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Abstract 

The last 20 years has seen the birth of bioinformatics, and is defined as the combination of mathematics, biology, and 

computational approaches. This discipline has led to the era of ontology, extensive databases including sequences,  

structures,  expression  profiles,  and genomes and database cross-referencing, (Ouzounis, 2012). Before this 

discipline, scientists referenced atlas books, such as Margret Dayhoff’s protein sequence collection (Strasser, 2010) 

which required long hours of letter counting. Through the development of sequencing technology over the past forty 

years, a tremendous amount of genomic sequencing data has already been collected. With a surge of such data 

increasing, so does the challenges of data organisation, accessibility and interpretation, with interpretation being the 

most challenging (Ouzounis, 2012). 

The primary structure of DNA and proteins has been predominantly the focus of sequence analysis. However, other 

attributes, such as sequence length are also important. The journey of gene length research commences with Zhang 

(2000) who conducted an investigation on protein length for three domains of life. Protein length was found to be 40-

60% greater in eukaryotes than in prokaryotes (Zhang, 2000). This finding was substantiated by Xu and colleagues 

(2006) who found that the mean length of genetic coding sequences is highly conserved in prokaryotes and eukaryotes 

but diverges between the two kingdoms (Wang, 2005; Xu, et al., 2006). They reported that the coding sequence length 

is on average 445 bp longer in eukaryotes than in prokaryotes (Xu, et al., 2006).  These findings still hold true today. 

Zhang’s research also suggests that the differences in the length is not random, but has some biological significance 

(Zhang, 2000). These findings started a revolution with research now focusing on eukaryote protein size, conservation, 

complexity, and compactness.   

As genome sequence data becomes readily available for different living organisms, and the explosion of data from 

biological experiments, there is a greater need for automated tools to classify and analysis this data, as well as 

increasing the scale and sophistication of the information technology, in order to draw conclusions from the data and 

to formulate new directions for research. The regulation of gene expression and its products is one of the important 

facets of an organism, and this regulation has been associated with different regions of the gene, including 5’ and 3’ 

un-translated regions. Variations in coding and noncoding sequence length, intron number and size differ significantly 

among living organisms. The main aim of this thesis is to explore and understand, using statistics and mathematical 

modelling, the length distribution relationship between the coding and noncoding regions of protein coding genes. 

The project involved data acquirement from the internet, data formatting and creation of a database for the research, 

pattern search for target DNA elements, followed by the examination of the interrelationships between these 

regulatory elements. The research outlined in this thesis introduced a nonlinear model and incorporated gene 

expression data into the analysis. Other statistical methods such as Canonical Correlation Analysis (CCA) and quantile 

regression was used to determine the relationship of length and gene expression.  

The research started with collaborations with several authors to assess neural network promoter prediction and the 

results found that for the H. sapiens data set, the TSC-TSS-NNPP method achieved better results than both NNPP2.2 

and TSS-NNPP. A generalised understanding of the behaviour of the coding sequence and protein length (with and 

without introns) for 15 organisms was found, notably there were differences between the more complex organisms 

compared to the lower species. The nonlinear model has revealed a significant relationship with the coding sequence 

and the 5’ UTR region and has complemented research that has already been investigated with these regions. Protein 

function was also investigated, and the results found significant differences between the available protein function 

classifications in relation to the coding and noncoding gene region lengths. Canonical Correlation Analysis (CCA) 
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was used in a Drosophila melanogaster study to determine a relationship between the length of the coding and 

noncoding regions and the gene expression levels subjected to various environmental conditions. The breakdown of 

the analysis showed two canonical correlation functions as being significant, and that for each dependent variable 

there was a weak relationship with the coding sequence. The results show the maximized correlation for each data set 

for each variable, was between longevity (extended life span under non-stressful conditions) and the 5’ UTR length. 

Both of these values were negative, indicating that the higher the expression levels of longevity, the longer the length 

of the 5’ un-translated region. However, interpretation of this method was difficult and is not widely used due to this 

constraint. All the work in the previous chapters has led to the most important discovery, which was the positive 

correlation between the 3’ UTR length and gene expression. This is a unique result and was identified in both an 

animal and plant species. 

Bioinformatics is an important discipline in the post-genomic era as it is used to convert genomics data into 

knowledge. Ultimately this project’s goal was to discover new biological insights in the length distributions of coding 

and noncoding sequences and create a universal perspective on the importance of length and the relationship between 

the coding and noncoding sequences. The knowledge gained in this thesis can now complement and enhance other 

research in the areas of cancer studies (Dorairaj, et al., 2014; Mayr and Bartel, 2009; Skeeles, et al., 2013); 

neurodevelopmental and neurodegenerative disorders (Zylka, et al., 2015); and stress adaptation (Xue-Franzén, 2014). 

This research has validated the data that is publicly available on the web. It has scrutinized the data available, including 

gene expression data and has shown patterns not discovered previously by other research studies. In conclusion, in 

delving into the patterns of statistical properties of different gene regions and their correlation we intended to elucidate 

the spatial organization rules between various gene functional elements and the difference in such organizations 

among different living organisms and gene families.  We believe that these rules and differences are the results of 

organism complexity and reflect the complexity differences in the regulation of gene expression. The information 

described in this thesis provides the basis for further exploration into gene regulation and architecture, with regard to 

sequence length of the coding and noncoding regions. With more organism genome-wide data becoming available to 

study and new methods and technologies to explore, we can look forward to a surge in genome-wide comparative 

research. 
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1 Introduction 

Mendel, known as the father of genetics, built the fundamental laws of inheritance through 

experiments and statistical analysis on the garden pea. Genetics then established itself 

as a core discipline at the beginning of the 20th century, opening a whole new world of 

science (Fairbanks and Rytting, 2001). Through the development of sequencing 

technology over the past forty years, a tremendous amount of genomic sequencing data 

has already been collected, with a flood of such data increasing even more rapidly in the 

coming years. As a result, a better understanding and insight into the mystery of gene 

architecture and its associated mechanisms will be possible. Genes are functional units 

of genetic material. Among many attributes a gene possess, its length is fundamental in 

the gene’s architecture, which is related to function. To understand the relationship 

between gene lengths, its associated architecture and further gene function will help 

uncover the sophisticated gene regulation enigma. 

 

… “for most of the genes that we identify, we have no idea of their biological functions. They are like words in a foreign 

language, waiting to be deciphered.” Iddo Friedberg, computational biologist at Miami University (33rd_Square) 

 

1.1 Background 

1.1.1 Gene Structure 

Genes contained in DNA, compose only a small portion of the genome. For example in 

the human genome, only a small percentage of the total DNA in the genome is made up 

of protein coding genes. A gene, which Mendel called factors, is the basic functional unit 

of genetic materials of all living organisms. Any fragment of DNA which can be transcribed 

into RNA within a cell is called a gene. A structural gene (referred to as a gene for this 

thesis) contains a sequence that code for proteins. Each protein is produced from the 

genetic code within the DNA.  This type of gene consists of a protein coding region 

between the translation start (TLS) and stop (STOP), and its 5’ upstream, and 3’ 

downstream noncoding regions. For RNA synthesis, at least one transcription start site 

(TSS) and terminator site (TTS) are located in the upstream and downstream regions, 

respectively (Figure 1.1). The whole region between TSS and TTS is transcribed into 

RNA in prokaryotes, however in eukaryotes, there may be certain parts (introns) which 

do not transcribe. 
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Figure 1.1 Diagrammatic illustration of a structural gene, and areas of interest in this study. The gene consists of two 
untranslated regions 5’ and 3’ which flanks the coding sequence. The coding sequence is transcribed and translated 
into proteins from the DNA. 

1.1.2 Gene Expression 

Gene expression is a tightly regulated and complex process, consisting of two major 

stages – transcription and translation. It can be described as the process of genetic 

transcription from the base sequence on DNA, and genetic translation for the production 

of proteins. Every living organism depends on genes and gene expression to produce 

proteins that play many critical roles. Proteins not only build structural components but 

can also determine how food is metabolised or how the organism can fight infections 

(Villarreal, et al., 2014). For example Arabidopsis Receptor-like proteins (RLPs) (Wang, 

et al., 2008) have been identified as playing significant roles in meristem and organ 

development (Jeong, et al., 1999).  

1.1.3 Transcription 

The first step in gene expression is transcription, the process of copying DNA into 

messenger RNA (mRNA). The mechanisms involved in transcription include the promoter 

sequences: transcription start site, the TATA box, and sequences bound by 

transcriptional regulators, the enzyme RNA Polymerase (Pol), and regulatory factors 

(Hahn, 2004). Transcription factors assemble at the promoter region of a gene, obtaining 

the RNA polymerase enzyme to form the transcription initiation complex. The 

transcription mechanism is much more complex in eukaryotes (Lee and Young, 2000), 

5’ UTR Coding Sequence 3’ UTR 
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using three nuclear enzymes (Pol I-III) compared to bacteria and archaea which only 

have one, however the principle of transcription and its regulation is still preserved 

between these sequences.  

1.1.4 The Function of Exons and Introns 

Spliceosomal introns are a ubiquitous feature of eukaryote genomes, however are absent 

from the bacterial and archaeal genomes. In eukaryotic organisms, the coding portion of 

the gene is called an exon and is usually flanked by sequences called introns. When the 

gene is transcribed into messenger RNA (mRNA) it still includes both the exon and un-

translated introns. This sequence is called the pre-mRNA, and the removal of introns 

from the pre-mRNA is completed before the mature mRNA is translated into proteins. 

Figure 1.2 offers a generalized view on the formation of the pre-mRNA and the removal 

of introns before the polypeptide is translated and produced. Splicing of introns occurs in 

complexes called spliceosomes (Nilsen, 2003) which occurs in the nucleus of the cell. 

The pre-mRNA 5’ splice junction binds to small nuclear ribonucleoproteins particles, 

known as snRNPs or snurps. 

 

 

 

 
DNA 
 

Promoter Exon Intron Exon Intron 

 
DNA 

 

 

5’ 

 
 

Leader Exon Intron Exon Intron Trailer 

AAAA … 3’ 
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Leader Protein-coding sequence (exon) Trailer 

AAAA … 3’ 

 

 

 

 

 

 

(LÓPEZ-LASTRA, et al., 2005) 

RNA- coding Sequence 
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ap
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RNA splicing snRNP 
binds: introns removed 

Pre-mRNA 

mRNA 

Translation 

Figure 1.2 General sequence of steps in the formation of eukaryotic mRNA. The coding sequence is transcribed into 
a pre-mRNA, where the introns are spliced from the sequence to form the mature mRNA. This sequence contains 
the exons which are translated into proteins. 
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This process of splicing incurs a further cost to the organism in energy and time during 

replication and transcription (Duret, 2001). Therefore, why do eukaryote organisms have 

these sequences if they are spliced out of the mRNA? The debate is still continuing in 

this area, however identification of various models may divulge whether there is a 

selective advantage on having these noncoding sequences present. Duret (2001) 

outlines several theories that may clarify why introns have selective advantage, albeit the 

high energy cost it has on eukaryote organisms. Firstly, alternative splicing produces 

many proteins from one gene. It is estimated that 60% of all human genes undergo 

alternative splicing (Bracco and Kearsey, 2003), which could be beneficial in a high 

source of functional diversity. Secondly, introns may contain regulatory elements, 

alternative promoters or antisense promoters that aid in the production of proteins. 

Thirdly, introns may contain genes that produce miRNAs and snoRNAs. Other 

investigations have inferred that exons, introns and intergenic regions1 are not random 

and contribute to the design and architecture of the genome, with length of introns on 

each chromosome showing a strong relationship to chromosome size (Sakharkar, et al., 

2005). 

1.1.5 Promoters 

Promoter regions are important sequences that starts the process of transcription. A 

typical promoter sequence is thought to comprise some sequence motifs surrounding 

transcription start sites (TSSs) (Kanhere and Bansal, 2005).  The properties of these 

regions differs from the genomic regions with structural features being one of the 

distinguishing features of these regions (Zeng, et al., 2009). Differences occur between 

the promoter sequences of prokaryotes and eukaryotes with prokaryotic sequences 

having a relatively short upstream region compared to eukaryotic sequences where they 

seem to have larger upstream regions (Kanhere and Bansal, 2005). Since 1997 design 

and implementation of promoter recognition algorithms and software  has progressed 

rapidly (Zeng, et al., 2009). Promoter prediction is an important tool in understanding 

genomes and gene regulation (Gan, et al., 2012). 

1.1.6 Translation 

The second step in gene expression, and the production of proteins is translation. The 

mRNA interacts with a specialised complex known as a ribosome that reads the 

                                            
1 An Intergenic region (IGR) is a stretch of DNA sequences located between genes. Intergenic regions are a 

subset of Noncoding DNA  
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sequence of the mRNA bases. Each sequence has three bases called a codon, which 

code for one particular amino acid. 

Translation initiation is an important regulatory process in gene expression of all living 

organisms and was poorly understood until the mid-1970s where studies by Shine and 

Dalgarno identified consensus sequences relating to levels of gene expression 

(Fuglsang, 2005). The process in which proteins are synthesized has been explored 

extensively in bacteria, in particular, E. coli. This has enhanced the understanding of the 

translation initiation process for the production of proteins in both prokaryotes and 

eukaryotes. The initiation phase governs the regulation of protein synthesis which has 

made it an important step (Kozak, 2005; Ma, et al., 2002). 

The process of translation initiation within prokaryotes involves three monomeric protein 

initiation factors, IF1, IF2 and IF3 (Londei, 2005), and GTP that bind to a 30S ribosomal 

subunit (Figure 1.3) (Kozak, 1983). This ribosomal subunit is used as part of the 

recognition process that identifies the region on the mRNA to start the initiation process. 

The widely held theory has been that there is a sequence upstream from the initiation 

code (AUG) – at the 5’ end. This sequence is known as the Shine-Dalgarno sequence, 

after the two researchers that first identified it (Shine and Dalgarno, 1974). This sequence 

pairs with the 3’ end of the 16S rRNA (Figure 1.4). The code, which has been found in E. 

coli, consists of the motif of AGGAGG or similar (Osada, et al., 1999; Russell, 2002). 

Other consensus ribosome binding site sequences found in prokaryotes include 

AGGAGGU, UAAGGA, UAAGGAGGU, and extensive experiments on E. coli have also 

established the importance of the Shine-Dalgarno base pairing (Ma, et al., 2002). Most 

binding sites contain a high portion of purine-rich sequences that are located primarily 

upstream from the initiation codon (Londei, 2005). The ribosome-binding site location and 

sequences for prokaryotes may vary, depending on the species and protein, the gene is 

designed to produce. Table 1.1 outlines several prokaryotic ribosome-binding sites and 

details the location from the initiation codon and the composition of the sequence. 
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Table 1.1 Ribosome-Binding site sequence of prokaryotic mRNAs 

The binding site sequences represent regions of complimentary base pairing between the mRNA and the 3’ end of 16S rRNA. 
 

           

Phage R17 A protein UCC UAG GAG GUU UGA CCU AUG CGA GCU UUU 

Phage Qβ replicase UAA CUA AGG AUG AAA UGC AUG UCU AAG ACA 

Phase λ Cro AUG UAC UAA GGA GGU UGU AUG GAA CAA CGC 

Phage Ф X174 A AAU CUU GGA GGC UUU UUU AUG GUU CGU UCU 

E. coli trpB AUA UUA AGG AAA GGA ACA AUG ACA ACA UUA 

E. coli lacZ UUC ACA CAG GAA ACA GCU AUG ACC AUG AUU 

E. coli RNA Polymerase β AGC GAG CUG AGG ACC CCU AUG GUU UAC UCC 

           

  Binding site sequences     

  Initiation codon       

           

 

Another important element in the initiation process for prokaryotes is formylmethionine 

(fMet). This molecule is brought to the ribosome via a transfer ribonucleic acid (tRNA), 

where it attaches to the start codon, and contains the anticodon sequence, 3’ – UAC – 

5’. At this point in the initiation process the initiation complex contains the mRNA, 30S 

subunit, fMET-tRNA and the two remaining initiation factors as well as the Guanosine-5’ 

Triphosphate (GTP) molecule. AUG start sites in prokaryotic mRNAs appear to be more 

common, which may be explained by the stability the codon creates when binding to the 

fMet-tRNA. However, there are other initiator codons that are used within > 10% of 

bacterial genes, and they include GUG and UUG (Kozak, 2005). Release of the 

remaining two initiation factors, IF1 and IF2 is obtained by the binding of the 50S 

ribosomal subunit.  This final complex, before elongation of the polypeptide chain 

transpires is known as the 70S initiation complex, and consists of two binding sites which 

include a P site (peptidyl) that contains the mRNA and fMet-tRNA, and the A site which 

is vacant (Kozak, 2005). 

Eukaryotic translation initiation entails a more complicated process. What contributes to 

the complexity of the initiation of translation in eukaryotes can be stipulated by several 

factors. Eukaryotes mRNA shape is unusual in that it adopts a circular structure due to 

the interaction between the proteins of the poly(A) tail and the 3’ end containing a 

number of factors which are used to recognise the cap at the 5’ end (Londei, 2005). The 

poly(A) plays an important role in the initiation of translation, bringing together the 3’ 
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end of the mRNA to the 5’ end, stimulating initiation. Another factor that contributes to 

the complexity is that the process requires over 10 factors that assist in the initiation 

process (Londei, 2005; Preiss and Hentze, 2003). The factors are also an important 

characteristic, because unlike the prokaryotes, there is no defined interaction with the 

ribosome, therefore the mRNA and many different factors are involved in this interaction. 

In addition, the factors also aid in the preliminary unwinding of the secondary structures 

in the mRNA (Londei, 2005). 

The current theory on the initiation of translation within eukaryotes involves four 

subsequent steps. The first step involves the eIF-4F initiator factors together with the 

cap-binding protein (CBP) binding to the 5’ end cap of the mRNA (Figure 1.5). Secondly, 

a 43S initiation complex is created from a 40S ribosomal subunit, a Met-tRNA initiator 

and several eIF protein initiation factors, together with GTP.  The initiation complex then 

binds to the 5’ mRNA where in the third step “scans” the 5’ untranslated region (UTR) of 

the mRNA until recognition occurs with the initiator AUG start codon. The complex 

distinguishes this codon as the initiator codon as it sits in a short sequence known as the 

Kozak sequence (Kozak, 1987), and is virtually the first AUG codon from the 5’ end of 

the mRNA. Finally, the 43S complex binds to the AUG codon and a 60S subunit joins it, 

creating a large 80S ribosome initiation complex. In this step, the eIFs are released and 

the Met-tRNA initiator locates itself with the P site, which is a similar method found in the 

prokaryotes (Preiss and Hentze, 2003) (Figure 1.5). 

