883 research outputs found

    Compositional Mining of Multi-Relational Biological Datasets

    Get PDF
    High-throughput biological screens are yielding ever-growing streams of information about multiple aspects of cellular activity. As more and more categories of datasets come online, there is a corresponding multitude of ways in which inferences can be chained across them, motivating the need for compositional data mining algorithms. In this paper, we argue that such compositional data mining can be effectively realized by functionally cascading redescription mining and biclustering algorithms as primitives. Both these primitives mirror shifts of vocabulary that can be composed in arbitrary ways to create rich chains of inferences. Given a relational database and its schema, we show how the schema can be automatically compiled into a compositional data mining program, and how different domains in the schema can be related through logical sequences of biclustering and redescription invocations. This feature allows us to rapidly prototype new data mining applications, yielding greater understanding of scientific datasets. We describe two applications of compositional data mining: (i) matching terms across categories of the Gene Ontology and (ii) understanding the molecular mechanisms underlying stress response in human cells

    Protein-protein interactions and metabolic pathways reconstruction of Caenorhabditis elegans

    Get PDF
    Metabolic networks are the collections of all cellular activities taking place in a living cell and all the relationships among biological elements of the cell including genes, proteins, enzymes, metabolites, and reactions. They provide a better understanding of cellular mechanisms and phenotypic characteristics of the studied organism. In order to reconstruct a metabolic network, interactions among genes and their molecular attributes along with their functions must be known. Using this information, proteins are distributed among pathways as sub-networks of a greater metabolic network. Proteins which carry out various steps of a biological process operate in same pathway.The metabolic network of Caenorhabditis elegans was reconstructed based on current genomic information obtained from the KEGG database, and commonly found in SWISS-PROT and WormBase. Assuming proteins operating in a pathway are interacting proteins, currently available protein-protein interaction map of the studied organism was assembled. This map contains all known protein-protein interactions collected from various sources up to the time. Topology of the reconstructed network was briefly studied and the role of key enzymes in the interconnectivity of the network was analysed. The analysis showed that the shortest metabolic paths represent the most probable routes taken by the organism where endogenous sources of nutrient are available to the organism. Nonetheless, there are alternate paths to allow the organism to survive under extraneous variations. Signature content information of proteins was utilized to reveal protein interactions upon a notion that when two proteins share signature(s) in their primary structures, the two proteins are more likely to interact. The signature content of proteins was used to measure the extent of similarity between pairs of proteins based on binary similarity score. Pairs of proteins with a binary similarity score greater than a threshold corresponding to confidence level 95% were predicted as interacting proteins. The reliability of predicted pairs was statistically analyzed. The sensitivity and specificity analysis showed that the proposed approach outperformed maximum likelihood estimation (MLE) approach with a 22% increase in area under curve of receiving operator characteristic (ROC) when they were applied to the same datasets. When proteins containing one and two known signatures were removed from the protein dataset, the area under curve (AUC) increased from 0.549 to 0.584 and 0.655, respectively. Increase in the AUC indicates that proteins with one or two known signatures do not provide sufficient information to predict robust protein-protein interactions. Moreover, it demonstrates that when proteins with more known signatures are used in signature profiling methods the overlap with experimental findings will increase resulting in higher true positive rate and eventually greater AUC. Despite the accuracy of protein-protein interaction methods proposed here and elsewhere, they often predict true positive interactions along with numerous false positive interactions. A global algorithm was also proposed to reduce the number of false positive predicted protein interacting pairs. This algorithm relies on gene ontology (GO) annotations of proteins involved in predicted interactions. A dataset of experimentally confirmed protein pair interactions and their GO annotations was used as a training set to train keywords which were able to recover both their source interactions (training set) and predicted interactions in other datasets (test sets). These keywords along with the cellular component annotation of proteins were employed to set a pair of rules that were to be satisfied by any predicted pair of interacting proteins. When this algorithm was applied to four predicted datasets obtained using phylogenetic profiles, gene expression patterns, chance co-occurrence distribution coefficient, and maximum likelihood estimation for S. cerevisiae and C. elegans, the improvement in true positive fractions of the datasets was observed in a magnitude of 2-fold to 10-fold depending on the computational method used to create the dataset and the available information on the organism of interest. The predicted protein-protein interactions were incorporated into the prior reconstructed metabolic network of C. elegans, resulting in 1024 new interactions among 94 metabolic pathways. In each of 1024 new interactions one unknown protein was interacting with a known partner found in the reconstructed metabolic network. Unknown proteins were characterized based on the involvement of their known partners. Based on the binary similarity scores, the function of an uncharacterized protein in an interacting pair was defined according to its known counterpart whose function was already specified. With the incorporation of new predicted interactions to the metabolic network, an expanded version of that network was resulted with 27% increase in the number of known proteins involved in metabolism. Connectivity of proteins in protein-protein interaction map changed from 42 to 34 due to the increase in the number of characterized proteins in the network

