d(x∗i , x∗j )

)2
(5)

Overall Objective Function: Combing the data loss and the
fairness loss yields our final objective function that the learned
representain should aim to minimize.

Definition 6. (Objective Function) The combined objective
function is given by

L = λ · Lutil(X, X̃) + µ · Lfair(X, X̃) (6)
where λ and µ are hyper-parameters.

B. Probabilistic Prototype Learning

So far we have left the choice of the distance function
d open. Our methodology is general and can incorporate
a wide suite of distance measures. However, for the actual
optimization, we need to make a specific choice for d. In this
paper, we focus on the family of Minkowski p-metrics, which
is indeed a metric for p ≥ 1. A common choice is p = 2,
which corresponds to a Gaussian kernel.

Definition 7. (Distance Function) The distance between two
data records xi, xj is

d(xi, xj) =
[ N∑
n=1

αn(xi,n − xj,n)p
]1/p

(7)

where α is an N -dimensional vector of tunable or learnable
weights for the different data attributes.

This distance function d is applicable to original data
records xi, transformed vectors x̃i and prototype vectors
vk alike. In our model, we avoid the quadratic number of
comparisons for all record pairs, and instead consider distances
only between records and prototype vectors (cf. also [18]).
Then, these distances can be used to define the probability
vectors ui that hold the probabilities for record xi belonging

to the cluster with prototype vk (for k = 1..K). To this end,
we apply a softmax function to the distances between record
and prototype vectors.

Definition 8. (Probability Vector) The probability vector ui
for record xi is

ui,k =
exp(−d(xi, vk))

K∑
j=1

exp(−d(xi, vj))
(8)

The mapping φ that transforms xi into x̃i can now be written
as

φ(xi) =

K∑
k=1

exp(−d(xi, vk))
K∑
j=1

exp(−d(xi, vj))
· vk (9)

With these definitions in place, the task of learning fair
representations x̃i now amounts to computing K prototype
vectors vk and the N -dimensional weight vector α in d such
that the overall loss function L is minimized.

Definition 9. (Optimization Objective) The optimization
objective is to compute vk (k = 1..K) and αn (n = 1..N )
as argmin for the loss function

L = λ · Lutil(X, X̃) + µ · Lfair(X, X̃)

= λ ·
M∑
i=1

N∑
j=1

(xij − x̃ij)2 + µ ·
∑

i,j=1..M

(
d(x̃i, x̃j)− d(x∗i , x∗j )

)2
where x̃ij is substituted using Equations 9 and d uses Equation
7.

The N−dimensional weight vector α controls the influence
of each attribute. Given our definition of individual fairness
(which intentionally deviates from the original definition in
Dwork et al. [17]), a natural setting is to give no weight to
the protected attributes as these should not play any role in
the similarity of (qualifications of) users. In our experiments,
we observe that giving (near-)zero weights to the protected
attributes increases the fairness of the learned data represen-
tations (see Section V).

C. Gradient Descent Optimization:

Given this setup, the learning system minimizes the com-
bined objective function given by

L = λ · Lutil(X, X̃) + µ · Lfair(X, X̃) (10)

where Lutil is the data loss, Lfair is the loss in individual
fairness, and λ and µ are hyper-parameters. We have two sets
of model parameters to learn

(i) vk (k = 1..K), the N−dimensional prototype vectors,
(ii) α, the N−dimensional weight vector of the distance

function in Equation 7.
We apply the L-BFGS algorithm [27], a quasi-Newton
method, to minimize Equation 10 and learn the model pa-
rameters.



IV. PROPERTIES OF THE iFair MODEL

We discuss properties of iFair representations and em-
pirically compare iFair to the LFR model by Zemel et al.
[18]. To this end, we generate synthetic data with systematic
parameter variation as follows. For simpler illustration, we
restrict ourselves to the case of a binary classifier.