1.1.7 Comparison between Prokaryotes and Eukaryotes 

Eukaryotes have more elaborate translational regulation mechanisms in comparison to 

the prokaryotes (Table 1.2). In the example from bacteria, the presence of the Shine-

Dalgarno sequence allows for a more rapid decoding process due to the mRNAs being 

largely polycistronic2. This recognition mechanism of the ribosome and the mRNA is 

sufficient for polycistronic mRNA. However, eukaryotes are more sophisticated and 

require a higher level of translational regulation involving a considerable number of 

initiation factors, which may be redundant for prokaryotes (Londei, 2005). 

  

                                            
2 Single mRNA which can code for several genes 
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Table 1.2 Comparison of the translation initiation process in prokaryotes and eukaryotes 

(Kozak, 2005; Londei, 2005; Pestova, et al., 2001; Preiss and Hentze, 2003) 

 

Organism Initiation Factors 
Ribosomal 

Subunit 

Initiation 

complex 

Selection of 

Start sites 

Final initiation 

Complex 

 

Prokaryote 

 

IF-1, IF-2, IF-3, GTP 

and magnesium ions. 

 

30S ribosomal subunit 

containing all initiation 

factors. Binds to mRNA 

around AUG initiation 

codon region. 

 

30S initiation complex, 

which consists of 

mRNA, 30S subunit, 

fMET-tRNA and the 

two remaining initiation 

factors as well as the 

GTP molecule 

 

Start sites consists 

predominately of AUG 

but can consist of 

GUG and UUG (>10% 

of bacterial genes). 

 

70S initiation complex 

incorporates the mRNA, 

fMet-tRNA, 50S and 30S 

ribosomal subunits, a P site 

which contains the fMet-

tRNA and an A site which is 

vacant. 

 

 

Eukaryote 

 

Over 10 eIFs and 

GTP. 

 

eIF-1, eIF-1A, eIF-2, 

eIF-2B, eIF-3, eIF-4E, 

eIF-4G, eIF-4A, eIF-

4b,  eIF-5 

 

40S ribosomal subunit 

containing initiation 

factors.  Binds to the 5’ 

cap of the mRNA. 

 

43S initiation complex 

is created from a 40S 

ribosomal subunit, a 

Met-tRNA initiator and 

several eIF protein 

initiation factors, 

together with GTP. 

 

Start sites consist of 

AUG and a “Scanning” 

mechanism is used to 

find the first AUG start 

codon from the 5’ end 

of the mRNA. 

 

80S initiation complex 

includes the mRNA, Met-

tRNA, 40S and 60S 

ribosomal subunits and a P 

site which contains the Met-

tRNA. 

 

1.1.8 Protein Function 

The shape and function of the protein is determined from this code, which enumerates 

the number of amino acids and order in which to place them. Proteins are long chains of 

polypeptides, as many as 20 different kinds of amino acids linked in a characteristic 

sequence. The proteins produced in an organism, have important applications for the 

living organism. A cell can accommodate thousands of different proteins, which all have 

essential functions within a cell (Buxbaum, 2007). The protein functions includes 

enzymes for making new molecules and catalysing all chemical processes in a cell; they 

can also give the cells their structural shape (de Lanerolle and Cole, 2002); hormones for 

signalling (Adams, et al., 2000; Rosenbaum, et al., 2009); antibodies for recognizing 

foreign molecules and combating disease (Westergard, et al., 2007); as well as transport 

molecules (Ehrnstorfer, et al., 2014; Terwilliger, 1998).  
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Initiation Factors: 
GTP, IF-1, IF-2, IF-3 

30S Ribosome Subunit 
GTP, IF-1, IF-2, IF-3 

 

30S Ribosome Subunit 
GTP, IF-2 

 

fMet 

 

UAC 

50S ribosomal  
subunit 

fMet 

 

UAC 

 

GDP + P, IF-2 + P 

A Site 

P Site 

 

IF-1, IF-3 

mRNA 

Figure 1.3 Translation initiation in prokaryotes 

A 30S ribosomal subunit which is bound by initiation factors IF1, IF2, IF3, GTP and magnesium ions binds to a 
mRNA in the region of the AUG initiation codon. fMet-tRNA also binds to the mRNA at which point the IF1 is 
released and forms a more stable 30S initiation complex. The formation of the final 70S initiation complex is 
instigated by the binding of the 50S ribosomal subunit, where the remaining initiation factors are released and GTP 
is hydrolysed and released. 
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3’   AUUCCUCC…………………………….   5’      16S rRNA 3’ end 

5’          UGUACUAAGGAGGUUGUAUGGAACAACGC  3’       mRNA 

 

 

 

 
 

 

1.1.9 Model Organisms 

Model organisms are widely used to understand a range of biological phenomena in order 

to apply generalised theories and principles to more complex organisms. The organisms 

are not only used for the convenience of maintaining and breeding in a laboratory 

environment, but there is also a large collection of data readily available that is publicly 

accessible (Twyman, 2002). Model organisms emerged in the early 1900s in three stages 

(Davis, 2004) revitalising the age of comparative genomics. The most widely used 

species include the mouse (Mus musculus), rat (Rattus rattus), zebrafish (Danio rerio), 

fruit fly (Drosophila melanogaster), nematode worm (Caenorhabditis elegans), and thale 

cress (Arabidopsis thaliana). The data for model organisms has also been used 

extensively in many studies, and the integrity of the data has been proven already in peer 

reviewed publications and supported websites and databases. 

  

There are three major types of model organisms: 

 Genetic model organisms (used for genetic analysis); 

 Experimental model organisms (experimental advantages); and 

 Genomic model organisms (occupy a position in the evolutionary tree). 

 

 

 

  

Shine-Dalgarno 

sequence 

Initiation codon 

Figure 1.4 DNA Sequences on the 16S rRNA 

DNA Sequences on the 16S rRNA that are compatible with the DNA sequences upstream from the initiation codon (AUG). This 
sequence is known as the Shine-Dalgarno sequence in prokaryotes. 
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Figure 1.5 Translation initiation in eukaryotes 

A 40S ribosomal subunit which is bound by several initiation factors and GTP bind to an mRNA in the 5’ cap region. Met-tRNA 
also binds to the mRNA which forms the 43S initiation complex. The complex scans the mRNA to find the initiator codon AUG.  
The formation of the final 80S initiation complex is instigated by the binding of the 60S ribosomal subunit, where GTP is 
hydrolyzed and released (Jackson, et al., 2010; Pestova, et al., 2001; Preiss and Hentze, 2003). 
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Model organisms have improved understanding in ovarian cancer metastasis (Naora and 

Montell, 2005), human disease studies (Chintapalli, et al., 2007) as well crop 

improvement (Bressan, et al., 2009). Model insects such as the Drosophila melanogaster 

have improved the understanding of behaviour and environmental interaction (Jasny, et 

al., 2008; Robinson, et al., 2008), as well as determining the basic rules of circadian 

clocks which has led to discoveries in sleep deprivation, obesity, diabetes, depression 

and other human health conditions (Panda, et al., 2002). These examples are just a small 

fraction of what is currently being investigated, and as more data becomes available for 

other organisms the list of model organisms will grow. 

 

1.1.10 Sequence Databases and Tools 

With the commercial introduction of the internet in the early 1990’s, the scope and 

expanse of the “World Wide Web” could not have been foreseen with such a dramatic 

impact on culture, commerce and molecular biology research. After the introduction of 

the internet, thousands of web sites across the world have been created relevant to 

biology. Walter Gilbert (Gilbert, 1991) urged molecular biologists to cultivate their 

computer literacy skills to start a worldwide communication network. The Internet has 

benefited the science community with data published and available virtually 

instantaneously, and allows users to exchange views and ideas, and access a network 

of tools for biological research. For biologists, the use of the internet has allowed access 

to a wide range of up-to-date information without leaving their laboratory (Recipon and 

Makalowski, 1997).  

Each year the number of web sites, tools and databases available for researchers 

increases considerably. Additional to these sites, researchers can also download from 

FTP sites, view journals on line, and join news groups. Table 1.3 outlines a few relevant 

molecular biology sites currently available from the Internet. These are only a few web 

sites out of hundreds that are available on the Internet. 

Nucleotide sequence databases require unique identifiers for each item and are known 

as the Accession Number. This number never changes, and therefore can be quoted in 

scientific literature (Apweiler, Bairoch et al. 2004). These databases have improved 

connections to a wide range of data and allowed for greater comparative analyses. 
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Table 1.3 The URLs of databases and other tools used by molecular biologists 

   
Database or Site URL Description 
   

   
123 Genomes http://www.123genomics.com/ 

 
A Genomics, Proteomics and Bioinformatics Knowledge 
Base. 

   
*COG Database http://www.ncbi.nlm.nih.gov/COG/ 

 
Clusters of Orthologous Groups of proteins (COGs). 

   
*EMBL Nucleotide 
Sequence Database 

http://www.ebi.ac.uk/embl/ Europe's primary nucleotide sequence resource (Stoesser, 
et al., 2003). 

   
Expression Atlas http://www.ebi.ac.uk/gxa/home The Expression Atlas provides information on gene 

expression patterns under different biological conditions.  
   
GEO DataSets http://www.ncbi.nlm.nih.gov/gds This database stores curated gene expression DataSets, as 

well as original Series and Platform records in the Gene 
Expression Omnibus (GEO) repository. 

   
KEGG http://www.genome.jp/kegg/ KEGG (Kyoto Encyclopaedia of Genes and Genomes) is a 

bioinformatics resource for linking genomes to life and the 
environment. 

   
*NCBI http://www.ncbi.nlm.nih.gov/ A national resource for molecular biology information. 
   
Pfam http://pfam.sanger.ac.uk/ The Pfam database is a large collection of protein families, 

each represented by multiple sequence alignments and 
hidden Markov models (HMMs). 

   
UniProt http://www.ebi.ac.uk/uniprot/ High quality and freely accessible resource of protein 

sequence and functional information. 
   
PACdb http://harlequin.jax.org/pacdb/ PACdb is a database of mRNA three prime (3') processing 

sites. 
   
DBTSS http://dbtss.hgc.jp/ DBTSS is a database of transcriptional start sites, based on 

our unique collection of precise, experimentally-determined 
5'-end sequences of full-length cDNAs. 

   
*Flybase http://flybase.org/ A database of Drosophila genes and genomes. 
   
*TAIR http://www.arabidopsis.org/ The Arabidopsis Information Resource (TAIR) maintains a 

database of genetic and molecular biology data for the 
model higher plant Arabidopsis thaliana. 

   
UTRdb http://utrdb.ba.itb.cnr.it/ UTRdb is a curated database of 5' and 3' untranslated 

sequences of eukaryotic mRNAs, derived from several 
sources of primary data. 

   
Virtual Library - 
Biosciences 

http://vlib.org/Biosciences The ultimate bioscience jump-station, with links to just about 
anything you want to know about biology.  

   
   
Wormbase http://www.wormbase.org/#01-23-6 WormBase is an international consortium of biologists and 

computer scientists dedicated to providing the research 
community with accurate, current, accessible information 
concerning the genetics, genomics and biology of C. elegans 
and related nematodes (Harris, et al., 2010). 

   

 

* Data accessed for the research in this thesis 

  

http://www.123genomics.com/
http://www.ncbi.nlm.nih.gov/COG/
http://www.ebi.ac.uk/embl/
http://www.ebi.ac.uk/gxa/home
http://www.ncbi.nlm.nih.gov/gds
http://www.genome.jp/kegg/
http://www.ncbi.nlm.nih.gov/
http://pfam.sanger.ac.uk/
http://www.ebi.ac.uk/uniprot/
http://harlequin.jax.org/pacdb/
http://dbtss.hgc.jp/
http://flybase.org/
http://www.arabidopsis.org/
http://www.arabidopsis.org/search/ERwin/Tair.htm
http://www.arabidopsis.org/about/datasources.jsp
http://www.arabidopsis.org/portals/education/aboutarabidopsis.jsp
http://utrdb.ba.itb.cnr.it/
http://vlib.org/Biosciences
http://www.wormbase.org/#01-23-6
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1.2 From Sequence to Discovery – review of length distribution studies  

 

The primary structure of DNA and proteins has been predominantly the focus of 

sequence analysis. However, other attributes, such as sequence length are also 

important. We set the stage for this thesis by presenting the current understanding and 

research in the domain of genome size, protein length and length distributions, with 

reference to gene expression. The journey of gene length research commences with 

Zhang (2000) who conducted an investigation on protein length for three domains of life. 

Protein length was found to be 40-60% greater in eukaryotes than in prokaryotes (Zhang, 

2000). This finding was substantiated by Xu (2006), which found that the mean length of 

genic coding sequences is highly conserved in prokaryotes and eukaryotes but diverges 

between the two kingdoms (Wang, 2005; Xu, et al., 2006). They reported that the coding 

sequence length is on average 445 bp longer in eukaryotes than in prokaryotes (Xu, et 

al., 2006).  These findings still hold true today. 

Zhang’s research also suggests that the differences in the length is not random, but has 

some biological significance (Zhang, 2000). This has led to research focusing on 

eukaryote protein size, conservation, complexity, and compactness. Proteins evolve 

under a variety of constraints and include links to specific function, GC content of DNA, 

and protein length. Wang (2005) discovered that among eukaryotes, comparison of 

protein sizes vary between the younger and older proteins. They found that the younger 

proteins are significantly longer than old proteins, by approximately 22%  (Wang, 2005). 

There are several advantages of producing shorter proteins, which include regulation of 

innate immunity; protection against pathogens; cell communication and homeostasis as 

ligands and hormones; signal transduction; and metabolism (Frith, 2006). This research 

suggests that protein size is an important factor in the management of biological 

processes, particularly in eukaryotes, and protein size influences these processes. 

Function was also attributed to protein size and conservation. When associating protein 

size to conservation, it was found that poorly conserved proteins are, on average, shorter 

than the highly conserved proteins (Lipman, et al., 2002).   

Protein length is also a contributing factor to the complexity of eukaryotes, in addition to 

regulation and structure. Eukaryotic genes are distinctively more complex than 

prokaryotes (He and Zhang, 2005; Huang, et al., 1999; Zhang, 2000) and protein length 
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appears to be a significant mechanism in influencing complexity (Brocchieri and Karlin, 

2005; He and Zhang, 2005; Tan, et al., 2005). 

Furthermore, research has determined when investigating the length of introns, UTRs 

and the coding sequences that specific genes, notably housekeeping genes3 are more 

compact than other tissue-specific genes (Eisenberg and Levanon, 2003). Vinogradov 

(2004) identified that more tissue-specific genes are longer than the housekeeping genes 

due to more functional domains (Vinogradov, 2004). However, the latest research 

investigating housekeeping genes found that the genes are less compact and older that 

the tissue-specific genes (Zhu, 2008). It was also found in E. coli studies that the variance 

of the length distribution for essential genes is found to be smaller than for non-essential 

genes, implying that these distributions are intentional (Ribeiro, et al., 2012). 

The abundance of microarray and sequencing data has also extended understanding in 

the areas of classification, composition and evolution (Akashi, 2001; Lin and Chien, 2009; 

Raghava and Han, 2005). The next transition in understanding the effects of length was 

to incorporate gene expression level data into the investigations. Gene expression is a 

fundamental process to all living organisms and involves stringent levels of control at the 

transcriptional and translation initiation stages. A large amount of work has been 

conducted in this area. Focusing mainly on protein length, a noteworthy study was 

published in 1999. When Duret and Mouchiroud sought to examine expression levels in 

association with selection on codon usage, for three model organisms, D. melanogaster, 

C. elegans, and A. thaliana (Duret and Mouchiroud, 1999). This opened the debate on 

the correlations between length and gene expression. This research concluded that there 

was a strong negative correlation between coding usage4 and protein length (Duret and 

Mouchiroud, 1999). The R values obtained from all three organisms were negative and 

averaging around -0.42 for moderate expression and -0.46 for high expression (Duret 

and Mouchiroud, 1999). 

In 2006 Ren et al reported that in both monocot rice and dicot Arabidopsis plants, highly 

expressed genes are less compact than lower expressed genes (Ren, et al., 2006). The 

research found when considering the full length per gene, the sequence is larger in higher 

expressed genes than in lower expressed genes. These results were influenced by the 

                                            
3 Any of the genes that are constitutively expressed at a relatively constant level across many or all known 

conditions. 
4 Assumption is that all genomes have uniform codon usage meaning that synonymous codons are used with 

equal frequency. 
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higher number of introns, in spite of that, the average exon length was negatively 

correlated with the expression level (Ren, et al., 2006). However, in a study in 2009, the 

research found highly expressed genes are compact, particularly in the noncoding 

regions for rice and Arabidopsis plant species (Yang, 2009). This research indicates that 

the noncoding regions have importance in the regulation of gene expression, and that 

longer UTRs may contain regulatory motifs that have the potential to produce complex 

temporal and spatial translational programmes (Doran, 2008).  It has been shown that 3’ 

UTRs are significantly longer than 5’ UTRs, with 3’ UTR sequences changing over time, 

contributing to organism complexity (Mazumder, et al., 2003). UTR length has also been 

attributed to cellular proliferation, with shorter UTRs observed in cell lines and tumor cells 

relative to untransformed tissue (Doran, 2008). The regulation of gene products is an 

important facet of an organism and has been associated with different regions of the 

gene, including 5’ and 3’ un-translated regions. Variations in coding and noncoding 

sequence length, intron number and size differ significantly among living organisms. It 

would be beneficial to identify additional examples of the noncoding regions influence, in 

a diverse range of model organisms, to extend the current understanding. 

  

1.3 Motivation and thesis outline 

 

Bioinformatics has become a major discipline not just a “tool kit”, in the post-genomic era. 

The need for computational methods, statistics, data storage, data mining and analysis 

after the Human Genome project to deal with the large influx of sequence data, drove the 

formation of this discipline. Since then, scientists have been able to answer many 

fundamental biological questions, not just from a biology standpoint, but view the data 

from a mathematical computer analysis perspective (Webb, 2011). 

This thesis presents length data and statistical methodology generally on two model 

organisms, (one plant and one animal) addressing the following questions: 

 Is there a relationship between the distributions of coding and noncoding regions 

of protein coding genes? 

 Is there a relationship between the length distribution of each gene region in a 

protein coding gene, in relation to protein function and gene expression? 
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 How can mathematical modelling, statistics and computer algorithms help us to 

observe patterns and trends that we can associate to biological and functional 

processes? 

Many studies have only looked at protein length or UTRs, and there is a great deal of 

contention between results. Little research to date has combined the coding and 

noncoding regions in comparative studies among animal and plant species, to either 

confirm or refute previous research. Upstream regions in a gene have been an important 

part in the initiation of translation for gene expression. Little research has focused on the 

interrelationships between these regulatory elements, with most research focusing on the 

elements themselves. 