    MitoGenesisDB: an expression data mining tool to explore spatio-temporal dynamics of mitochondrial biogenesis

    Get PDF
    Mitochondria constitute complex and flexible cellular entities, which play crucial roles in normal and pathological cell conditions. The database MitoGenesisDB focuses on the dynamic of mitochondrial protein formation through global mRNA analyses. Three main parameters confer a global view of mitochondrial biogenesis: (i) time-course of mRNA production in highly synchronized yeast cell cultures, (ii) microarray analyses of mRNA localization that define translation sites and (iii) mRNA transcription rate and stability which characterize genes that are more dependent on post-transcriptional regulation processes. MitoGenesisDB integrates and establishes cross-comparisons between these data. Several model organisms can be analyzed via orthologous relationships between interspecies genes. More generally this database supports the ‘post-transcriptional operon’ model, which postulates that eukaryotes co-regulate related mRNAs based on their functional organization in ribonucleoprotein complexes. MitoGenesisDB allows identifying such groups of post-trancriptionally regulated genes and is thus a useful tool to analyze the complex relationships between transcriptional and post-transcriptional regulation processes. The case of respiratory chain assembly factors illustrates this point. The MitoGenesisDB interface is available at http://www.dsimb.inserm.fr/dsimb_tools/mitgene/

    WormBase in 2022-data, processes, and tools for analyzing Caenorhabditis elegans

    Get PDF
    WormBase (www.wormbase.org) is the central repository for the genetics and genomics of the nematode Caenorhabditis elegans. We provide the research community with data and tools to facilitate the use of C. elegans and related nematodes as model organisms for studying human health, development, and many aspects of fundamental biology. Throughout our 22-year history, we have continued to evolve to reflect progress and innovation in the science and technologies involved in the study of C. elegans. We strive to incorporate new data types and richer data sets, and to provide integrated displays and services that avail the knowledge generated by the published nematode genetics literature. Here, we provide a broad overview of the current state of WormBase in terms of data type, curation workflows, analysis, and tools, including exciting new advances for analysis of single-cell data, text mining and visualization, and the new community collaboration forum. Concurrently, we continue the integration and harmonization of infrastructure, processes, and tools with the Alliance of Genome Resources, of which WormBase is a founding member

    Investigation of the length distributions of coding and noncoding sequences in relation to gene architecture, function, and expression

    Get PDF
    The last 20 years has seen the birth of bioinformatics, and is defined as the combination of mathematics, biology, and computational approaches. This discipline has led to the era of ontology, extensive databases including sequences, structures, expression profiles, and genomes and database cross-referencing, (Ouzounis, 2012). Before this discipline, scientists referenced atlas books, such as Margret Dayhoff’s protein sequence collection (Strasser, 2010) which required long hours of letter counting. Through the development of sequencing technology over the past forty years, a tremendous amount of genomic sequencing data has already been collected. With a surge of such data increasing, so does the challenges of data organisation, accessibility and interpretation, with interpretation being the most challenging (Ouzounis, 2012)

    Computational Methods and Software Tools for Functional Analysis of miRNA Data

    Get PDF
    miRNAs are important regulators of gene expression that play a key role in many biological processes. High-throughput techniques allow researchers to discover and characterize large sets of miRNAs, and enrichment analysis tools are becoming increasingly important in decoding which miRNAs are implicated in biological processes. Enrichment analysis of miRNA targets is the standard technique for functional analysis, but this approach carries limitations and bias; alternatives are currently being proposed, based on direct and curated annotations. In this review, we describe the two workflows of miRNAs enrichment analysis, based on target gene or miRNA annotations, highlighting statistical tests, software tools, up-to-date databases, and functional annotations resources in the study of metazoan miRNAs.Junta de Andalucia PI-0173-2017 CV20.3672