We generate 100 data points with 3 attributes: 2 real-valued
and non-sensitive attributes X1 and X2 and 1 binary attribute
A which serves as the protected attribute. We first draw two-
dimensional datapoints from a mixture of Gaussians with two
components: (i) isotropic Gaussian with unit variance and
(ii) correlated Gaussian with covariance 0.95 between the
two attributes and variance 1 for each attribute. To study the
influence of membership to the protected group (i.e., A set to
1), we generate three variants of this data:
• Random: A is set to 1 with probability 0.3 at random.
• Correlation with X1: A is set to 1 if X1 ≤ 3.
• Correlation with X2: A is set to 1 if X2 ≤ 3.

So the three synthetic datasets have the same values for the
non-sensitive attributes X1 and X2 as well for the outcome
variable Y . The datapoints differ only on membership to the
protected group and its distribution across output classes Y .

Figure 2 shows these three cases row-wise: subfigures a-c,
d-f, g-i, respectively. The left column of the figure displays
the original data, with the two labels for output Y depicted
by marker: “o” for Y = 0 and “+” for Y = 1 and the
membership to the protected group by color: orange for A = 1
and blue for A = 0. The middle column of Figure 2 shows
the learned iFair representations, and the right column shows
the representations based on LFR [18]. Note that the values
of importance in Figure 2 (middle and right column) are
position of the data points in the two-dimensional plane and
the classifier decision boundary (solid line). The color of the
datapoints as well as the markers (o and +) depict the true class
and true group membership, and not the learned values. They
are visualized merely to aid the reader in relating original data
with transformed representations. Further, small differences
in the learned representation are expected due to random
initializations of model parameters. The solid line in the charts
denotes the predicted classifiers’ decision boundary applied on
the learned representations. Hyper-parameters for both iFair
as well as LFR are chosen by performing a grid search on
the set {0, 0.05, 0.1, 1, 10, 100} for optimal individual fairness
of the classifier. For each of the nine cases, we indicate the
resulting classifier accuracy Acc, individual fairness in terms
of consistency yNN with regard to the k = 10 nearest
neighbors [18] (formal definition given in Section V-C), the
statistical parity Parity with regard to the protected group
A = 1, and equality-of-opportunity EqOpp [11] notion of
group fairness.
Overview: Main findings of this section are: (i) representa-
tions learned via iFair remain nearly the same irrespective of
the distribution of protected attributes (ii) iFair significantly
outperforms LFR on utility, individual fairness and group
fairness (using equality-of-opportunity), whereas LFR wins on

statistical parity. In the remainder of this section we discuss
our findings and their implications.
Influence of Protected Group: The middle column in Figure
2 shows that the iFair representation remains largely unaf-
fected by the changes in the distribution of sensitive data
points and their group memberships. In other words, changing
the value of the protected attribute of individual datapoints,
all other values remaining the same, has no influence on the
learned representation; consequently it has no influence on
the outcome made by the decision-making algorithms trained
on these representations. This is an important and interesting
characteristic to have in a fair representation, as it directly
relates to the definition of individual fairness. In contrast, the
membership to the protected group has a pronounced influence
on the learned representation of the LFR model (refer Figure 2
right column). Recall that the color of the datapoints as well
as the markers (o and +) are taken from the original data.
They depict the true class and membership to group of the
datapoints, and are visualized to aid the reader.
Tension in Objective Function: The optimization via LFR
Zemel et al. [18] has three components: classifier accuracy as
utility metric, individual fairness in terms of data loss, and
group fairness in terms of statistical parity. We observe that
by pursuing group fairness and individual fairness together,
the tension with utility is very pronounced. The learned
representations are stretched on the compromise over all three
goals, ultimately leading to sacrificing utility. In contrast, iFair
pursues only utility and individual fairness, and disregards
group fairness. This clearly helps to make the multi-objective
optimization more tractable. iFair clearly outperforms LFR not
only on accuracy, with better decision boundaries, but also
wins in terms of individual fairness. There is no direct conflict
between utility and individual fairness, hence the model has a
larger feasible search space.
Individual Fairness vs. Group Fairness: Although group
fairness is not part of our objective function , we observe
that iFair’s goal of individual fairness indirectly helps EqOpp
group fairness as well (see Section V-C for formal definition).
In Figure 2, Charts (a) through (c), the base rates across the
two values of the protected attribute A are similar; that is, the
fraction of the positive class (marked +) is similar for A = 0
(blue) and A = 1 (orange). In such settings, optimizing for
individual fairness gives high scores for group fairness as well.
On the other hand, when base rates across groups are highly
skewed, as in Charts (d) through (f), group fairness criteria
cannot be satisfied without harming fairness for individuals.
Utility-Fairness Trade-off: The improvement that iFair
achieves in individual fairness comes at the expense of a small
drop in utility, although the two criteria are not directly con-
flicting. The trade-off is caused by the loss of information in
learning representative prototypes. The choice of the mapping
function in Equation 9 and the pairwise distance function
d(.) in Definition 7 affects the ability to learn prototypes.
Our framework is flexible and easily supports other kernels
and distance functions. Exploring these influence factors is a
direction for future work.
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Fig. 2: Illustration of properties of data representations on synthetic data. (left: original data, center: iFair, right: LFR). Output
class labels: o for Y=0 and + for Y=1. Membership in protected group: blue for A=0 and orange for A=1. Solid lines are the
decision boundaries of the respective classifiers. iFair outperforms LFR on all metrics except for statistical parity.