As genome sequence data becomes readily available for different living organisms, and 

the explosion of data from biological experiments, there is a greater need for automated 

tools to classify and analysis this data, as well as increasing the scale and sophistication 

of the information technology, in order to draw conclusions from the data and to formulate 

new directions for research. The main aim of this thesis is to explore and understand, 

using statistics and mathematical modelling, the length distribution relationship between 

the coding and noncoding regions of protein coding genes.  

The gene length of protein coding genes were divided into three sections, and data was 

collected for each region including or excluding introns. The distances were measured in 

base pairs (bp) of the nucleotide sequence. As shown in Figure 1.6, the first region is 

situated between the Translation Start Site (TLS) and the Translation Stop Codon (TSC). 

This region will be referred to as D1, or coding region length (TLS-TSC distance) for the 

rest of this thesis. The second region encompasses the +1 position after the promoter 

(the Transcription Start Site (TSS)) to the last nucleotide before the TLS. This region will 

be referred to as D2 (TSS-TLS distance). The third region is situated between the 

translation stop codon (TSC) and the Transcription Termination Site (TTS), and will be 

referred to as D3 (TSC-TTS distance). The data collected without introns will be denoted 

as d1, d2 and d3 respectively. 
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Figure 1.6 Diagrammatic illustration of a structural gene, including introns, and areas of interest in this study. 

The project involved data acquirement from the internet, data formatting and creation of 

a database for the research, pattern search for target DNA elements, followed by the 

examination of the interrelationships between these regulatory elements. Specifically, in 

Chapter 5 we introduce a nonlinear model to investigate the relationships between the 

coding and noncoding regions with two model organisms, Arabidopsis and Drosophila 

including protein function. Chapter 6 we introduce gene expression data into the analysis 

and use Arabidopsis as a case study. Chapter 7 explores the use of Canonical 

Correlation Analysis (CCA) using Drosophila as a case study. And finally, Chapter 8 

progresses into more complex analysis, introducing quantile regression analysis, with the 

aim at comparing the animal and plant species in relation to length and gene expression. 

These chapters include published work that have been peer reviewed. The chapter 

format will include a brief introduction with information not included in the main 

introduction, statistical analysis that is not outlined in the data collection chapter, with a 

results and discussion section. The conclusions of all the results will be discussed in 

Chapter 9. The outcome of this project will not only offer a better understanding of the 

correlation of gene expression / function and gene architecture with regards to the length 

distribution in the coding and noncoding regions of a protein coding gene, but also help 

develop better tools to analyse the data.  

D2 D1 D3 
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It is important to note that this research project was conducted part-time over a 9 year 

period. Data was collected annually, as new releases of data occurred on a regular basis. 

Data was collected at the beginning of each year (from 2007-2015), before more analysis 

was conducted. A history of the data was stored on external drives as a reference point. 

The early chapters were written at the primary stages of this thesis and reflect the 

available data at the time. 
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2 Data Collection of Organisms Studied 

A great deal of data has been collected, documented and published on numerous 

organisms, making them “Model Organisms”. Model organisms can be used to gain 

information indirectly about other species that may be difficult and time consuming to 

study. Many organisms are listed as model organisms, and cover the 3 kingdoms (fungi, 

plants, animals). Most of the organisms listed as “model” have extensive genomic 

research data available and have been studied for many years. 

For the initial study, an understanding and confirmation of previous research on the 

coding sequence was conducted on fifteen organisms (Figure 2.1) which were used to 

compare the coding sequence data with and without introns. 

The reasoning behind selecting these organisms was the availability of data in the early 

stage of this thesis. CDS data was easily obtainable, for these organisms, however 

limited data on the UTRs restricted the number of organisms selected. For the majority 

of research in this thesis, two major model organisms were examined for several reasons: 

 They cover a good range in the evolutionary tree; 

 The Genome sequence has been completed many years ago; 

 Large amounts of data is available publicly from the World Wide Web; 

 Many studies have already been completed, including comparative studies for 

these organisms and have their data verified in peer reviewed publications; 

 Data for protein function, CDS, 5’ and 3’ UTR and gene expression data was 

readily available. 

The organisms selected for extensive study included: 

 Arabidopsis thaliana (Thale Cress); and 

 Drosophila melanogaster (Fruit Fly). 

Data for this project was obtained over many different databases, imported from FTP 

sites from various research centres.  By merging these data together I have contributed 

to the bioinformatics topic by automating the cleaning process, and the ability to analysis 

data that had not previously been combined. Researchers that are wanting to study the 

coding and untranslated regions of protein coding genes would be able to use the model 

organism databases created for this thesis.  

  



Chapter 2 – Data Collection 

23 

 

The organisms selected for this research cover two major branches of the eukarya 

domain, from a simple plant species to the higher animal species. 
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Figure 2.1 Phylogeny of Eukaryotes 

Three domains of life, Bacteria, Archaea and Eukarya from one universal ancestor (Keeling, et al., 2009). 
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2.1 Arabidopsis thaliana 

 

Kingdom: Plantae 

(unranked): Angiosperms 

(unranked): Eudicots 

(unranked): Rosids 

Order: Brassicales 

Family: Brassicaceae 

Genus: Arabidopsis 

Species: A. thaliana 

 
Figure 2.2 Image of Arabidopsis thaliana 

Arabidopsis thaliana (Figure 2.2) known as thale cress, or mouse-ear cress, is a small 

flowering plant which is a member of the mustard family and native to Europe, Asia and 

north western Africa. It was the first plant genome to be sequenced, and has been studied 

extensively.  Research with this species has involved many plant biology and genetic 

studies, making it a perfect model organism for multiple disciplines (Meinke, et al., 1998). 

The plant’s rapid life cycle, and relatively small genome has also made this a popular 

organism for study. The information gained from the sequencing data has contributed to 

a generalized view on plant genes, and understanding of the molecular biology of many 

plant traits, including plant development (Takano, et al., 2006; Vanneste and Friml, 2009) 

and light sensing (Cheng, et al., 2003). This unprecedented resource has accelerated not 

only plant research but has had beneficial effects on health science research (Jones, et 

al., 2008; Xu and Møller, 2011) and agriculture and crop development (Ferrier, et al., 

2011; Gonzalez, et al., 2009) 

2.1.1 Arabidopsis thaliana Genome 

The Arabidopsis thaliana genome consists of 5 chromosomes (Figure 2.3), with the 

sequence region spanning ~115.4 megabases (Mb). In 2000 the genome contained 

25,498 genes encoding proteins from 11,000 families (Initiative, 2000) with several 

releases after this first count. The protein functional classification range from cellular 
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metabolism to protein synthesis, and is similar to the functional diversity found in the 

Drosophila species. 

  

 Chromosome 1 – 29.1 Mb 

 

 

 Number of Genes – 6,543 

 Gene density – 4.0 

 

 Chromosome 2 – 19.6 Mb 

 

 

 Number of Genes – 4,036 

 Gene density – 4.9 

 

 Chromosome 3 – 23.2 Mb 

 

 

 Number of Genes – 5,220 

 Gene density – 4.5 

 

 Chromosome 4 – 17.5 Mb 

 

 

 Number of Genes – 3,825 

 Gene density – 4.6 

 

 Chromosome 5 – 26.0 Mb 

 

 

 Number of Genes – 5,874 

 Gene density – 4.4 

 

 

14.4 Mb 14.7 Mb 

3.6 Mb 16.0 Mb 

13.6 Mb 9.6 Mb 

3.0 Mb 14.5 Mb 

11.1 Mb 14.8 Mb 

Figure 2.3 The genome structure of the Arabidopsis thaliana separated into chromosomes 

The genome consists of 5 chromosomes (1 to 5). The numbers given correspond to their 
lengths in megabases (Mb) (Initiative, 2000) 
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2.1.2 Gene Number 

The TAIR Consortium (Rhee, et al., 2003) current data release is version 10 and contains 

27,416 protein coding genes. The number of genes used in the research conducted in 

this thesis differs to this number as a result of available data for the untranslated regions, 

protein function, and gene expression data. 

2.1.3 Coding and Untranslated regions 

Arabidopsis coding, untranslated regions and gene expression data was downloaded 

from the TAIR FTP site: ftp://ftp.arabidopsis.org/home/tair (Figure 2.4) 

 

Figure 2.4 TAIR FTP site for downloading Arabidopsis data 

All data was downloaded as text (.txt) files and cleaned by running a visual basic script. 

See appendix A for script details.  

2.1.4 Gene Expression Data 

Gene expression data was downloaded from two online databases. The first expression 

set was downloaded from the TAIR FTP site which was an average of all Arabidopsis 

ftp://ftp.arabidopsis.org/home/tair
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Functional Genomics Consortium (AFGC) microarray experiments. The average intensity 

values represented in this dataset was a large range of conditions and tissue types. To 

focus on environmental conditions and a control sample, a set of gene expression data 

was downloaded from the NCBI GEO Datasets database (series GSE 34188) including 

the annotation files (Hanada, et al., 2013). Other gene expression data was downloaded 

from the NCBI GEO Datasets database, and is outlined in Chapter 8. 

As data is constantly being renewed on these databases, review and modification of the 

files was performed on a regular basis to keep up to date with the current sequencing 

data.  Data was accessed on a yearly basis and updated usually coinciding with new 

analysis techniques and hypothesis testing. It is important to note that sample sizes may 

vary throughout the course of this thesis, due to the time of download and the analysis 

conducted. 

The tables from all data sources were linked with the Accession number to merge all the 

data into one master table in Microsoft Access. An example of the MS Access master 

database is shown in Figure 2.5 (Powell, et al., 2010). The database contained tables 

and queries and can be used to extract information from the databases as new 

hypotheses and statistical tools are formulated. 

 

Figure 2.5 Arabidopsis thaliana Microsoft Access Master Database.  

 
The master database was used to merge all length, gene expression and protein data together for easy querying and 
export to Excel & SPSS for data analysis. 
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2.2 Drosophila melanogaster 

 

Kingdom: Animalia 

Phylum: Arthropoda 

Class: Insecta 

Order: Diptera 

Family: Drosophilidae 

Genus: Drosophila 

Subgenus: Sophophora 

Species group: melanogaster group 

Species subgroup: melanogaster subgroup 

Species complex: melanogaster complex 

Species: D. melanogaster 

 

With the introduction of the Drosophila melanogaster by William Castle almost a decade 

ago, this organism has become one of the most important model organisms studied to 

date especially in the field of genetics. The completion of the fly genome in 2000 has 

extended scientists understanding in the study of transcription, protein binding, and 

genetic variation and illustrates the enormity this data can offer (Celniker and Rubin, 

2003). The sequencing of the Drosophila’s genome set precedence on the use of the 

whole-genome shotgun (WGS) sequencing method, which had only been successfully 

tried on bacterial genomes, not large more complex genomes. Shotgun sequencing is 

used when large DNA strands are the focus. The fly genome project demonstrated this 

method in the study of the Drosophila melanogaster species (Ashburner and Bergman, 

2005). 

Drosophila melanogaster is an excellent model system which continues to be used 

extensively in human health studies. Recent research has included using Drosophila as 

a model in human disease therapeutic drug discovery (Pandey and Nichols, 2011) and 

pathogenic human viruses (Hughes, et al., 2012), as well as to understand the genetics 

and pathology of human CoQ deficiencies (Fernández-Ayala, et al., 2014). It has also 

been used to identify the health benefits of organically grown foods (Chhabra, et al., 

2013).   

Figure 2.6 Image of Drosophila melanogaster  
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2.2.1 Drosophila melanogaster Genome 

The genome of the Drosophila melanogaster consists of the sex chromosomes X and Y, 

left and right arms of chromosomes 2 and 3 (2L, 2R, 3L and 3R) and a small 4th 

chromosome. The size of the genome is approximately 180 megabases (Mb) and 

segmented by two-thirds euchromatin5 and one-third heterochromatin6.  The protein-

coding genes are represented in the euchromatin (Celniker and Rubin, 2003). 98% of the 

protein-coding genes are found in the genome. The genome structure of the Drosophila 

melanogaster is outlined in Figure 2.7 and shows the composition of the chromosomes 

and lengths of each section in megabases (Celniker and Rubin, 2003).  

2.2.2 Gene Number 

The sequencing of the Drosophila melanogaster genome was published by Celera 

Genomics and the Berkeley Drosophila Genome Project (BDGP) with several releases 

of updated data. In 2003 Celniker & Rubin (2003) published the number of genes from 

this collaboration, which was reported at 13,676.  

 

                                            

5 Euchromatin is a lightly packed form of chromatin that is rich in gene concentration, and is often (but not always) under active 

transcription. It is found in both eukaryotes and prokaryotes. 

6 Heterochromatin is a tightly packed form of DNA. Its major characteristic is that transcription is limited. As such, it is a means 

to control gene expression, through regulation of the transcription initiation. 
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 Chromosome 2   42.5 Mb – Heterochromatin 

    18.3 Mb - Euchromatin 

 

 

 

 Chromosome 3   51.3 Mb – Heterochromatin 

    17.5 Mb - Euchromatin 

 

 

 

 Chromosome 4   3.1 Mb – Heterochromatin 

    1.2 Mb - Euchromatin 

 

 

 

 Chromosome X   21.9 Mb – Heterochromatin 

    19.9 Mb - Euchromatin 

 

 

 

 

 Chromosome Y  40.9 Mb – Heterochromatin 
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40.9 

Figure 2.7 The genome structure of the Drosophila melanogaster separated into chromosomes 

The genome consists of 5 chromosomes, which includes the sex (X & Y) chromosomes, left and right arms of 
chromosomes 2 and 3, and a small 4th chromosome. The numbers given below the chromosomes correspond 
to their lengths in megabases (Mb) (Celniker and Rubin, 2003). 
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Molecular identification of genes on the Y chromosome of Drosophila melanogaster is 

difficult because the entire chromosome is heterochromatic. Approximately 80% of Y 

chromosome DNA is composed of nine simple repeated sequences, including (AAGAC)n 

(8 Mb), (AAGAG)n (7 Mb), and (AATAT)n (6 Mb) (102) (Celniker and Rubin, 2003). For 

this reason, chromosome comparisons for Drosophila for chromosome Y are absent from 

the analysis. 

Length data was downloaded from the RefSeq NCBI database, and within the tables 

exported, contains information pertaining to each protein coding gene such as Start 

Position of CDS; End Position of CDS; Protein length; Gene Product; and Gene Product 

ID.  This is illustrated in the table below: 

Table 2.1 NCBI RefSeq table for each chromosome. The data contains a list of protein gene information 

Product Name Start End Strand Length Gi GeneID Locus 

CG11023 CG11023-PA  7680 9276 + 468 28573982 33155 CG11023 

lethal (2) giant larvae CG2671-PB, isoform B  11215 19944 - 1153 24464584 33156 l(2)gl 

lethal (2) giant larvae CG2671-PC, isoform C  11215 17136 - 1161 24580501 33156 l(2)gl 

lethal (2) giant larvae CG2671-PA, isoform A  11215 17136 - 1161 24464586 33156 l(2)gl 

lethal (2) giant larvae CG2671-PD, isoform D  11215 15648 - 1112 24580503 33156 l(2)gl 

lethal (2) giant larvae CG2671-PE, isoform E  11215 15648 - 1112 24580505 33156 l(2)gl 

lethal (2) giant larvae CG2671-PF, isoform F  11215 15648 - 1112 24580507 33156 l(2)gl 

 

The RefSeq table for the D. melanogaster was interpreted from the genome data 

submitted from the FlyBase Consortium.  

The data and tables for each chromosome were exported to a Microsoft Excel 

spreadsheet where it was formatted and cleaned using a macro. The macro script can 

be found in Appendix A. 

The D1 / d1 (coding sequence with and without introns) values were calculated from the 

data obtained from the RefSeq NCBI website. The calculations were incorporated in the 

macro and were calculated during the cleaning and formatting on each of the excel files 

exported. The Excel formula included: 

D1 – calculation =  End Position subtracted by Start Position + 1 (with introns) 

d1 – calculation =  Protein Length X 3 + 3 (without introns) 

http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=28573982
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=genome&Cmd=ShowDetailView&TermToSearch=60&window=10000&begin=7680#protmap
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=genome&Cmd=ShowDetailView&TermToSearch=60&window=10000&begin=0#protmap
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=28573982
http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene&cmd=Retrieve&dopt=full_report&list_uids=33155
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=24464584
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=genome&Cmd=ShowDetailView&TermToSearch=60&window=10000&begin=11215#protmap
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=genome&Cmd=ShowDetailView&TermToSearch=60&window=10000&begin=9944#protmap
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=24464584
http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene&cmd=Retrieve&dopt=full_report&list_uids=33156
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=24580501
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=genome&Cmd=ShowDetailView&TermToSearch=60&window=10000&begin=11215#protmap
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=genome&Cmd=ShowDetailView&TermToSearch=60&window=10000&begin=7136#protmap
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=24580501
http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene&cmd=Retrieve&dopt=full_report&list_uids=33156
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=24464586
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=genome&Cmd=ShowDetailView&TermToSearch=60&window=10000&begin=11215#protmap
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=genome&Cmd=ShowDetailView&TermToSearch=60&window=10000&begin=7136#protmap
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=24464586
http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene&cmd=Retrieve&dopt=full_report&list_uids=33156
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=24580503
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=genome&Cmd=ShowDetailView&TermToSearch=60&window=10000&begin=11215#protmap
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=genome&Cmd=ShowDetailView&TermToSearch=60&window=10000&begin=5648#protmap
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=24580503
http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene&cmd=Retrieve&dopt=full_report&list_uids=33156
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=24580505
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=genome&Cmd=ShowDetailView&TermToSearch=60&window=10000&begin=11215#protmap
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=genome&Cmd=ShowDetailView&TermToSearch=60&window=10000&begin=5648#protmap
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=24580505
http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene&cmd=Retrieve&dopt=full_report&list_uids=33156
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=24580507
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=genome&Cmd=ShowDetailView&TermToSearch=60&window=10000&begin=11215#protmap
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=genome&Cmd=ShowDetailView&TermToSearch=60&window=10000&begin=5648#protmap
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=24580507
http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene&cmd=Retrieve&dopt=full_report&list_uids=33156
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2.2.3 Coding and noncoding regions 

Data for the regions d2 and d3 were collected from the Flybase Consortium 

(http://flybase.org/). Steps taken to collect this data included: 

1. Copy the product ID retrieved from the Refseq data to Excel and extract the 

product name. For example: CG10417 

2. Copy these product names in the “Enter List of IDs:” at the following site:  

 http://flybase.bio.indiana.edu/static_pages/downloads/ID.html 

FASTA Genome Sequence output format was selected, and gives the researcher options 

to select the section of the genome of interest, for example 5’ UTR (Figure 2.8). 