    Systematic computational analysis of potential RNA interference regulation in Toxoplasma gondii

    Get PDF
    Thesis (Master)--Izmir Institute of Technology, Molecular Biology and Genetics, Izmir, 2009Includes bibliographical references (leaves: 58-73)Text in English; Abstract: Turkish and Englishx, 79 leavesRNA-mediated silencing was first described in plants and became famous by studies in Caenorhabditis elegans. RNA interference (RNAi) is the mechanism through which an RNA interferes with the production of other RNAs in a sequence specific manner. MiRNAs are a type of RNA which originate from the genome with their active form being ss-RNAs of 21-23 nucleotides in length. They are being transcribed as primiRNAs then processed in the nucleus by Drosha to pre-miRNAs with a stem-loop structure and 70 nucleotides in length. This stem-loop containing pre-miRNAs is then processed in the cytoplasm to ds-RNA one strand of which will serve as interfering RNA. Toxoplasma gondii is a species of parasitic protozoa which causes several diseases. T.gondii emerges as a good candidate for computational efforts with its small genome size, publicly available genome files and extensive information about its gene structure, either based on experimental data or the prediction with several gene finders in parallel. Therefore, it seems important to establish the regulatory network composed of RNAi which may be beneficial for the Toxoplasma community. Within this context the pool of possible stem-loop constitutive transcripts are produced, further analysis of this pool for desired 2D structure is integrated and mapping of possible RNAi regulation to T.gondii.s genome is established. In connection with computational assessment and mapping, the derived information is provided as a database for quick lookup using a convenient web interface for experimental studies of RNAi regulation in Toxoplasma, thus reduce time and money costs in such studies

    Machine learning for the prediction of protein-protein interactions

    Get PDF
    The prediction of protein-protein interactions (PPI) has recently emerged as an important problem in the fields of bioinformatics and systems biology, due to the fact that most essential cellular processes are mediated by these kinds of interactions. In this thesis we focussed in the prediction of co-complex interactions, where the objective is to identify and characterize protein pairs which are members of the same protein complex. Although high-throughput methods for the direct identification of PPI have been developed in the last years. It has been demonstrated that the data obtained by these methods is often incomplete and suffers from high false-positive and false-negative rates. In order to deal with this technology-driven problem, several machine learning techniques have been employed in the past to improve the accuracy and trustability of predicted protein interacting pairs, demonstrating that the combined use of direct and indirect biological insights can improve the quality of predictive PPI models. This task has been commonly viewed as a binary classification problem. However, the nature of the data creates two major problems. Firstly, the imbalanced class problem due to the number of positive examples (pairs of proteins which really interact) being much smaller than the number of negative ones. Secondly, the selection of negative examples is based on some unreliable assumptions which could introduce some bias in the classification results. The first part of this dissertation addresses these drawbacks by exploring the use of one-class classification (OCC) methods to deal with the task of prediction of PPI. OCC methods utilize examples of just one class to generate a predictive model which is consequently independent of the kind of negative examples selected; additionally these approaches are known to cope with imbalanced class problems. We designed and carried out a performance evaluation study of several OCC methods for this task. We also undertook a comparative performance evaluation with several conventional learning techniques. Furthermore, we pay attention to a new potential drawback which appears to affect the performance of PPI prediction. This is associated with the composition of the positive gold standard set, which contain a high proportion of examples associated with interactions of ribosomal proteins. We demonstrate that this situation indeed biases the classification task, resulting in an over-optimistic performance result. The prediction of non-ribosomal PPI is a much more difficult task. We investigate some strategies in order to improve the performance of this subtask, integrating new kinds of data as well as combining diverse classification models generated from different sets of data. In this thesis, we undertook a preliminary validation study of the new PPI predicted by using OCC methods. To achieve this, we focus in three main aspects: look for biological evidence in the literature that support the new predictions; the analysis of predicted PPI networks properties; and the identification of highly interconnected groups of proteins which can be associated with new protein complexes. Finally, this thesis explores a slightly different area, related to the prediction of PPI types. This is associated with the classification of PPI structures (complexes) contained in the Protein Data Bank (PDB) data base according to its function and binding affinity. Considering the relatively reduced number of crystalized protein complexes available, it is not possible at the moment to link these results with the ones obtained previously for the prediction of PPI complexes. However, this could be possible in the near future when more PPI structures will be available
    corecore