V. EXPERIMENTS

A. Datasets

We apply the iFair framework to two real-world, publicly
available datasets:
• ProPublica’s COMPAS recidivism dataset [1], a widely

used test case for fairness in machine learning and
algorithmic decision making. We set race as a protected
attribute, and use the binary indicator of recidivism as the
outcome variable Y .

• Xing, a popular job search portal in Germany (similar
to LinkedIn). We use the anonymized JSON files given
by [14]. They consist of top 40 profiles returned for 54
job queries on a people search and recruitment website
(https://www.xing.com) to construct this dataset. For each
candidate we collect information about job category,
work experience, education experience, number of hits on
the profile, and gender. We set gender as the protected
attribute. We use the sum of work experience, education
experience and number of hits as as an ad-hoc score to
define the ground-truth deserved score.

The COMPAS dataset is used for experiments on clas-
sification, and the Xing data is used for experiments on
learning-to-rank regression. We choose the protected attributes
to be in line with the literature. In practice, however, such
decisions would be made by domain experts and according
to official policies and regulations. The flexibility of our
framework allows for multiple protected attributes (or none)
and multivariate outcome variables.

B. Setup and Baselines

In each dataset, categorical attributes are transformed using
one-hot encoding, and all features vectors are normalized to
have unit variance. We randomly split the datasets into three
parts. We use one part to train the model to learn model
parameters, the second part as a validation set to choose hyper-
parameters by performing a grid search (details follow), and
the third part as a test set. We use the same data split to
compare all methods.

We evaluate all data representations – iFair against various
baselines – by comparing the results of a standard classifier
(logistic regression) and a learning-to-rank regression model
(linear regression) applied to
• Full Data: the original dataset.
• Masked Data: the original dataset without protected

attributes.
• SVD: transformed data by performing dimensionality

reduction via singular value decomposition (SVD), with
two variants of data: (a) full data and (b) masked data. We
name these variants SVD and SVD-masked, respectively.

• LFR: the learned representation by the method of Zemel
et al. [18].

• iFair: the representation learned by our model. We per-
form experiments with two kinds of initializations for
the model parameter α (attribute weight vector): (a)
initializing all attribute weights with random values from

uniform distribution in (0, 1) and (b) initializing non-
protected attributes weights with random values from
uniform distribution in (0, 1), but protected attributes
weights with (near-)zero values, to reflect the intuition
that protected attributes should be discounted in the
distance-preservation of individual fairness (and avoiding
zero values to allow slack for the numerical computations
in learning the model). We call these two methods iFair-a
and iFair-b, respectively.

Model Parameters: All the methods were trained in the
same way. We initialize model parameters (vk vectors and
the α vector) to random values from uniform distribution in
(0, 1) (unless specified otherwise, for the iFair-b method). To
compensate for variations caused due to initialization of model
parameters, for each method and at each setting, we report the
results from the best of 3 runs.
Hyper-Parameters: As for hyper-parameters (e.g., λ and
µ for iFair), including the dimensionality K of the low-
rank representations, we perform a grid search over the set
{0, 0.05, 0.1, 1, 10, 100} for mixture coefficients and the set
{10, 20, 30} for the dimensionality K. Recall that the input
data is pre-processed with categorical attributes unfolded into
binary attributes; hence the choices for K.