 

Figure 2.8 Batch download from the FlyBase website for data collection 

3. Data can be saved as a text file once the table is launched in the selected internet 

browser, with the queries you select in the batch download.  

4. The text file can be used and imported into Microsoft Access for manipulation and 

query purposes. 

http://flybase.org/
http://flybase.bio.indiana.edu/static_pages/downloads/ID.html
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2.2.4 Genome Sequence data 

The Genome Sequence data was downloaded from: 

http://www.fruitfly.org/sequence/download.html. The file format was a FASTA.gz zip file 

(na_arm2L_genomic_dmel_RELEASE4.FASTA.gz). This file can be viewed in notepad 

or MS Excel as a text file. This data was used to reference the cDNA data positions in 

the genome sequence to confirm and identify the positions of each region of interest. 

As data is constantly being updated to these databases, review and modification of the 

files were performed on a regular basis to keep up to date with the current sequencing 

and functional data. Variation in sample size was dependent on the year of download and 

the analysis conducted on the data.   

The tables from all data sources were linked with the CG ID to merge all the data into 

one master database in Microsoft Access. An example of the MS Access master 

database is shown in Figure 2.9. 

 

Figure 2.9 MS Access master table containing all length data from publicly available sequencing data 

Data was used throughout this thesis from databases and research organisations that 

had verified data. If the data integrity was questioned during my analysis, I had regular 

dialogue with the researchers from the primary sources of the data.   

http://www.fruitfly.org/sequence/download.html
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3 Promoter Prediction in Relation to Coding and Noncoding 

Sequences  

This chapter is slightly modified from the paper: 

Caldwell, R., Dai, Y., Srivastava, S., Lin, Y., and Zhang, R. (2008) Improving neural network promoter 

prediction by exploiting the lengths of coding and noncoding sequences, Chapter: Advances of 

Computational Intelligence in Industrial Systems (Studies in Computational Intelligence) edited by Ying Liu, 

Aixin Sun, Han Tong Loh, Wen Feng and Ee-Peng Lim, Springer, 213-230.  

doi:10.1007/978-3-540-78297-1_10. 

3.1 Introduction 

Much attention within computational biology research has focused on identifying gene 

products and locations from experimentally obtained DNA sequences. The use of 

promoter sequence prediction and positions of the transcription start sites can inevitably 

facilitate the process of gene finding in DNA sequences. This can be more beneficial if 

the organisms of interest are higher eukaryotes, where the coding regions of the genes 

are situated in an expanse of noncoding DNA. 

With the genomes of numerous organisms now completely sequenced, there is a 

potential to gain invaluable biological information from these sequences. Computational 

prediction of promoters from the nucleotide sequences is one of the most attractive topics 

in sequence analysis today. Current promoter prediction algorithms employ several gene 

features for prediction. These attributes include homology with known promoters, the 

presence of particular motifs within the sequence, DNA structural characteristics and the 

relative signatures of different regions in the sequence.  

3.1.1 Currently Used Algorithms 

Different algorithms have been developed which vary in performance and can be 

categorized into two main groups. The first depends upon recognition of conserved 

signals such as the TATA box and the CCAAT box as well as the spacing between 

patterns. This approach uses either the neural network genetic algorithm or the weight 

matrix methodology. The second relies on identification of promoters within a sequence 

that may contain the elements. This approach is content-based and distinguishes 

differences such as triplet base-pair preferences around the transcription start site (TSS), 

and hexamer frequencies in consecutive 100-bp upstream regions (Qiu, 2003). There are 

also techniques that combine both these methods, which look for signals and for regions 

of specific compositions (Ohler and Niemann, 2001). 
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Many promoter prediction programs are readily available to the scientific community to 

utilize and explore. The programs that presented relatively high accuracy in their results 

include the GeneID / Promoter 1.0, TSSW, PromoterInspector and the Neural Network 

for Promoter Prediction (NNPP) (Burden, et al., 2005; Fickett and Hatzigeorgiou, 1997).  

Currently, the Neural Network algorithm is probably the most widely used program in 

promoter prediction [http://www.fruitfly.org/seq_tools/promoter.html]. It is based on a 

time-delay neural network (TDNN) architecture that originated from speech recognition 

sequence patterns in time series. This method corresponds to how the brain’s learning 

process operates. What makes this system unique is that it has the advantage of learning 

to recognize the degenerate patterns that characterize promoter motifs. The algorithm 

was initially designed for predicting promoters in the Drosophila genome and it has been 

developed to be a common method used to find both eukaryotic and prokaryotic 

promoters. The NNPP 2.2 algorithm recognizes only the presence and relative location 

of patterns and motifs within a promoter. It predicts the probability that a tested sequence 

position s ±3 base pairs (bp) contains a true TSS denoted by )( SsP  , where S is the 

class of the true TSS positions (Burden, et al., 2005). 

The popularity of NNPP has also been supported by comparative studies. An 

investigation by Fickett & Hatzigeorgiou recognized 13 of the 24 promoters (54%) in the 

test data set by NNPP and 31 false positives (1/1068 bp) were reported. These were 

significantly better than the outcomes of GeneID / Promoter 1.0 which identified 42% of 

the promoters and 51 false positives (1/649 bp) and the TSSW program (42% of true 

promoters and 42 false positives (1/789 bp)).  Reese found similar results on the 

Drosophila genome, with a rate of 75% (69/92) of recognition and a rate of 1/547 bases 

of false positives (Reese, 2001).  

3.1.2 Further Improvements in Promoter Prediction 

Current algorithms to predict promoters are still far from satisfactory. The challenge that 

occurs in proposing a high level of prediction of promoters, with a reasonable percentage 

predicted, is that the level of falsely predicted promoters, known as false positives (FPs), 

is also high when a large percentage of predictions are met.   

Another challenge faced which makes prediction difficult is that promoters are very 

diverse, and even some well-known signals such as TATA box and CCAAT box are not 

always conserved in all promoters. The TATA box can only be found in ~75% of 

vertebrates RNA Pol-II promoters and the CCAAT box is only found in half of vertebrate 
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promoters (Qiu, 2003). Detectable motifs that exist within promoters can also occur 

randomly throughout the genome creating additional complications (Burden, et al., 2005). 

Promoters are defined based on functionality rather than structure, causing major 

impediments in creating near perfect predictions (Pandey and Krishnamachari, 2005). 

The promoter recognition systems for large-scale screening require acceptable ratios of 

true positives (TPs) and false positive predictions (i.e. those that maximize the TP 

recognition while minimize the FP recognition).  

What currently is required out of these algorithms is the reduction in false positives in 

respect to promoter prediction. To achieve this it is possible to develop powerful 

computational methods and to replace current computational promoter prediction 

procedures. These approaches can be beneficial in increasing the accuracy of promoter 

prediction, and these changes are not restricted to just computational modifications. One 

approach in addressing these limitations is to investigate if the outcome of promoter 

prediction based on current techniques can be improved by incorporating additional 

information, such as the 5’ UTR sequence from the underlying DNA sequence.  

The influx of DNA sequences, now publicly available, has allowed more and more 

information to be extracted. This has given computer and mathematical scientists the 

opportunity to run statistical analysis on this added information. The information gained 

will increase the understanding of the statistical behaviour of promoter positions for 

different genes across species. While much information can be integrated into any 

computational promoter prediction algorithms, our approach has been to exploit the 

distance information between gene elements. The study on E. coli (Burden, et al., 2005) 

was the first to investigate the use of the distance between TSS and TLS to improve the 

NNPP2.2 promoter prediction accuracy rate. Analysis and information retrieval performed 

by computers, particularly when dealing with large data sets has been an important tool 

for biologists. The information gained by these computations can guide biologists more 

efficiently in identifying areas of the DNA sequence experimentally infeasible without this 

data (Bajic, et al., 2004).  

This chapter will summarize the TLS-NNPP approach and further extend the basic idea 

of the TLS-NNPP to more general circumstances with our more recent research results. 

The aim of this chapter is to firstly demonstrate why and how some measurements in 

DNA sequences can be used to significantly improve computational promoter prediction. 

And secondly it is intended to bring researcher’s attention to the DNA sequence 

information which is released through DNA sequence quantitative measurements instead 
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of DNA sequence pattern information. For simplicity reasons, the research will only focus 

on the NNPP computational method as a reference method and demonstrate how DNA 

sequence quantitative measurements can be used to improve the promoter prediction of 

NNPP2.2. The technique discussed in this paper can be easily integrated with other 

computational promoter prediction algorithms by some minor modifications. 

3.2 Gene Expression 

In the process of transcription initiation, sets of genes can be turned on or off, determining 

each cell type, in response to different internal and external cues. The importance of 

transcriptional control is also associated with all forms of diseases, including cancer 

which is the improper regulation of the transcription of genes involved in cell growth 

(Hughes, 2006; Pedersen, et al., 1999; Qiu, 2003). Therefore, accurate prediction 

methods and understanding of these regions can be beneficial in human health in 

addition to computational biology. 

The regulation of gene expression involves a complex molecular network with DNA-

binding transcription factors (TFs) being an important element in this network. Most 

prokaryotes are unicellular organisms and promoters are recognized directly by RNA 

Polymerases, however eukaryotic organisms are more complex with the recognition of 

promoters consisting of large numbers of transcription control elements. One of the most 

complex processes found in molecular biology is the function of the promoter in 

transcription initiation. Promoters contain the nucleotide sequences which indicate the 

starting point for RNA synthesis. The promoter is positioned within the noncoding region 

upstream from the transcription start site which is referred to as the +1 position. 

Apart from regulatory elements, other attributes of a gene such as its nucleotide 

composition, length, location (proximity to neighbours) and orientation may also play vital 

roles in gene expression. Genome size contrasts from organism to organism, and it 

appears that this divergence correlates with gene length variation.  

3.3 Statistical Characteristics on Quantitative Measurements 

The gene length can be divided into three sections, and for the purpose of this research 

the introns were included for each section, refer to Figure 1.1 in chapter 1. The distances 

were measured in base pairs (bp) of the nucleotide sequence. This information is just 

one of several attributes that could be utilized to improve promoter prediction in a variety 

of organisms. 
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The distances, TLS-TSC (D1), TSS-TLS (D2) and TSC-TTS (D3) are varied, and can be 

considered as random components in gene sequences. The intention of this research is 

to contend that empirical information of these random components can benefit promoter 

prediction. Therefore, the aim of this research is to integrate this information with existing 

computational promoter prediction algorithms, and show that it will provide power to 

improve the prediction results. To understand why this information might help to improve 

computational promoter prediction, it is necessary to know the probability structure of 

these random components and see how much information is involved. Several model 

species ranging from bacteria to mammals will be used in this research to exploit the 

statistical information involved in the data. The species involved include Escherichia coli 

and Bacillus subtilis (bacterium), Saccharomyces cerevisiae (yeast), Arabidopsis thaliana 

(plant), Mus musculus and Homo sapiens (mammals). 

To obtain the TLS-TSC (D1) and TSS-TLS (D2) distances, numerous databases were 

explored to determine absolute TSS, TLS and TSC positions on the various species 

genomes. The species chosen represent several model organisms that have been 

studied extensively, and possess a large amount of experimental data available to the 

public. The species were also chosen as they characterize a range of different classes, 

ranging from very simple organisms such as bacteria and yeast to the higher organisms 

such as the mammals. 

TSS information was obtained from various databases, depending on the experimental 

research that had been conducted for each organism. The TSS information for E. coli 

was obtained from RegulonDB (Salgado, et al., 2006), B. subtilis data were obtained from 

the DBTBS database (Makita, et al., 2004), SCPD for S. cerevisiae (Zhu and Zhang, 

1999), TAIR for A. thaliana (Garcia-Hernandez, et al., 2002) and DBTSS version 5.1.0 

for both M musculus  and H. sapiens (Suzuki, et al., 2004) Each of the TSS positions was 

considered to be positioned at multiple locations in a gene, thereby allowing multiple TSS-

TLS distances to be generated. The D1 data was extracted from protein table files from 

the NCBI database.  

In prokaryotes, the existence of operons is highly common. Therefore, in cases such as 

this, we regard the genes that are organized in one operon and controlled by the same 

promoter as separate gene units. Thus a single TSS-TLS distance may correspond to 

more than one coding region.  

The statistical summary on the distances given by the six species was produced by the 

statistical package SPSS 12.0 / 15.0 and are presented in Table 3.1. The mean and 
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median of each species was calculated for the distances between the TSS-TLS and TLS-

TSC. The median was used for its simplicity and is not severely affected by extreme 

values (outliers) as is the mean value. Since the TSS positions have not been 

experimentally verified for all genes in an organism’s genome, the sample size of D2 is 

relatively smaller as compared to D1. 

 

Table 3.1 Statistics of the distances (bp) of D1 and D2 

Species 

TLS-TSC distance (D1) TSS-TLS distance (D2) 

Sample 

Size 
Median Mean 

Sample 

Size 
Median Mean 

E. coli 4237 846 954 1017 66 164 

B. subtilis 4015 771 896 483 67 93 

S. cerevisiae 5850 1233 1503 202 68 110 

A. thaliana 30480 1623 1939 20560 112 213 

M. musculus 27132 10054 34552 14520 378 10913 

H. sapiens 14796 16339 45445 14588 809 15291 

 

The summary shows that the means of D1 and D2 are increasing as the species moves 

from a relatively simple organism to a more complex organism. The distance between 

mean and median is also increasing as the species becomes more complex. This 

denotes that the distribution of both D1 and D2 are skewed to the left and exhibits a very 

long right tail and is shown in Figure 3.1a for H. sapiens.  Positive skewness was obtained 

from the data analysis (skewness = 6.605 for H. sapiens).  Accordingly, the data indicates 

that in the simple organisms such as bacteria, there is a higher likelihood that they have 

short D1 and D2 distances than in the more complex species. It is important to note that 

even in different species within the eukaryotic and prokaryotic kingdoms there could be 

differences in the probability distributions for the distance components. To test for 

statistical significance between organisms, an Independent-Samples Kruskal-Wallis test 

was performed on the D1 and D2 data. Significance was P< 0.000 for both D1 and D2, 

at a level of 0.05, indicating that the distribution of D1 and D2 between organisms is 

different.  

Considering the joint relationship of D1 and D2 for the six species, there is more 

information to be gained. The following two-dimensional scatter plots (Figure 3.1b) of D1 

verses D2 for E. coli and H. sapiens shows that the correlation between these distances 

is varied from species to species. The bacterium species D1 value tended to be smaller 
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and appears that compared with the D2 value would not change to a great extent. 

However the plot for the H. sapiens illustrates different trends. The D1 value declined in 

a different region on the plot and therefore made the distribution of D2 look different. 

According to the data of the six species, the research found the more complex a species, 

the stronger the correlation between D1 and D2. The understanding of this relationship 

guided our research to explore this correlation further with more complex organisms and 

is outlined in chapter 5 of this thesis.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 a) Frequency histograms of D1 and D2 for H. sapiens showing the positive skewness in the data b) 
Scatter plots of D1 verses D2 of E. coli and H. sapiens. Significance of correlation between the presented variables 
are statistically attested. 

To explore the relationship between the TSS-TLS and TLS-TSC distances, and to 

ascertain whether there is a certain level of impact from the D1 value on the probability 

distribution of D2, the complete H. sapiens and M. musculus data sets were used. The 

higher organisms were chosen due to the higher correlation between these components 

found in the comparison above. The data was divided into four groups based on the 

quartiles of the D1 values. The first group consisted of all D1 values to the first quartile, 

the second of all D1 values from the first quartile to the median, the third was made up of 

a 

b 
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all D1 values from the median to the third quartile, and finally the last group consisted of 

all D1 values from the third quartile to the maximum D1 value. 

To characterize the location and variability of a data set, the skewness and kurtosis can 

be used for statistical analysis purposes. Skewness measures the lack of symmetry in a 

distribution, where the kurtosis describes the data as either peaked or flat relative to a 

normal distribution.  

 

Table 3.2 Statistics of TSS-TLS distances (D2) given D1 in different ranges 

H. sapiens Group 1 Group 2 Group 3 Group 4 

Sample Size 2789 2789 2789 2788 

Mean 8424.28 9984.15 13497.72 28400.62 

Median 758 600 816 1194.5 

Std. Deviation 40953.08 48848.37 45191.05 73803.25 

Skewness 18.955 12.743 10.812 6.277 

Std. Error of Skewness 0.0464 0.0464 0.0464 0.0464 

Kurtosis 470.920 191.664 162.138 54.413 

Std. Error of Kurtosis 0.093 0.093 0.0923 0.093 

Minimum 1 1 1 1 

Maximum 1261540 945008 967810 963680 

Pearson Correlation -0.040594 0.0231855 0.01539775 0.15475841 

     

M. musculus Group 1 Group 2 Group 3 Group 4 

Sample Size 4717 2579 1652 5640 

Mean 6238.84 6250.67 8012.67 13302.45 

Median 422 267 385.5 399.5 

Std. Deviation 36156.00 31896.66 40082.79 41833.31 

Skewness 18.029 15.958 17.154 9.962 

Std. Error of Skewness 0.036 0.048 0.060 0.036 

Kurtosis 396.617 333.241 346.126 150.971 

Std. Error of Kurtosis 0.071 0.096 0.120 0.071 

Minimum 4 1 1 1 

Maximum 973006 845821 906370 973292 

Pearson Correlation -0.03395 0.007623 -0.03082 0.239054 

 

Table 3.2 clearly shows that, given D1 declining into a different region, the associated 

random component D2 had significantly different probability distribution. To test for 

statistical significance between each quartile group for D1, an Independent-Samples 

Kruskal-Wallis test was performed on the D2 data. Significance was P< 0.000 for D2, at 

a level of 0.05, indicating that the distribution of D2 across categories of quartile of D1 is 

different.  Therefore, the larger the value of D1 the higher the correlation between D1 
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given D2. Since it is relatively easy to identify D1 distances from the DNA sequence, with 

this information, the random component D2 might show a different portion of information 

about DNA sequences. 

Statistically, there is a great deal of potential to extract information from the D1 and D2 

data however this research will not delve into every aspect. The purpose of the research 

is to highlight that different species might have different probability structure on their 

random components. Therefore, the information of D1 and D2 which is related to the 

distance of the TSS-TLS and could be referenced to the promoter position. Currently 

many computational promoter predictor algorithms do not take into account the 

information of D1 and D2. This information can be utilized to improve computational 

promoter prediction results and is discussed below.  

3.4 The Algorithms for TLS-NNPP and TSC-TSS-NNPP 

In this section, two algorithms using the information of D1 and D2 will be used to 

demonstrate that these random components can improve the NNPP performance. The 

first modification will incorporate the D2 distance values and is called the TLS-NNPP 

algorithm (Burden, et al., 2005; Dai, et al., 2006). The other algorithm is known as the 

TSC-TSS-NNPP algorithm and uses both D1 and D2 values. 

Reviews conducted on the NNPP algorithm illustrates that it is a competitive tool against 

several of the other programs available for promoter prediction. However, as with the 

other programs, this algorithm also suffers from a high instance of false positives. 

Currently used algorithms are not able to provide highly accurate predictions and the 

correct prediction promoter rate is only between 13-54%. It has been a research 

challenge to reduce the level of false positive recognition through modifying mathematical 

modeling and algorithms. Transcription is a complicated process which involves the 

interactions of promoter cis-elements with multiple trans-protein factors. The specific 

interactions rely not only on the specific sequence recognition between the cis- and trans- 

factors but also on some spatial arrangement of them in a complex. Hence, the distance 

between the TSS and TLS has and can be utilized in promoter prediction.  

There are several reasons why the distances between the TSS and TLS (D2) can be used 

to improve promoter prediction. For one, the promoter regions are closely associated to 

the location which in turn will assist in correctly predicting the position of the TSS and will 

lead to precisely estimating associated promoter regions. Secondly, numerous TSS and 

TLS experimental data is now accessible by researchers for different species, therefore 
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the empirical probability distribution of TLS-TSS can be obtained. The information of the 

TLS position can be easily extrapolated from the gene coding region sequence, as it 

corresponds to the first nucleotide of the coding region. As a result, given a TLS position, 

and knowing the empirical distribution of the TLS-TSS, the distribution of the TSS can be 

determined from this distribution. Consequently, improving promoter prediction can be 

achieved by incorporating this information in the standard NNPP algorithm. 

Given a whole DNA sequence of a species, S denotes the set of TSS positions in gene 

sequences. If position s is a true TSS position in a gene, it will be denoted by Ss ; if a 

range Sasas  ],[ 21  is used, it means the range ],[ 21 asas   covers at least one 

position which is a real TSS position of the gene.  NNPP2.2 will give the probability

)]3,3([ SssP  , sometimes, simply denoted by )( SsP  .  The NNPP algorithm has a 

high instance of false positives, which is due to the estimation of )( SsP  . This probability 

is not accurate and sometimes overestimates the probability. Therefore, in this chapter, 

we will discuss how to use the information of D1 and D2 to adjust the probability given by 

NNPP.  

Two scenarios will be discussed, in the first scenario, only the information of D2 is 

considered. But in the second scenario, both information of D1 and D2 are take into 

account for promoter prediction. In the following examples, it always assumes that the 

position of the TLS and TSC can be easily identified from any given tested gene 

sequence. 

3.4.1 Scenario 1 – TLS-NNPP Algorithm 

In this scenario, it supposes that the NNPP2.2 software has been applied to a tested 

gene sequence and identified a position s  in the sequence with probability of )( SsP  . 

The NNPP2.2 algorithm is based on the nucleotide sequence and recognizes only the 

presence and relative location of patterns  and  motifs  within  a  promoter,  rather  than  

the  location  of promoter motifs relative to the TLS. It predicts the probability that a tested 

sequence ± 3 bp (denoted by s) belongs to the class of true promoters (S). Given the 

position s  and the tested gene sequence, the distance between s  and TLS can be 

accurately identified. In this circumstance, the probability ]),[)(,( 2 adadsDSsP  , 

that is, the probability that s is a TSS position and the distance s and its TLS is between 

d-a and d+a, is used to measure the likelihood of the s being a true TSS position. The 
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higher the probability is the more likely s is a TSS position. In this paper we chose a=3 

which is the same value as NNPP employs. 

The probability ]),[)(,( 2 adadsDSsP   can be evaluated by using the following 

formula: 

]),[)(,( 2 adadsDSsP   =  )|],[)(()( 2 SsadadsDPSsP   (1) 

Formula (1) is used to adjust the value )( SsP   given by NNPP2.2. In the formula, 

)|],[)(( 2 SsadadsDP  the information is ignored by NNPP2.2. To evaluate the 

probability the following steps are required: 

 

(1) Collect the position information of the true TSS and its associated TLS for tested 

species. The larger the sample sizes the superior the output.  

 

(2) Use statistical software to produce the empirical cumulative distribution function 

)( *

2
dFd

 for D2,  *0 d  . Then use a nonparametric method to smooth the 

empirical cumulative distribution of D2. Both the above functions can be found 

from all common statistical software. The empirical cumulative distribution will give 

the estimation of )|)(( *

2 SsdsDP   for all  *0 d . 

 

(3) Estimate )|],[)(( 2 SsadadsDP  by )()(
22

adFadF dd   and substitute it 

to Formula (1) to evaluate the probability )|],[)(( 2 SsadadsDP    

 

The above formula is based on the sample information of D2 to adjust the probability of s 

given by NNPP2.2. Sometimes we might consider an alternative way to adjust )( SsP  .  

From research conducted by Dai et al (2006) it was found that all the density functions of 

D2 are positively skewed. For Example, considering the histogram plots (Figure 3.2), of 

the A. thaliana and H. sapiens, the study found when the distance TSS-TLS is large 

beyond a certain point, the value of the probability density function drops sharply to a 

very small value. 
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Figure 3.2 The histogram and smoothed density of distance TSS-TLS for A. thaliana and H. sapiens 

This offers very little information for the position of the TSS when the distance is beyond 

that point. Therefore, in such situations, it might be worth considering the probability: 

)|))(],,[)(()(

))(],,[)(,(

22

22

SsMsDadadsDPSsP

MsDadadsDSsP




 (2) 

instead of Formula (1), while )|))(],,[)(( 22 SsMsDadadsDP   will be evaluated by the 

empirical probability distribution determined by the entire sample with D2   M. [Dai et 

al., 2006]. 

3.4.2 Scenario 2 – TSC-TSS-NNPP Algorithm 

In this scenario, it is assumed that, the sample information on D1 and D2 for tested species 

is accessible. Under this assumption, given a gene sequence, if the true TSS position is 

at s; the distance between s and its TLS is D2(s) and the distance between its TLS and 

TSC is D1(s),   the following probability will be worth evaluating: 

 

]),[)(],,[)(,( 2112 bbsDadadsDSsP   

 

where a, b1, b2 and d are positive integers, and a is equal to 3 showing that a tested 

position can differ by plus or minus 3 bp.  The probability can be calculated in the following 

way 
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]),[)(,|],[)(()|],[)((

)(]),[)(],,[)(,(

2112211

2112

bbsDSsadadsDPSsbbsDP

SsPbbsDadadsDSsP




  (3) 

To evaluate the above probability, the estimation of )( SsP  is provided by NNPP2.2; 

following the similar steps listed in Scenario 1, the estimation of )|],[)(( 211 SsbbsDP  and 

]),[)(,|],[)(( 2112 bbsDSsadadsDP  will be given by the empirical distribution of D1 and 

the empirical distribution of D2 given ],[ 211 bbD  respectively. 

However, if TSS positions are only predicted for gene sequences with ],[ 211 bbD  , the 

above evaluation can be simplified, and evaluate: 

)),(,|),()(()( 2112 bbDSsadadsDPSsP    (4) 

instead of Formula (3).  In the next section, we only apply Formula (4) to real data.  

 

Figure 3.3 shows the schematic representation of the algorithms and procedure outlined 

in this chapter. 

 

 

Figure 3.3 Schematic Representation of Promoter Prediction using TLS-NNPP and TSC-TSS-NNPP Algorithms 
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3.5 Applications of the Algorithms TLS-NNPP and TSC-TSS-NNPP and the 

comparisons to NNPP2.2  

In this section, two applications are presented and the results of TLS-NNPP and TSC-

TSS-NNPP are compared to the relevant results of NNPP2.2. Using the TSC-TSS-NNPP 

and TSS-NNPP methods to analyze the data, the adjusted score had to be utilized. The 

NNPP2.2 algorithm generates scores or cutoff values at tenths such as 0.1, 0.2, 0.3, 0.4, 

0.5, up to 0.9. To obtain similar values, tenths of the maximum adjusted score were taken 

to obtain cutoff values for the TSC-TSS-NNPP and TSS-NNPP methods.  

We compare the algorithms TLS-NNPP and TSC-TSS-NNPP to NNPP2.2 in term of the 

probability of correct prediction. For example, the probability of a position which is 

accepted as TSS position by an algorithm is really a position of TSS. 

To save time, the comparison in this paper was done based on a 10% of the gene sample 

data. This 10% sub-sample is called a testing sample, and is randomly selected from the 

sample data to reduce the impact of sample error on comparison results. The methods 

TLS-NNPP, TSC-TSS-NNPP and NNPP2.2 are applied to the sub- sample respectively.  

Then, for each cut-off value, the total number of predictions and positive predictions in a 

range greater than each cut-off value were counted and the probability of correct 

prediction, denoted by P(Correct Prediction) will be evaluated for the TSS-NNPP, TSC-

TSS-NNPP and NNPP2.2 respectively. The estimations of P(Correct Prediction) are the 

number of positive predictions divided by the total number of predictions. 

3.5.1 E. Coli Sequence Study Using the TLS-NNPP Algorithm  

We firstly used this technique and modification to the NNPP2.2 algorithm on Escherichia 

coli DNA sequences. The process involved in the implementation took several steps. The 

steps involved creating an empirical distribution for the TSS-TLS distance, next, DNA 

sequences (500 bp) were run through the NNPP2.2 program and only the true positively 

predicted TSS positions were used. The Promoters were considered to be correctly 

predicted when the actual TSS of the promoter fell within ±3 bp of a predicted TSS. The 

predicted promoters must be in-line with the closest subsequent TLS in the sequences 

and the TSS-TLS distance. 

The research conducted by Burden et al showed that by modifying the NNPP2.2 

algorithm program by incorporating addition information, such as the TSS-TLS distance, 

it greatly improved the prediction of promoters and reduced the incidence of false 

predictions. Figure 3.4 shows how effective the TLS-NNPP technique was compared to 
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the NNPP2.2 program without the modifications. The number of predictions for this 

particular species was low due to the training set only containing 293 E. coli promoters 

therefore would not recognize any of the new promoters in the sequences (Burden, et al., 

2005). 

 

 

Figure 3.4 Comparison of probability of prediction of promoter sequences at different thresholds for NNPP2.2 and 
TLS-NNPP  
(Burden, et al., 2005) 

Further study on a range of species crossing from less complex to more complex 

organisms also showed that the TLS-NNPP method has power to improve the outcomes 

of NNPP2.2.   

3.5.2 Human Sequence Study Using the TSS-TSC-NNPP Algorithm  

As described in the previous section, it is possible to use the TSC-TSS-NNPP approach 

to improve the performance of NNPP2.2. This is only possible if the data is accessible 

from databases that could offer large numbers of experimentally defined promoter 

sequences and start and stop positions for the coding regions and 5’ and 3’ un-translated 

regions. 

In this section the TSC-TSS-NNPP method is applied to human data. Table 2 in Section 

3 shows that, for human data, D1 dropped into different regions, and might lead to the 

variation in the probability distribution of D2. Since the information of D2 is related to TSS 

position, it means that the information of the value of D1 might have certain level of impact 

on promoter prediction.  We adopt the four groups, described in Table 3.2, to group the 

value of D1. That is, Group 1 for D1   5583; Group 1 for 5583<D1  17466; Group 3 for 

17466 < D1   43976 and group 4 for 43976 < D1. The comparisons between the 
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algorithms TSC-TSS-NNPP and NNPP2.2 were done for D1 in the four groups 

respectively. 

Our results show that in all four groups of the H. sapiens data set, the TSC-TSS-NNPP 

method achieved better results than both NNPP2.2 and TSS-NNPP, particularly for 

Group 1. Looking at Figure 3.5, 60% seems to be the best cut-off value for the TSC-TSS-

NNPP method which has a greater Pr(Correct Prediction) value than the other two 

methods at this cut-off value. Additionally, within a 10%-60% threshold range for Group 

1, this showed that the probability of predicting that a sequence is a promoter is highest 

for TSC-TSS-NNPP. 

As shown in Figure 3.5, the P(Correct Prediction) values for TSC-TSS-NNPP and TSS-

NNPP dropped down at large threshold values. This is because time constraints did not 

allow us to examine a large data set for this research and dividing the data into groups 

extensively reduced its size so much so that there was no data available and information 

was exhausted at large threshold levels. Therefore, the data should generally be 

compared within a range of 0 to around 60%. 

The TSC-TSS-NNPP method produced better results compared to the NNPP and TSS-

NNPP methods for the H. sapiens data set for all four groups. We also apply TSC-TSS-

NNPP to M. musculus data (The results are omitted from this thesis). For the M. musculus 

data however, our study show that the TSC-TSS-NNPP method is the better choice only 

for Groups 1 and 2, whereas the NNPP2.2 method is better for Groups 3 and 4. It is 

interesting to note that the TSC-TSS-NNPP method produced extensively better results 

than TSS-NNPP and NNPP2.2 for small D1 values (Group 1) in both species. This is a 

vital merit for the TSC-TSS-NNPP approach, as generally, shown by 3D histograms of 

all organisms there is a very high proportion of small D1 values in the complete data set 

(3D histograms is omitted from this thesis). 

Therefore, if the data set consists largely of small D1 values, this new method will be 

highly effective in reducing the false positive rate for the NNPP2.2 tool, which will then 

ensure that each promoter that is predicted is associated with a gene coding region. 



Chapter 3 – Promoter Prediction regarding Coding and Noncoding Sequences 

 

51 

 

 

Figure 3.5 The comparison of three methods with D1 in Group 1 

The research in this chapter was beneficial in helping with the understanding of the 

coding and noncoding sequence length and how this thesis should progress in expanding 

and creating a better understanding of the length distributions of these regions. To 

understand the complexity of length it was logical to start with data that was readily 

available for a variety of organisms, to appreciate the assumptions, limitations and 

behaviour of the data. The next chapter investigates the coding sequence length among 

a cross section of organisms.
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4 Coding Sequence Length Comparisons 

4.1 Introduction 

Numerous species have now been fully sequenced, including protein coding sequences 

due to the impressive progress of high-throughput DNA sequencing techniques 

(Nowrousian, 2010), allowing biologists and statisticians to study and compare various 

species of prokaryotes and eukaryotes.  Up to 2006, when this project started, previous 

studies on protein lengths had focused on either prokaryotes or eukaryotes, with some 

research investigating the differences between these organisms, as well as their protein 

lengths (Wang, 2005; Xu, et al., 2006; Zhang, 2000). Examination of the protein coding 

sequences had in the past, been limited, particularly on comparing a wide range of 

eukaryotic organisms in addition to comparisons on their chromosomes and protein 

numbers.  

Chromosomal differences including rearrangements, such as inversions, translocations, 

and duplication and genetic variation among species have provided fundamental 

evidence for Darwin’s theory of natural selection (Coghlan, et al., 2005).  The study of 

the chromosomes of Drosophila melanogaster and Drosophila simulans differ in 

chromosome III by large inversions, as well as other species of flies. This has initiated 

many questions of chromosomal structure, including what regions or sites chromosomes 

are predisposed to change, and how large the DNA segments are inverted, deleted, 

translocated or duplicated (Eichler and Sankoff, 2003). 

Rearrangements in chromosomes can be detected either via a microscope if large, such 

as deletions, inversions and duplications, or if the rearrangements are fine-scale can be 

studied through genome sequencing (Coghlan, et al., 2005). Research currently being 

considered for genome sequencing from The National Human Genome Research 

Institute and the US Department of Energy comprise ~20 fungal species, ~40 

invertebrates and ~25 vertebrates. Since the progression of sequenced data for 

eukaryotic genomes, information on the smallest of changes for example, single base 

pair substitutions has become the motivation to further investigate fine-scale changes in 

chromosomal structures both within and between species (Coghlan, et al., 2005). 

Information gained through these organisms may have inference about structural and 

functional genomics (Eichler and Sankoff, 2003). 

As a foundation and starting point for this research, the coding sequence, protein number 

and length of fifteen eukaryotic organisms were examined to understand the complexity 
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of these organisms in relation to their length distributions of the coding sequence, 

including the investigation of these lengths with individual chromosomes. The coding 

sequence data was split into chromosome level and data including and excluding introns 

was explored. Protein information such as protein density per megabase (Mb) for every 

chromosome was also investigated. Conclusions will be made in regards to the biological 

processes that may be seen within each organism, and may offer greater insight into the 

complexity of these organisms. 

4.2 Data File Construction & Statistical Data Analysis 

DNA sequencing data was downloaded from the NCBI Genome web site 

(http://www.ncbi.nlm.nih.gov/Genomes/) in January 2007 (Figure 4.1). Fifteen complete 

or assembled sequenced eukaryotic genomes were chosen as part of this study (Table 

4.1). All the eukaryotic organisms were selected that contained both start and stop 

codons and protein lengths. All organism protein tables were downloaded from the 

Reference Sequence (RefSeq) collection (http://www.ncbi.nlm.nih.gov/RefSeq/) which 

provides a set of sequences for major research organisms and includes genomic DNA, 

transcript (RNA) and protein product information (Pruitt, et al., 2014; Pruitt, et al., 2007). 

This information has been used in a wide range of research, including functional, 

expression and diversity studies as well as comparative analyses (Fong, et al., 2013; Yi, 

et al., 2014). 

The organisms that were selected included one protist, Plasmodium falciparum, one plant 

species, Arabidopsis thaliana, five species of fungi, Saccharomyces cerevisiae, Candida 

glabrata, Cryptococcus neoformans, Debaryomyces hansenii, Encephalitozoon cuniculi 

and eight species of animals, Anopheles gambiae, Tribolium castaneum, Caenorhabditis 

elegans, Drosophila Melanogaster, Danio rerio, Mus musculus, Pan troglodytes, Homo 

sapiens. 

  

http://www.ncbi.nlm.nih.gov/Genomes/
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Table 4.1 Species of eukaryotes sequences downloaded in 2007 from the RefSeq collection NCBI website for study 

 

Species 

 

 

Size (Mb) 

 

Number of 

Chromosomes 

Plasmodium falciparum (Gardner, et al., 2002) 27.0235 14 

Arabidopsis thaliana  119.668 5 

Encephalitozoon cuniculi (Katinka, et al., 2001) 2.49752 11 

Debaryomyces hansenii (Dujon, et al., 2004) 12.1819 7 

Saccharomyces cerevisiae 14.2673 16 

Candida glabrata (Dujon, et al., 2004) 12.338 13 

Cryptococcus neoformans (Loftus, et al., 2005) 19.6998 14 

Caenorhabditis elegans (Consortium, 1998) 100.286 6 

Drosophila melanogaster (Adams, et al., 2000) 164.05 4 

Anopheles gambiae 265.027 3 

Tribolium castaneum 210.865 10 

Danio rerio 1411.76 25 

Mus musculus (Consortium, 2002) 2798.79 21 

Pan troglodytes 3309.56 24 

Homo sapiens (Human Genome Sequencing, 2004) 3256.04 24 

   

 

 

(a) 
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(b) 

Figure 4.1 NCBI RefSeq website Protein table screen.  
Protein tables were downloaded (exported) from the NCBI website and imported into Excel. (a) NCBI browse website 
(http://www.ncbi.nlm.nih.gov/genome/browse/) to select specific species; (b) protein details, including a length histogram and 
protein table that can be downloaded to excel.  