The mixture coefficients (λ, µ, . . . ) control the trade-off
between different objectives: utility, individual fairness, group
fairness (when applicable). Since it is all but straightforward
to decide which of the multiple objectives is more important,
we tune hyper-parameters based on different choices for the
optimization goal (e.g., maximize utility alone or maximize
a combination of utility and individual fairness). Thus, our
evaluation results report multiple observations for each model,
depending on the goal for tuning the hyper-parameters. When
possible, we identify Pareto-optimal choices with respect to
multiple objectives; that is, choices that are not consistently
outperformed by other choices for all objectives.

C. Evaluation Measures
• Utility: measured as the area under the ROC curve

(AUC) for the classification task, and as Kendall’s Tau
(KT) and average precision at 10 (AP) for the learning-
to-rank task.
• Individual Fairness: measured as the consistency of

the outcome ŷi of an individual with the outcomes of
his/her k=10 nearest neighbors. This metric has been
introduced by [18] 1 and captures the intuition that
similar individuals should be treated similarly. Note that
nearest neighbors of an individual, kNN(xi), are com-
puted on the original data records excluding protected
attributes, x∗i , whereas the predicted response variable ŷi
is computed on the output of the learned representations
x̃i.

yNN = 1− 1

M
· 1
k
·

M∑
i=1

∑
j∈kNN(x∗

i )

|ŷi − ŷj |

1Our version slightly differs from that in [18] by fixing a minor bug in the
formula.

https://www.xing.com
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Fig. 3: Experimental results on classification task using ProPublica COMPAS data.

• Group Fairness: measured as
- Equality of Opportunity (EqOpp) [11]: the dif-

ference in the True Positives rates between the
protected group X+ and the non-protected group
X−;

- Statistical Parity defined as:

Parity = 1− | 1

|X+|
∑
i∈X+

ŷi −
1

|X−|
∑

j∈X−

ŷj |

We use the modern notion of EqOpp as our primary
metric of group fairness, but report the traditional mea-
sure of Parity as well. Note that, these group fairness
notions are specifically geared for binary classification
task. Hence, we do not compute these measures in our
evaluation on learning-to-rank task.

D. Evaluation on Classification Task

This section evaluates the effectiveness of iFair and its
competitors on a classification task. We focus on the utility-
fairness tradeoff that learned representations alleviate when
used to train classifiers. Figure 3 shows the results for the
COMPAS data, plotting utility (AUC) against three different
measures of fairness (yNN, EqOpp, Parity), for all the meth-
ods. The dotted lines show methods that are Pareto-optimal
with regard to a combination of two of the four measures.
Hyper-parameters were tuned (via grid search) for each of the
shown combinations.

We observe that there is a considerable amount of unfairness
in the original dataset, which is reflected in the results of Full
Data in Figure 3. Masked Data shows an improvement in
fairness; however, there is still substantial unfairness hidden
in the data in the form of correlated attributes. Among the
two SVD variants, the SVD-masked representation achieves
very high fairness but completely fails on utility (AUC). The
transformed data learned by LFR and iFair clearly dominate
all other methods in coping with the trade-off. iFair-b is the
overall winner: it is consistently Pareto-optimal for all three
pairs of measures and all but the degenerate extreme points.
Note that this superiority of iFair-b holds not just for its design
point of reconciling utility and individual fairness, but also for

the two notions of group fairness. For the extreme points in
the trade-off spectrums, no method can achieve near-perfect
utility without substantially losing fairness and no method can
be near-perfectly fair without substantially losing utility.

Figure 4 shows detailed results for five choices of tuning
hyper-parameters (via grid search): (a) considering utility
(AUC) only, (b) considering group fairness (EqOpp) only,
(c) considering individual fairness (yNN) only, (d) using the
harmonic mean of utility and group fairness, and (e) using
the harmonic mean of utility and individual fairness as tuning
target.