Protein tables were exported and added into Microsoft Excel files for each organism and 

arranged into individual chromosome. Two columns were added to each worksheet, CDS 

1 which was calculated by subtracting the stop position value from the start position value 

and adding one (1) for each protein record. This column was then used for information 

regarding the coding sequence of each protein that contained introns. The second 

column added was labelled CDS 2 which was calculated by multiplying the protein length 

for each protein coding gene by 3 and adding three (3). This column was used for 

information pertaining to the coding sequence of each protein that did not contain introns 

(Figure 4.2). Each MS Excel table was then imported into one MS Access database for 

further query construction and statistical analysis. Protein density was calculated by 

dividing the number of proteins per chromosome by the length of each chromosome. 

http://www.ncbi.nlm.nih.gov/genome/browse/
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Figure 4.2 Excel file containing length data obtained from NCBI RefSeq tables 

Standard statistical data analysis tools are used in this chapter. Statistical data analysis 

packages included JMP, SAS and SPSS, to run ANOVA and student t-test. 

4.3 Empirical & Comparative Study 

It was the intention of this part of the study to investigate a wide range of eukaryotes for 

an initial comparative study. 15 species of eukaryotes were selected, with comparisons 

on each chromosome. A total of 248,019 protein coding sequences were studied with a 

focus on three parameters: CDS (without introns), CDS + introns and protein length. 

The overall mean value for each species over all the chromosomes shows some notable 

observations (Figure 4.3). For E. cuniculi which has 11 chromosomes in total, the average 

protein number per Mb for this species is 800. Interestingly, as the organisms become 

more complex (based on the tree of life), the number of proteins per Mb drops. H. sapiens, 

M. musculus and P. troglodytes have an average protein number of only 6-9 per Mb. It is 

worth considering that these organisms have almost twice as many chromosomes than 

that of E. cuniculi. Most of the fungi species have a high number of proteins per Mb than 

the other organisms (Figure 4.3).  

When all the species of eukaryotes are grouped together in their respected categories, 

specific trends emerge from the data. Observations from the data for the fungi species 

show to have a large amount of proteins per Mb compared with the animal kingdom, 

which include the mammals. If placed in order of largest number of proteins per Mb within 

the total of all chromosomes combined, the fungi group would come first, followed by the 
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plants then closely followed by the protist and finally the animals (Figure 4.3). T-Test 

analysis was performed to test the differences in the means between organisism, and the 

test was significant (t 4.194, P = 0.001) 

4.3.1 Protein number and density 

The plant species, Arabidopsis thaliana, contained the highest number of proteins for 

each chromosome, averaging around 5,800 proteins.  By comparison, the fungi species, 

Encephalitozoon cuniculi, had the lowest number of proteins within each of its 

chromosomes, averaging around 180 proteins (Figure 4.4). Homo sapiens, and Pan 

troglodytes species showed large variations in chromosome 1 compared to the Y 

chromosome in relation to number of proteins (Figure 4.4). For example in the Homo 

sapiens the number of proteins in chromosome 1 is 2,718 compared to Y which has only 

104 proteins. 

 

 

 

 

SPECIES 

Figure 4.3 - Mean number of proteins per Mb over all chromosomes. 15 species of eukaryotes were studied.   

To calculate the density of proteins for each chromosome the number of proteins per chromosome was divided by the 
length of the chromosome (Mbp). Mean number was calculated from all chromosomes for each species. Data was 
obtained from the RefSeq proteins tables found at http://www.ncbi.nlm.nih.gov/genomes/leuks.cgi web site. 
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Observations from the data suggest A. thaliana showed higher protein density per Mb in 

chromosomes, one and five than the other chromosomes (Figure 4.4). Species C. 

glabrata and D. hansenii showed large differences within each chromosome. C. glabrata 

showed the lowest amount in chromosome 12 being 390 proteins per Mb, whereas D. 

hansenii had the highest protein number per Mb in chromosome 7 (540 proteins per Mb) 

and the lowest in chromosome 3 (490 proteins per Mb). S. cerevisiae showed a fairly 

consistent range of densities apart from chromosome 1 which was slightly lower (Figure 

4.4). Interestingly, for the higher organisms such as M. musculus the range of densities 

was quite dramatic, with the highest value appearing in chromosome 11. Both H. sapiens 

and P. troglodytes had the highest value at chromosome 19, and the lowest at the Y 

chromosome (Figure 4.4). 
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Figure 4.4 Density of proteins per Mb within each chromosome, across 15 different genomes of eukaryotes 
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4.3.2 Protein coding sequences and chromosomes 

The median value was considered in place of the mean values due to the skewness in 

the data. Log scale was used to display the relative distribution of gene length of each 

organism due to the values ranging over many orders of magnitude. The lower species, 

which include the fungi C. glabrata, C. neoformans, D. hansenii and E. cuniculi, indicated 

little variation between the CDS that do not contain introns (Figure 4.5). Most values fell 

in the range of log scale 1000 for both the coding sequence that contained introns and 

excluded introns. As the species move towards more complex organisms such as insects 

and animals, the difference between the CDS with and without introns is obvious. The 

largest differences shown within the species included the higher animals such as the M. 

musculus, P. troglodytes, D. rerio and H. sapiens (Figure 4.5). An example in H. sapiens 

showed most coding sequences that contained introns averaged around the log of 1000, 

whereas the coding sequences that had the excluded introns were considerably smaller, 

averaging just over the log of 100 base pairs. 

The ANOVA analysis identified significant differences between each chromosome for the 

three categories, CDS with introns, without introns and protein length. For all the higher 

organisms, C. elegans, D. Melanogaster, D. rerio, M. musculus, P. troglodytes and H. 

sapiens, as well as the plant species A. thaliana, there were significant differences 

between chromosomes (p < 0.05) (Table 4.2). The fungi species showed no significant 

differences between chromosomes. Additionally, T. castaneum, and A. gambiae only 

showed a significant difference between chromosomes when analysed with the CDS with 

intron data (Table 4.2). The median protein lengths of all species range from 300 to 450 

and are consistent with previously published results on eukaryotes (Brocchieri and Karlin, 

2005). 
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Figure 4.5 Median length (bp) across chromosomes of 15 species 

Median length included values covering the coding sequence with introns, coding sequence without introns and 
protein length. The coding sequence with introns was calculated by subtracting the stop position by the start 
position plus 1 for each protein entry. The coding sequence without introns was calculated by multiplying the 
protein length by 3 and adding 3. Protein length was obtained from the protein tables found on the RefSeq proteins 
tables at http://www.ncbi.nlm.nih.gov/genomes/. Median was calculated by each individual protein entry for the 
CDS with and without introns in JMP statistical package. Each graph used a log scale for median length to show 
relative distribution of values. 



Chapter 4 – Coding Sequence Length Comparisons 

 

65 

 

Table 4.2 Summary of ANOVA analysis and Kruskal-Wallis Test for each eukaryote species 

Comparison was made among the chromosomes of each species for the data: CDS with introns, without introns and 
protein length. The coding sequence with introns was calculated by subtracting the stop position by the start position 
plus 1 for each protein entry. The coding sequence without introns was calculated by multiplying the protein length by 
3 and adding 3. Protein length was obtained from the protein tables found on the RefSeq proteins tables at 
http://www.ncbi.nlm.nih.gov/genomes. Analysis was conducted through JMP®, Version <9>. SAS Institute Inc., Cary, 

NC, 1989-2007 for ANOVA analysis, Kruskal-Wallis hypothesis testing was run on SPSS v24. 

 

Source d.f. 
F 

statistic 
P 

Kruskal-
Wallis Test  

P 
Source d.f. 

F 
statistic 

P 
Kruskal-

Wallis Test 
P 

          
Plasmodium falciparum     Tribolium castaneum     
CDS with Introns 13 1.5525 0.0912 0.118 CDS with Introns 8 3.8063 0.0002* 0.000* 
CDS without Introns 13 1.7064 0.0529 0.121 CDS without Introns 8 1.1602 0.3193 0.287 
Protein Length 13 1.7064 0.0529 0.121 Protein Length 8 1.1602 0.3193 0.287 
          

Arabidopsis thaliana 
    Caenorhabditis 

elegans 
    

CDS with Introns 4 6.9136 < 0.0001* 0.000* CDS with Introns 5 67.8998 <0.0001* 0.000* 
CDS without Introns 4 7.3591 < 0.0001* 0.000* CDS without Introns 5 16.7514 <0.0001* 0.000* 
Protein Length 4 7.3591 < 0.0001* 0.000* Protein Length 5 16.4552 <0.0001* 0.000* 
          
Saccharomyces 
cerevisiae 

    Drosophila 
melanogaster 

    

CDS with Introns 15 0.4780 0.9527 0.702 CDS with Introns 3 19.3282 <0.0001* 0.000* 
CDS without Introns 15 0.4691 0.9565 0.737 CDS without Introns 3 37.7835 <0.0001* 0.000* 
Protein Length 15 0.4691 0.9565 0.737 Protein Length 3 37.7835 <0.0001* 0.000* 
          
Candida glabrata     Danio rerio     
CDS with Introns 12 0.3361 0.9828 0.923 CDS with Introns 24 2.8066 <0.0001* 0.000* 
CDS without Introns 12 0.3580 0.9774 0.883 CDS without Introns 24 3.6758 <0.0001* 0.000* 
Protein Length 12 0.3580 0.9774 0.883 Protein Length 24 3.6758 <0.0001* 0.000* 
          
Cryptococcus 
neoformans 

    
Mus musculus 

    

CDS with Introns 13 0.6110 0.8472 0.894 CDS with Introns 20 9.9967 <0.0001* 0.000* 
CDS without Introns 13 0.6873 0.7778 0.822 CDS without Introns 20 6.3825 <0.0001* 0.000* 
Protein Length 13 0.6906 0.7745 0.824 Protein Length 20 6.3825 <0.0001* 0.000* 
          

          
Debaryomyces hansenii     Pan troglodytes     
CDS with Introns 6 1.2986 0.2540 0.051 CDS with Introns 23 15.5634 <0.0001* 0.000* 
CDS without Introns 6 1.4381 0.1957 0.027* CDS without Introns 23 2.4144 <0.0001* 0.001* 
Protein Length 6 1.4381 0.1957 0.027* Protein Length 23 2.4144 <0.0001* 0.001* 
          
Encephalitozoon 
cuniculi 

    
Homo sapiens 

    

CDS with Introns 10 1.3512 0.1974 0.087 CDS with Introns 23 23.2665 <0.0001* 0.000* 
CDS without Introns 10 1.3429 0.2016 0.092 CDS without Introns 23 5.0335 <0.0001* 0.000* 
Protein Length 10 1.3429 0.2016 0.092 Protein Length 23 5.0335 <0.0001* 0.000* 
          
Anopheles gambiae          
CDS with Introns 2 3.0240 0.0486* 0.004*      
CDS without Introns 2 0.5379 0.5840 0.099      
Protein Length 2 0.5379 0.5840 0.099      
          

 

*Significant at  = 0.05 (differences between chromosomes) 

Drosophila melanogaster was used as an example to perform a student t test to 

determine which chromosomes varied from each other, found earlier in the ANOVA 

analysis. The Drosophila melanogaster exhibited a difference between chromosome 4, 

and the other chromosomes, X, 3 and 2, for all categories. The CDS without introns and 

protein length also displayed differences between chromosome 3 and X. Identification of 

http://www.ncbi.nlm.nih.gov/genomes
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differences between chromosomes within individual species has been found, particularly 

within the sex chromosomes during the regulation of transcription (Brown and Bachtrog, 

2014). 

Two species studied, A. thaliana and A. gambiae, exhibited all chromosomes containing 

coding sequences with introns (Figure 4.6). P. falciparum showed a comparatively even 

spread over all chromosomes of coding sequences that either contain or lack introns.  

All species of fungi showed little or no presence of introns within the coding sequences 

of all chromosomes. Within the animal kingdom, most species displayed a large portion 

of coding sequences with introns among all chromosomes. M. musculus had the largest 

proportion of coding sequences without introns, with the Y chromosome showing the 

largest percentage. This was also seen in the H. sapiens, with chromosomes X and 21 

having the largest percentage (Figure 4.6). 

 

  Total number of protein coding sequences (CDS) containing Introns 
 
  Total number of protein coding sequences (CDS) not containing introns 
 

Plasmodium falciparum: 

 

Arabidopsis thaliana:  

 

  

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8 9 10 11 12 13 14

0%

20%

40%

60%

80%

100%

1 2 3 4 5

P
e

rc
e
n

ta
g

e
 (

%
) 

Chromosome Number 



Chapter 4 – Coding Sequence Length Comparisons 

 

67 

 

  Total number of protein coding sequences (CDS) containing Introns 
 
  Total number of protein coding sequences (CDS) not containing introns 
 

Saccharomyces cerevisiae: 

 

Candida glabrata: 

 

Cryptococcus neoformans: 

 

  

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8 9 10 11 12 13

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8 9 10 11 12 13 14

P
e

rc
e
n

ta
g

e
 (

%
) 

Chromosome Number 



Chapter 4 – Coding Sequence Length Comparisons 

 

68 

 

  Total number of protein coding sequences (CDS) containing Introns 
 
  Total number of protein coding sequences (CDS) not containing introns 
 

Debaryomyces hansenii: 

 

Encephalitozoon cuniculi: 

 

Anopheles gambiae: 

 

 

  

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8 9 10 11

0%

20%

40%

60%

80%

100%

2 3 X

P
e

rc
e
n

ta
g

e
 (

%
) 

Chromosome Number 



Chapter 4 – Coding Sequence Length Comparisons 

 

69 

 

  Total number of protein coding sequences (CDS) containing Introns 
 
  Total number of protein coding sequences (CDS) not containing introns 
 

Tribolium castaneum: 

 

Caenorhabditis elegans: 

 

Drosophila Melanogaster: 

 

 

 

  

0%

20%

40%

60%

80%

100%

1 2 4 5 6 7 8 9 10

0%

20%

40%

60%

80%

100%

1 2 3 4 5 X

0%

20%

40%

60%

80%

100%

2 3 4 X

P
e

rc
e
n

ta
g

e
 (

%
) 

Chromosome Number 



Chapter 4 – Coding Sequence Length Comparisons 

 

70 

 

  Total number of protein coding sequences (CDS) containing Introns 
 
  Total number of protein coding sequences (CDS) not containing introns 
 

Danio rerio: 

 

Mus musculus: 

 

Pan troglodytes: 

 

  

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9 X Y

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2 X Y

P
e

rc
e

n
ta

g
e
 (

%
) 

Chromosome Number 



Chapter 4 – Coding Sequence Length Comparisons 

 

71 

 

  Total number of protein coding sequences (CDS) containing Introns 
 
  Total number of protein coding sequences (CDS) not containing introns 
 

Homo sapiens: 

 

 

Figure 4.6 Total percentage of protein coding sequences (CDS) containing either introns or lacking introns with each 
chromosome of 15 different eukaryotes 

The eukaryotes studied were Plasmodium falciparum, Arabidopsis thaliana, Saccharomyces cerevisiae, Candida 
glabrata, Cryptococcus neoformans, Debaryomyces hansenii, Encephalitozoon cuniculi, Anopheles gambiae, 
Tribolium castaneum, Caenorhabditis elegans, Drosophila melanogaster, Danio rerio, Mus musculus, Pan troglodytes 
and Homo sapiens. For the 15 different genomes of eukaryotes the number of proteins containing either introns or 
lacking introns for each chromosome was calculated from an MS Access database, where the CDS with introns table 
was compared to the CDS without introns table. The coding sequence with introns was calculated by subtracting the 
stop position by the start position plus 1 for each protein entry. The coding sequence without introns was calculated by 
multiplying the protein length by 3 and adding 3. Data was obtained from the RefSeq proteins tables found at 
http://www.ncbi.nlm.nih.gov/genomes/leuks.cgi web site.  

 

4.4 Discussion 

In this chapter, 15 eukaryotic species were compared in relation to the coding sequence 

of proteins that included either introns or lacked introns, as well as the protein length. 

Observed differences between chromosome and species were established within the 

higher organisms, however the lower organisms such as the fungi species showed no 

observed differences.  ANOVA and Kruskal-Wallis testing was performed on the data to 

support the observations made. Both tests confirmed significant differences between 

CDS with and without introns and protein length. There was only one discrepancy with 

the test for one organism, that being D Hansenii.  Density of proteins per Mb and the total 

number of protein coding sequences for each chromosome that contained introns was 

also examined. This study has achieved its goals by verifying the proteins lengths of well 

documented eukaryotic species, and finding significant differences between 

chromosomes. 

Within the eukaryote chromosomes there was differences only seen within the higher 

organisms. The biological significance from these results are still indeterminate, however 
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Zhang (2000) has proposed that larger proteins may be more complex in function than 

those that are smaller. Zhang (2000) also determined in the nematode and Drosophila 

that protein length and expression are positively correlated, supporting the concept that 

highly expressed genes are perhaps more important (Zhang, 2000).  

Eukaryotic protein lengths have also been connected to ‘functional regulators’ sequence 

motifs that are interlaced within the protein coding sequences (Brocchieri and Karlin, 

2005). Tan et al (2005) suggested that the longer proteins are essential in eukaryotes 

since these proteins are more connected, and this seems to be true especially for the 

higher eukaryote species, as seen in this chapter.  

Bigger proteins may not be permissible in prokaryotes, due to the fact that the prokaryote 

genomes are highly compacted and must only retain those genes that are imperative 

(Zhang, 2000). However, in eukaryotes, multi-domain structures are formed, and may be 

linked with the evolution of the multi-exon proteins (Brocchieri and Karlin, 2005). The 

biological significance of the larger protein lengths within eukaryotes may be explained 

by the synthesis of single units seen in prokaryotes to create multi-domain units 

(Brocchieri and Karlin, 2005). The production of gene regulation networks in eukaryotes 

has been suggested by Zhang (2000) to be an evolutionary strategy, increasing protein 

lengths among higher organisms.  

Environmental conditions and its’ impact for all species of bacteria, archaeal and 

eukaryotes have also been related to the lengths of proteins. It has been suggested by 

Brocchieri & Karlin (2005) that in harsh, high temperature environments the evolution of 

shorter, and more stable proteins are chosen over more complex proteins. This was 

shown in small proteomes of parasitic organisms, which had longer median proteins due 

to the protected environment in which they live (Brocchieri and Karlin, 2005).  The 

minimization of amino acid usages has also been connected to the length of proteins. 

Again, in environments that offer starving conditions, the selective pressure for the 

removal of more expensive proteins, has influenced the adaptive process for free-living 

species (Brocchieri and Karlin, 2005).  A study that focused on P falciparum and S 

cerevisiae found that parasitism influences redundancy within each of these genomes. 

As P falciparum exhibits parasitism, it was found that there was a higher level of 

redundancy in the chromosomes compared to the similar sized S cerevisiae 

chromosomes (Achaz, et al., 2001).  

Most eukaryote species studied exhibited the presence of introns for each protein coding 

sequence. There was selected species that only had a small portion of introns within each 
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chromosome. Looking at a diverse range of eukaryotic genomes, it is still uncertain what 

mechanisms are responsible for the increase in introns gained in the last ½ billion years 

(Stoltzfus, 2004). Studies showing the intron gain and loss for mammalian genomes 

appear to be almost static, for example, between the human and mouse genomes there 

have only been a loss of 0.003 introns per gene with no clear gains (Jeffares, et al., 2006). 

With the separation of each chromosome for each species of eukaryotes, it may be 

possible to identify the areas in each species where the loss and gain of introns occurs 

(Roy and Gilbert, 2005). This may lead to a better understanding of the functions of these 

introns within an organism and between different species.  

Furthermore, it has been found in other studies that a certain number of introns have 

important functions in multicellular eukaryotes, however, the proportion of these introns 

has not been identified up to now. If each chromosome is studied individually, it may 

make such an extensive task possible (Jeffares, et al., 2006; Vinogradov, 2002).  This 

study has identified chromosomes, in the higher organisms that do have significant 

differences in each coding sequences with introns. The higher organisms also show a 

higher number of introns within each chromosome than fungi, which had a very small 

portion of protein coding sequences containing introns. Jeffares et al (2006) have 

suggested that the introns that have specific functions may have become essential in 

multicellular organisms and once they have been created, are not easily lost. This may 

explain why the higher organisms such as mouse (M musculus), human (H sapiens) and 

chimpanzee (P troglodytes) have a large portion of introns within each of their 

chromosomes. Why a particular chromosome has increased numbers of introns would 

need further investigation.  

The fungi species studied had a very small portion of coding sequence that contained 

introns. Jeffares et al (2006) indicated that introns have been eliminated completely from 

highly reduced genomes. This would suggest that organisms such as prokaryotes that 

do not contain introns, may have come from ancestors that were intron rich (Jeffares, et 

al., 2006). This may explain why some of the fungi species did have a small percentage 

of introns within some of their chromosomes, and have been removed due to selection 

pressure. Roy (2006) related intron loss to evolution, suggesting it is driven by positive 

selection, meaning in larger population sizes the rates of intron loss would be greater 

than those seen in smaller population sizes. However, this study did highlight that these 

findings are not consistent with other intron losses, indicating another mechanism 

affecting the loss, which may include generation time (Roy, 2006). 
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Introns have been a good tool in previous studies to identify deletions of small scale 

mutations (Ogata, et al., 1996). The presence of introns with those organisms that did 

show differences within each chromosome, and indicated larger intron sizes, could suffer 

point mutations and deletions at a higher rate (Ogata, et al., 1996). The differences 

between chromosomes may be explained by different conditions that affect different parts 

of the genome in respect to these mutations (Ogata, et al., 1996). In Drosophila, the 

coding sequence with introns, particularly in chromosome 4, was very large. On an 

adaption basis, this could be explained by natural selection, where selection against very 

long introns is unproductive (Comeron, 2001). 

It is still unclear why there is such a wide variation in the amount of noncoding DNA in 

genomes (Vinogradov, 2002). Lin and Zhang (2005) proposed that in C. elegans the total 

number of genes that did not contain intron was 2.7% for the whole genome compared 

to P. troglodytes which was 9.2%, M. musculus which was 16.1%, and D. melanogaster 

being 21.6% (Lin and Zhang, 2005). Our findings support these percentages, for example 

in C. elegans the study found the sequencing without introns only in chromosome 1.  

Vinogradov (2002) indicated that there is a general correlation between the genome size 

and the intron size in a wide variety of evolutionary diverse phyla. Vinogradov (2002) also 

indicated that the smaller the genome the more deletions are favoured over insertions 

(Vinogradov, 2001; Vinogradov, 2002). This could refine the results found in this study 

and explain why there were some differences in each chromosome. The balance of 

coding sequences that contained introns or lacked introns were very diverse, not only 

with each chromosome, but within the species themselves. 

A study by Achaz et al (2001) investigated six species of eukaryotes (S. cerevisiae, C. 

elegans, P. falciparum, A. thaliana, D. melanogaster and H. sapiens). The results, based 

on the analysis of intrachromosomal repeats, indicated biological significance.  The 

significance implied structures and mechanisms that are connected in the eukaryote 

kingdom, and are shared by all eukaryote chromosomes. Dujon (2006) looked at 

chromosome fragments and established that they aided in the identification of the whole-

genome duplication process (Dujon, 2006). 

The research in this chapter has extended the understanding and has opened more 

discussion on the role of length within and between organisms. In conclusion, this early 

study has highlighted differences between chromosomes for each organism, when 

examining the coding sequence (with and without introns) and protein length. Notably 

there were differences between the more complex organisms when the results were 
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compared to the lower species.  An understanding of intrachromosomal duplications have 

been studied by Achaz et al (2000) where it was implied that the coding repeats are 

conserved by functional pressures, and must be short due to the effect of length tolerance 

(Achaz, et al., 2000). 

The caveats existing in influencing the results from this research topic, may be the 

vertebrates studied, generally having the same identical intron/exon structures with little 

gain and loss of these introns from the diversity of rodents to primates (Lin and Zhang, 

2005). The fungi species could also have the same limitation imposed, warranting caution 

when analysing the results from this research. Other issues associated with comparative 

genomics include a particular portion of the genomic region may be conserved only 

because of the lower mutation rate in that area (Andofatto, 2005). 

To focus on two heavily studied model organisms and to extend on the understanding of 

how the 5’ UTR and coding sequence interacts, the research of this thesis altered 

direction and focus, to use more complex and innovative statistics to determine the 

relationship between the coding and noncoding length regions.  
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5 Coding and Noncoding Sequence Length Comparison with 

Arabidopsis and Drosophila 

5.1 Introduction 

This chapter is slightly modified from the following two papers: 

Caldwell R., Lin, Y., and Zhang, R. (2008) Correlations of Length Distributions between noncoding and coding 

sequences of the Arabidopsis thaliana, Chapter: 2008 IEEE International Conference On Bioinformatics and 

Biomedicine BIBM 2008 (Philadelphia, Pennsylvania, USA) edited by Xue-wen Chen, Xiaohua Hu, and Sun Kim, IEEE 

Computer Society, 72-77.  

Caldwell, R., Lin, Y., and Zhang, R. (2010) Assessment of length distributions between noncoding and coding 

sequences amongst two model organisms, International Journal of Data Mining and Bioinformatics, 4 (5), 535-552. 

doi:10.1504/IJDMB.2010.035899. 

 

Data in this chapter was collected and the research published in 2008 / 2009. More recent data and 

techniques are included in the preceding chapters. 

 

With large-scale methods for data generation, becoming more efficient and cost effective, 

biological research is seeing an expansion in the discipline of bioinformatics. All areas of 

biology will ultimately use bioinformatics to pursue a large range of questions and it will 

encourage collaborations between disciplines.  

One direction of research using the sequences of a wide range of organisms has been 

with protein length, elucidating the development and biological differences amongst the 

three domains of life.   Genome complexity in relation to protein length is also examined 

and it was established there is a positive correlation between average protein lengths 

and genome complexity (Tan, et al., 2005).  

However, at gene level, little is known of the length distributions of noncoding regions. 

Higher organisms only use a small portion of the genome for encoding proteins, with the 

other segments not coding for anything, even though still transcribed. Interest in the 

function of these noncoding regions has intensified. One study evaluated the distances 

between neighbouring genes and the lengths of the 3’ un-translated regions (UTRs) and 

it has been found that length and distance between genes and their corresponding un-

translated regions had important implications in gene expression and regulation 

(Chiaromonte, et al., 2003; Clark, 2001). Other research has found that the intron 

presence in the 3’ UTR was far less than those found in the 5’ un-translated regions 

(Hong, et al., 2006).  

Previous research conducted has indicated that for each organism studied the distribution 

of distance from transcription start site to translation start site displayed its own specific 
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character, and so these distances varied among different organisms (Dai, et al., 2006). 

This is consistent with aforementioned studies focusing on protein length, with similar 

results in the increase in distance from simple prokaryotes to more complicated 

eukaryotic organisms. 

Research conducted using the Arabidopsis cDNA data discovered many features of gene 

structure and organization (Alexandrov, et al., 2006; Seki, et al., 2002). The 5’ and 3’ UTR 

data for the large dataset confirmed previous study results, suggesting the average length 

of the 5’ UTR length ranges between 100 to 200 nucleotides, whereas the 3’ UTRs are 

much more variable (Mignone, et al., 2002). Not only can this data help elucidate gene 

regulation mechanisms, but also allows extended research on comparisons between 

phyla (Rubin, et al., 2000). 

This chapter investigates the relationship between the noncoding (both 5’ and 3’) and 

coding sequence regions, which as of yet has not been attempted. Countless analyses 

of intricate biological processes still exploit the use of linear models. However,  a number 

of studies have determined differences between the coding and noncoding DNA regions 

based on nonlinear dynamical characteristic’s (Mabrouk, et al., 2008). We propose a 

nonlinear function statistical approach to establish correlations between the length 

distributions of the coding and noncoding regions of an animal and plants species. The 

data analysis also comprises the presence or absence of introns, as a comparison 

(Vinogradov, 2002).  

5.2 Statistical Analysis 

Descriptive statistics were obtained from JMP 9 (SAS Institute Inc., North Carolina U.S.A) 

and SPSS version 19 (SPSS IBM, New York, U.S.A) statistical software. Refer to the 

region of interest in chapter 1 and abbreviation list for a description of the “D, d” values. 

Comparisons were conducted on the ratio of each region (length value over total). After 

initial statistical tests, it was found there was a significant nonlinear relationship between 

the coding region )( 11 Dd  and the ratio of )( *

2

*

2 dD . The value of )( *

2

*

2 dD  was calculated by: 

321

2*

2
DDD

D
D


  and 

321

2*

2
ddd

d
d


       (1) 

 

The purpose is to predict d1 through D2
*, where D2

* is the proportion of D2 in the total 

length of protein coding gene (D1+D2+D3). Analysis was conducted using JMP 9 (SAS 

Institute Inc., North Carolina U.S.A) and the data revealed significant nonlinear 
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relationship between the coding region length )( 11 Dd  and the 5’ noncoding region length 

ratio )( *

2

*

2 Dd , which was conditional on the value of )log()log( 22 Dord . Each dataset for each 

organism was subset by the )log()log( 22 Dord values and a nonlinear model was 

applied to each subset, to identify a nonlinear relationship between )( 11 Dd and )( *

2

*

2 Dd . In 

addition, ANOVA analysis was applied to each dataset to determine whether there are 

significant differences between the mean of each length region (coding and noncoding) 

and each protein category, which was grouped into four categories, information storage 

and processing, cellular processes and signalling, metabolism and poorly characterized 

based on the COG Functional categories. The datasets were imported into SPSS version 

19 (SPSS IBM, New York, U.S.A) where mean testing analysis was performed. 

5.3 Length Distributions among all Three Regions 

Each gene region was examined and the median of the coding and noncoding region for 

each organism were obtained. Calculations were made on the data that included introns 

(D) and excluded introns (d).  The median values for Arabidopsis thaliana ranged under 

200 bps for the 5’ un-translated region to over 1600 bps for the coding sequence. The 3’ 

un-translated region values were just over 200 bps (Figure 5.1). Results from this 

research are comparable with previous analyses on this organism (Alexandrov, et al., 

2006). Other studies have shown that the Arabidopsis 5’ UTR average lengths range 

between 100 and 200 nucleotides. The 3’ UTR for plants range from about 200 

nucleotides (Mignone, et al., 2002). In comparison, the Drosophila melanogaster average 

length for the un-translated regions was diminutively larger than that of the plant species. 

Celniker & Rubin (2003) reported the size of the Drosophila un-translated regions as 265 

nucleotides for the 5’UTR and 442 nt for the 3’ UTR, which was confirmed by the data 

from this research.  

The median value was considered in place of the mean values due to the skewness in 

the data. All data in each region, with and without introns when frequencies were plotted 

showed a long tail. The median length (bp) of the coding sequence without introns (d1) 

for Arabidopsis is ~62% of that of the coding sequence with introns (D1).  In comparison, 

the median length for Drosophila, between the coding sequence with and without introns 

is ~70% (Figure 5.1).  This indicates that in Arabidopsis the coding sequence region 

contains additional introns, than that of Drosophila.  
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(a) 

 

(b) 

Figure 5.1 Length distributions (bp) of noncoding and coding sequences of the Arabidopsis thaliana and Drosophila 
melanogaster. 

Gene region consists of 5’ UTR median length with (a) and without introns (b) ( )( 22 dD ); coding sequence median 

length with and without introns ( )( 11 dD ); and 3’ UTR median length with and without introns ( )( 33 dD ). 

 

The noncoding region’s for Arabidopsis with and without introns shows higher median 

length percentages than the coding sequence. The median length for the 5’ UTR is ~89%, 

whereas the 3’ UTR is ~99.5%.  The difference in the 5’ UTR and the 3’UTR in plants is 

consistent with other studies and may be attributed to nonsense mediated decay of 

mRNA (Alexandrov, et al., 2006; Hillman, et al., 2004). However, in Drosophila the 5’UTR 

median length was ~51%, suggesting a higher percentage of introns in this region, to the 
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coding sequence. The 3’ UTR was similar with the Arabidopsis showing a median length 

percentage of ~97% and again could be credited to the nonsense mediate decay of 

mRNA. Nonsense-mediated mRNA decay is a surveillance process to reduce errors in 

gene expression by eliminating mRNAs containing premature translation-termination 

codons (PTCs) (Brogna and Wen, 2009).  

The datasets for each organism was further examined after being split into individual 

chromosomes. ANOVA analysis was applied to the data, and significant differences 

between each chromosome and each length region (noncoding and coding) were found, 

with and without introns (p-value < 0.001) (Figures 5.2 & 5.3). A large variation was 

observed in chromosome 4 for the Drosophila species between the length regions. This 

could be attributed to the small sample size for that particular chromosome once the data 

was compiled from the various data sources. Rearrangement changes, deletions, 

inversions and duplications in chromosomes are capable of accelerating species 

adaption as environmental conditions change (Coghlan, et al., 2005).  This evolutionary 

influence can have an impact on the size, shape, and composition of eukaryotic 

chromosomes not only between organisms, but within a particular species (Schubert, 

2007). This could substantiate why there were significant differences between the 

noncoding and coding lengths and each chromosome of these two species.  
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Figure 5.2 Median length values (bp) of each gene region (coding sequence ( )( 11 dD ; 5’ UTR ( )( 22 dD ) and 3’ UTR 

( )( 33 dD ) divided into chromosomes for Drosophila melanogaster. Figure (a) represents length regions with introns, 

and figure (b) represents length regions without introns. 

 

Figure 5.3 Median length values (bp) of each gene region (coding sequence ( )( 11 dD ; 5’ UTR ( )( 22 dD ) and 3’ UTR 

( )( 33 dD ) divided into chromosomes for Arabidopsis thaliana. Figure (a) represents length regions with introns, and 

figure (b) represents length regions without introns.  

5.4 Nonlinear Function relationship between 1D ( 1d ) and 
*

2D ( *

2d ) Values  

Bivariate analysis was applied to the data to test for patterns and correlations between 

the coding and noncoding regions within each chromosome. Upon first inspection of the 

data, the relationship between the variables, showed more of a curved line, which 

prompted a nonlinear analysis approach. It was the intention to test the relationship 

between the coding and noncoding sequences using a nonlinear model, with the null 

hypothesis being that there is no relationship between the X and Y variables. By using 

log transformation, a nonlinear function relationship was established between 1d and 
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(
1D and *

2D ) given the value of )log()log( 22 Dord . The log transformation was used on 

the )/()( 22 Dd data due to the highly skewed distributions and identified a clearer pattern 

in the data. Log transformation is often the first tool used when the data is faced with a 

curved relationship. The models used to fit the data are: 

 

edd
d

d  )(
*

1
232

2

101    ( e  denotes random error)   (1) 

and 

eDD
D

D  )(
*

1
232

2

101   ( e  denotes random error)   (2) 

 

Where the β0 β1 and β2 parameters in the model above are represented by the intercept 

and gradient estimates. The testing procedure is to run the data through a series of tests, 

firstly starting with linear regression, and add more terms to identify whether the R2 is 

significantly greater than expected, and not due to chance. Once a best-fitting equation 

has been selected, it is tested for best fit against the linear model. 

The data was subset, based on )log()log( 22 Dord values. Splitting the data into these 

subsets proved the most accurate method in obtaining the best statistical outcome of the 

mathematical model used above, which was applied to each subset. The following results 

focuses on data without introns. From previous results data without introns performed 

better, and the data integrity from the external databases is proven.   For the Arabidopsis, 

the data was subset into twelve subsets based on the value of )log( 2d  (<1.0; 1.0-1.9; 2.0-

2.4; 2.5-2.9; 3.0-3.4; 3.5-3.9; 4.0-4.4; 4.5-4.9; 5.0-5.4; 5.5-5.9; 6.0-6.4; > 6.4). Figure 5.4a 

shows nonlinear relationship between d1 and 
*

2d  values based on the data from 

chromosome 4, within the subset of 3.5 ≤ )log( 2d < 4.0.  Given the )log( 2d values 

>1.0, the R2 values produced by the model are generally high (Figure 5.5). The R2 values 

averaged around 0.9, making the correlation between these variables (d1, 
*

2d  and d3 – 

d2) substantial. A similar trend was also seen in the Drosophila species, however the 

dataset for this organism was smaller therefore the data was subset into only four subsets 

(0 < 4.0; 4.0 – 4.9; 5.0 – 5.9; and > 6.0). The model was applied to each subset and 

strong correlation was also seen (Figure 5.4b - chromosome 2b subset 4.0 ≤ log(d2) < 
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4.9). Again, as the values of )log( 2d increased, so did the R2 values to above 0.7 (Figure 

5.6). For Arabidopsis thaliana the R2 values were consistent, averaging around 0.9, 

however in the Drosophila melanogaster, there were variations seen across all subsets, 

with a sizeable drop in the R2 value at subset 5.0 ≤ )log( 2d < 5.9. This could be 

attributed, again to the small sample size of the Drosophila or unexplained factors 

affecting the results, unseen by the model. 