Here we focus on the LFR and iFair methods, as the other
baselines do not have hyper-parameters to control trade-offs
and are good only at extreme points of the objective space
anyway. The charts in Figure 4 confirm and further illustrate
the findings of Figure 3. The two iFair methods, tuned for
the combination of utility and individual fairness (case (e)),
achieve the best overall results: decent utility and high fairness.
LFR, on the other hand, has a severe penalty on utility. As a
consequence of its ambitious objective function that strives
for utility, individual fairness and group fairness altogether,
its compromises tend to become inferior no matter how its
hyper-parameters are tuned.

E. Evaluation on Learning-to-Rank Task

This section evaluates the effectiveness of iFair on a regres-
sion task for ranking people on the Xing data. Here, notions
of group fairness do not apply – so we report only utility, in
terms of Kendall’s Tau (KT) and Average Precision (AP), and
individual fairness in terms of consistency (yNN). We evaluate
our results against the deserved scores of individuals as ground
truth.

As stated in Section V-A, the deserved score is the sum
of the true qualifications of an individual, that is, work
experience, education experience and number of profile views.
We observe that the scores predicted by iFair are highly
correlated to the deserved scores. Table III shows results for
four randomly selected job search queries, and Figure 5 plots
the iFair-predicted scores against the deserved scores. Note
that the baselines used for the classification experiment, most
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notably LFR, are not geared for regression tasks and thus
omitted here.

Xing Query Top 10 Positions KT AP yNN

Art Director m m f m m m m m f m 0.82 0.60 0.998
Auditor m m m f m f m f m m 0.78 0.51 0.996

Receptionist f m f f f f f m f m 1.00 1.00 0.992
legal advisor m m m f m m f f m f 0.91 0.67 0.995

TABLE III: Predicted rankings by iFair for a subset of four
randomly selected job search queries on Xing data. Mean KT
across all 54 queries is 0.701; mean AP across all 54 queries
is 0.733; mean yNN across all 54 queries is 0.993.

Since, we do not have any information on the proprietary
Xing ranking model, we do not comment on their scores.
However, it is interesting to note that in comparison to the
original ranking on the Xing website, we observe in Table III
that our ranking increases the number of individuals belonging
to a protected gender in the top 10 positions. That is, the
ranking produced by iFair increases the ranking exposure that
equally deserving individuals receive in the top positions. This
improvement in ranking is indeed correlated to the deserved
scores of the individuals, and not an improvement made at
the expense of lowering the rank of other deserving candi-
dates from the non-protected group. For illustration, Table IV
presents the top 10 candidates retrieved via iFair scores for the
query “Brand Strategist”. Observe that, iFair ranks candidates
with higher qualifications (work experience, education and
profile views) at the top of the list. As expected, candidates
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Fig. 5: Predicted scores by iFair vs. deserved scores for
individuals on Xing dataset for four randomly selected job
search queries. All scores are normalized.



with similar qualifications (highlighted in grey) are close in
their ranking positions.

iFair candidate work education profile improvement
ranking experience experience views in ranking ↑↓

1 female 226 207 5342 27
2 male 502 74 6978 1
3 female 220 102 17186 7
4 male 313 79 1285 33
5 male 156 103 4823 8
6 male 190 88 11514 16
7 male 359 63 6437 9
8 female 444 56 1504 -4
9 male 188 87 5132 18

10 male 367 45 1164 8

TABLE IV: Top-k results by iFair scores for the the job search
query “Brand Strategist”.

VI. CONCLUSIONS

We proposed a generic and versatile framework to perform
a probabilistic transformation of data into individually fair rep-
resentations. We applied our model to two real-world datasets
in order to learn their fair representations. Applying standard
classifier and regression to the transformed representation
leads to algorithmic decisions that are substantially fairer –
both individually as well as group-wise – than the decisions
made on the original data. Inevitably, the gain in fairness
comes at the expense of a small loss in utility.

Our approach is the first method to compute individually
fair results in learning-to-rank tasks. For classification tasks,
it outperforms the state-of-the-art prior work on individual
fairness. Moreover, it can be applied to input of all data-
types, including multiple, multivariate, non-binary protected
attributes, and even in the settings where access to protected
attributes is restricted due to privacy concerns.
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