 

 

 

 

 

 

 

 

 

*

2d             *

2d  

 

 

 

 

 

Figure 5.4 Nonlinear functional relationship between 
1d and *

2d  

Figure a represents chromosome 4 of the Arabidopsis thaliana. The data shown is from subset 3.5 ≤ log(d2) < 

4. Figure b represents chromosome 2b of the Drosophila melanogaster. The data shown is from subset 4.0 ≤ 

log(d2) < 4.9.  

a b
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Figure 5.5 R-squared values based on nonlinear functional relationship between
1d and *

2d within 

chromosome 4 for Arabidopsis thaliana. Data was subset into 12 categories based on Logd2 values. 

Table 5.1 Summary of analysis based on the nonlinear model for Arabidopsis thaliana on Chromosome 4. Data was 
subset into 12 categories based on Log(d2) values. 

Summary of Fit Subset of Log(d2) 

 <1.0 
1.0-
1.9 

2.0-
2.4 

2.5-
2.9 

3.0-
3.4 

3.5-
3.9 

4.0-4.4 
4.5-
4.9 

5.0-
5.4 

5.5-
5.9 

6.0-
6.4 

>6.4 

RSquare 0.42 0.81 0.94 0.88 0.90 0.93 0.89 0.92 0.93 0.94 0.97 0.94 

Root Mean Square 
Error 

353 295 230 207 222 176 191 199 200 192 122 165 

Observations 16 29 43 126 231 509 921 1110 844 429 171 44 

β0 471 390 92.5 54.2 95.4 -3.67 -31.38 -75.17 -155 -529 -911 -1900 

β1 0.67 2.78 8.57 15.1 25.4 41.58 64.70 103 163 282 445 793 

β2 0.39 -0.38 -0.78 -0.91 -1.54 -1.05 -0.95 -0.97 -1.14 -1.25 -1.31 -1.49 
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Figure 5.6 R-squared values based on nonlinear functional relationship between
1d and *

2d  within 

chromosome 2b for Drosophila melanogaster. Data was subset into 4 categories on Logd2 values. 

 

Table 5.2 Summary of analysis based on the nonlinear model for Drosophila melanogaster on Chromosome 2b. Data 
was subset into 4 categories based on Log(d2) values. 

Summary of Fit Subset of Log(d2) 

 0<4.0 4.0 – 4.9 5.0-5.9 6.0-7.0 

RSquare 0.047541 0.792542 0.572273 0.793217 

Root Mean Square Error 966.6695 452.2212 606.0774 406.4867 

Observations 68 175 118 46 

β0 1139.3685 227.55426 250.31857 -466.4913 

β1 0.5072784 63.13861 148.22017 423.91478 

β2 0.4972338 -0.57065 -0.54751 -0.856424 

 

p values are all significant at α 0.05. 

To identify if there were any correlations between these three regions, the study did not 

emphasis on how to classify and subset the values of )log()log( 22 Dord . The values of 

)log()log( 22 Dord has a considerable impact on model fitting as well as the confidence 

on the prediction of the value of 2d ( 2D ). Inappropriately grouping the values of 

)log()log( 22 Dord might limit this application.  

Emphasis on the differences between the coding and noncoding regions has been 

reported in various studies and has led to new perspectives in the understanding of DNA 

sequences. The Trichomonas vaginalis genome sequence study has found a higher G+C 

content and a lower frequency of repeated sequences in the coding regions when 
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compared with the noncoding regions (Espinosa, et al., 2001). In a Drosophila 

melanogaster study, differences and similarities in composition of coding and noncoding 

sequences between the X chromosome and autosomes7 were found (Singh, et al., 2005). 

The nonlinear model has revealed a significant relationship with the coding sequence 

and 5’ UTR region and has complemented research that has already been investigated 

with these gene regions. 

Future research is required to incorporate a wider range of organisms, along with other 

variables and biological functions to strengthen the understanding of this nonlinear trend, 

and to possibly associate it with evolutionary and biological phenomena. If the coding 

sequence and the 3’ UTR sequence length are known, the 5’ UTR length could be 

predicted, which could provide guidance in promoter studies (Bajic, et al., 2004; Burden, 

et al., 2005). The relationship between the length distributions of the coding and 

noncoding sequences is a thought-provoking question. Given the evidence of a nonlinear 

pattern with these regions, the next logical step would to incorporate other variables, such 

as protein function to determine the influence function has in relation to the coding and 

noncoding sequences. 

5.5 Protein Function 

The study of proteins and protein function is an important subject for biologists today. 

Proteins are the building blocks of all living organisms and play an important role in 

executing and regulating most biological processes. Sequence, structure and function 

are important components in the study of proteins, and the understanding of these 

components is now possible due to advanced techniques in sequencing. 

Constraints on the evolution of proteins may be influenced by specific function, such as 

enzymes, regulators or signalling molecules (Lipman, et al., 2002). Examination of protein 

lengths in conjunction with functional classes, such as cellular processes and metabolism 

identified that the protein lengths of these functional groups were greater than those of 

some other groups (Brocchieri and Karlin, 2005).  

Interest in genes that produce proteins of particular function has also been a growing and 

focused area.  Coding and noncoding sequences are altered by the same mutational 

processes however, selection acts on these discriminately. Protein function adaptability 

can be contributed to many modifications in the sequence, including accumulation of 

sequence changes and gene duplications. Insertions and deletions (indels) within 

                                            
7 Any chromosome that is not a sex chromosome  
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domains influence the length differences, with the presence of introns contributing to a 

larger expanse in protein length within eukaryotes than in prokaryotes. The size is also 

affected in eukaryotes by the accumulation of functional motifs that are involved in 

sophisticated regulatory networks (Zhang, 2000; Wang, 2005).  

This section explores the noncoding and coding sequence length data of the Arabidopsis 

thaliana and Drosophila melanogaster to understand the relationship between the protein 

function and these lengths. The research extends previous investigation by examining 

not only the protein length data but the coding and un-translated region length data and 

will compliment what has already been found in previous chapters.  

5.6 Functional Protein Classification 

The length data for the coding and noncoding regions for each organism was merged 

with the Clusters of Orthologous Groups of proteins (COGs) database 

[http://www.ncbi.nlm.nih.gov/COG/] (Figure 5.7), using the IDs from each database. This 

database was generated by comparing predicted and known proteins in completed 

genomes of both microbial and eukaryotic organisms (Koonin, et al., 2004; Tatusov, et 

al., 1997). To investigate the sequence length in different protein functional groups the 

sequence length data was ranked into four main categories based on the COG functional 

classes (Table 5.3 / Appendix B). 
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Figure 5.7COG database FTP file format 
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Table 5.3 COG Functional Protein Classification [http://www.ncbi.nlm.nih.gov.COG/]. The classification was divided 
into 4 main categories 1) Information storage and processing; 2) Cellular processes and signalling; 3) Metabolism; and 
4) Poorly Characterised. 

 

(1) Information storage and processing 

J Translation, ribosomal structure and biogenesis  
A  RNA processing and modification  
K Transcription  
L Replication, recombination and repair  
B Chromatin structure and dynamics  

(2) Cellular processes and signaling 

D Cell cycle control, cell division, chromosome partitioning  
Y Nuclear structure  
V Defense mechanisms  
T Signal transduction mechanisms  
M Cell wall/membrane/envelope biogenesis  
N Cell motility  
Z Cytoskeleton  
W Extracellular structures  
U Intracellular trafficking, secretion, and vesicular transport  
O Posttranslational modification, protein turnover, chaperones  

(3) Metabolism 

C Energy production and conversion  
G Carbohydrate transport and metabolism  
E Amino acid transport and metabolism  
F Nucleotide transport and metabolism  
H Coenzyme transport and metabolism  
I Lipid transport and metabolism  
P Inorganic ion transport and metabolism  
Q Secondary metabolites biosynthesis, transport and catabolism  

(4) Poorly Characterized 

R General function prediction only  
S  Function unknown  

  

 

5.7 Protein Function in relation to Coding and Noncoding Sequence 

Lengths 

ANOVA analysis (analysis of variance) (Daniel, 1999) was performed on Arabidopsis 

thaliana (N = 13,245) and Drosophila melanogaster (N = 2,735) to compare differences 

between the coding and noncoding length sequences and protein function. The IBM 

SPSS19.0 software package (IBM, 2010) was used to conduct the analysis. ANOVA is a 

method of statistical hypothesis testing which reduces the rate of Type I errors (false 

positives) and is commonly used in analysis of experimental data (Ding, et al., 2014; 

Magwire, et al., 2010). ANOVA was used to test for differences between each length 

region (coding and noncoding sequences) within each protein functional group.  
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ANOVA analysis was conducted on each gene region, with and without introns, of both 

organisms, and significant differences were found in relation to the protein function 

categories. For the Drosophila, when the means were compared using ANOVA for each 

gene region (with and without introns) there were significant differences (p-value < 0.001) 

found between information storage and processing; cellular processes and signalling; 

metabolism; and poorly characterised protein categories (Figure 5.9A & 5.9B). In 

contrast, the Arabidopsis (Figure 5.8A & 5.8B) showed significant differences with each 

protein category with the exception of D2 and D3 mean difference. The only change 

between the two organisms was sample size with the Arabidopsis having a larger sample, 

which may have been more sensitive to the statistical testing.   

Previous studies focusing on protein length found that the median values for the 

categories cellular process and metabolism are longest in all three phylogenetic domains 

(Eukarya, Bacteria and Archaea) (Brocchieri and Karlin, 2005). This is consistent with 

Arabidopsis data in this research, but Drosophila showed slight variation to this finding. 

When the noncoding regions were taken into consideration, similar length differences 

within the protein category groups were found at a smaller scale to the coding sequence 

length. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.8 Protein category classifications in relation to noncoding and coding gene regions for Arabidopsis thaliana. 

A represents mean values with introns; B represents mean values without introns. Protein categories consist of 1: 
Information storage and processing; 2: Cellular processes and signalling; 3: Metabolism; & 4: Poorly characterized. 
ANOVA analysis conducted between each protein category and each region (with and without introns) found significant 
differences denoted by * (Alpha = 0.05). Sample size = N=13,245. 
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Table 5.4 ANOVA analysis on Arabidopsis thaliana between the length of the coding (with and without introns - D1 / 
d1) and noncoding (with and without introns - D2, D3 / d2, d3) gene regions in relation to protein function. Protein 
function was divided into four (4) main categories based on the COG classification.  

  Sum of Squares df Mean Square 
F 

Statistic 
Sig. 

d2 Between Protein 
Category 

1910306.459 3 636768.820 26.749 0.000* 

  Within Groups 315202030.608 13241 23805.002     

  Total 317112337.067 13244       

D2 Between Protein 
Category 

2941278.899 3 980426.300 0.936 0.422 

  Within Groups 13863397428.676 13241 1047005.319     

  Total 13866338707.574 13244       

       

d1 Between Protein 
Category 

28561720.276 3 9520573.425 18.119 0.000* 

  Within Groups 6957615434.305 13241 525459.968     

  Total 6986177154.581 13244       

D1 Between Protein 
Category 

38448351.415 3 12816117.138 6.151 0.000* 

  Within Groups 27586772771.235 13241 2083435.750     

  Total 27625221122.650 13244       

       

d3 Between Protein 
Category 

272403.177 3 90801.059 3.702 0.011* 

  Within Groups 324775399.172 13241 24528.011     

  Total 325047802.349 13244       

D3 Between Protein 
Category 

358683.203 3 119561.068 2.553 0.054 

  Within Groups 619996565.352 13241 46823.999     

  Total 620355248.555 13244       

       

 
* Significant at α 0.05 

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.9 Protein category classifications in relation to noncoding and coding gene regions for Drosophila 
melanogaster. 
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A represents mean values with introns; B represents mean values without introns. Protein categories consist of 1: 
Information storage and processing; 2: Cellular processes and signalling; 3: Metabolism; & 4: Poorly characterized. 
ANOVA analysis conducted between each protein category and each region (with and without introns) found significant 
differences denoted by * (Alpha = 0.05). Sample size N = 2,735. 
 
 
Table 5.5 ANOVA analysis on Drosophila melanogaster between the length of the coding (D1 / d1) and noncoding (D2, 
D3 / d2, d3) gene regions in relation to protein function. Protein function was divided into four (4) main categories based 
on the COG classification.  

  Sum of Squares df Mean Square F Sig. 

d2 Between Protein 
Category 

574474.646 3 191491.549 5.723 .001* 

  Within Groups 91376814.519 2731 33459.105     

  Total 91951289.165 2734       

D2 Between Protein 
Category 

504995454.061 3 168331818.020 5.475 .001* 

  Within Groups 71482359359.490 2325 30745100.800     

  Total 71987354813.551 2328       

       

d1 Between Protein 
Category 

44623324.527 3 14874441.509 11.270 .000* 

  Within Groups 3604348579.450 2731 1319790.765     

  Total 3648971903.976 2734       

D1 Between Protein 
Category 

4281495213.351 3 1427165071.117 26.143 .000* 

  Within Groups 149087313441.123 2731 54590740.916     

  Total 153368808654.474 2734       

       

d3 Between Protein 
Category 

28885487.547 3 9628495.849 47.120 .000* 

  Within Groups 558047821.403 2731 204338.272     

  Total 586933308.950 2734       

D3 Between Protein 
Category 

52216955.197 3 17405651.732 20.971 .000* 

  Within Groups 1929724322.131 2325 829988.956     

  Total 1981941277.327 2328       

       

 

* Significant at α 0.05 

 

ANOVA analysis was used to compare the differences between the protein category 

groups in regard to the length of the coding and noncoding sequences. However, due to 

the nature of the data, Kruskal-Wallis testing was performed to support the ANOVA 

results. Interesting, the Kruskal-Wallis testing showed statistical differences between the 

categories of the protein groups (P = 0.000) and the length of the coding and noncoding 

sequences in both organisms.  

An interesting picture emerges when comparing the two noncoding regions (5’ UTR and 

3’ UTR) for both organisms (Figures 5.8 & 5.9).  The mean length of 5’ UTR with introns 

(D2) is higher than the mean length of the 3’ UTR with introns (D3) whilst for the lengths 



Chapter 5 – Coding and Noncoding Sequence Length Comparison with Arabidopsis and Drosophila 

94 

 

without introns, the 3’ UTR (d3) is longer than the 5’ UTR (d2). These figures indicate the 

larger portion of introns in the 5’ UTR. Percentages of UTRs containing introns were 

estimated by Mignone et al (2002) and range from 15-35% for 5’ UTRs to 2-11% for 3’ 

UTRs. This has been confirmed in a recent study more accurately investigating the 

abundance, distribution and intron size within un-translated regions of genes in certain 

species (Hong, et al., 2006). The occupancy of introns in 5’ UTRs of Arabidopsis thaliana 

(2,012 numbers of introns) is lower than in the coding sequence (55,510), and with the 3’ 

UTR (382), it contained even smaller amounts of introns than that of the 5’ UTR. This is 

also true in the Drosophila melanogaster data which indicated the number of introns for 

the Drosophila was 1,490 for 5’ UTR; 10,507 for CDS; and 63 for 3’ UTR.  

The experimental classification and function of genes, on a genome-wide scale is still in 

its early stages of development and determining which method of classification performs 

better have been yet to be achieved (Mi, et al., 2003). However, this research, even with 

small sample sizes has found significant differences between the available protein 

function classifications. The length distribution of genes and correlation between their 

regions in conjunction with protein function may reflect evolutionary trends among diverse 

organisms.  

In delving into the patterns of statistical properties of different gene regions and their 

correlation it is intended to understand the spatial organization rules between various 

gene functional elements and the difference in such organizations among different living 

organisms and gene families.  It is assumed that these rules and differences are the 

results of natural selection and reflect the complexity differences in the regulation of gene 

expression. 

Again, the results from both organisms show very interesting results and guides the thesis 

project to start exploring the relevance length has on gene expression, as this is the most 

important process in all living organisms and was topical at the time in the literature.  
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6 Coding and Noncoding Sequences In Relation To Gene 

Expression – Arabidopsis thaliana Case Study 

This chapter is slightly modified from the paper: 

Caldwell, R., Kongcharoen, J., Lin, Y., and Zhang, R. The Length Distributions of Noncoding and Coding Sequences 

in Relation to Gene Expression: A Study on Arabidopsis thaliana, Proceedings of IEEE International Conference on 

Bioinformatics and Computational Biology, 2010, Las Vegas, USA. 

 

6.1 Introduction 

Past attempts on understanding the influence of gene length on gene expression has 

yielded conflicting results. Most research conducted to date has focused on protein length 

of several model organisms. The relationship among gene expression and gene length 

for S. cerevisiae, C. elegans, D. melanogaster, H. sapiens, and A. thaliana was found to 

be negatively correlated (Akashi, 2001; Raghava and Han, 2005). However, other 

research has found that there is positive correlation between these two factors. Ren et al 

(2006) studied the rice and Arabidopsis plant species to determine genes which are least 

compact in respect to gene expression. This study found that the length of the coding 

sequence per gene is larger in highly expressed genes. The conclusion drawn from this 

study is that highly expressed genes contain higher number of introns and exons (Ren, 

et al., 2006). In contrast, Raghava & Han (2005) and Subramanian (2004) found that a 

significant negative correlation was shown between the expression and length of a gene 

(Raghava and Han, 2005; Subramanian and Kumar, 2004). Li et al (2007) established 

that highly expressed genes are “miniaturized” when considering protein length, protein 

domain number, and intron number (Li, 2007). 

Little research has explored gene expression in relation to protein function and length. 

Zhu (2008) investigated the correlation of tissue specific human genes in relation to 

genomic structure, phyletic age, evolutionary rates and promoter architecture. These 

included housekeeping genes (HK), which are genes that are expressed in all tissue and 

cell types as well as tissue-specific (TS) genes. It was found that in general the TS genes, 

were expressed at lower levels than the HK genes, and were shorter in length (Zhu, 

2008). 

The aim of this chapter was to use the noncoding and coding sequence length data of 

the Arabidopsis thaliana to determine whether there is a correlation between gene length 

and expression level for each protein coding gene. There was also an expectation that a 
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relationship in the protein function of each gene in comparison to the gene length and 

gene expression levels will be established following the results found in chapter 5. 

Conventional statistics were used first to identify correlations between the length 

distributions and gene expression parameters, and to understand the mechanics of the 

data itself. More complex statistics was used to expand on the initial findings.  

6.2 Conventional Statistical Analysis 

Pearson’s correlation was applied to the datasets for testing the degree of linear 

relationship between the variables, gene expression and the length of each gene region. 

Pearson’s correlation can be formulated from: 
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Median and mean values were compared due to the skewness nature of data. Skewness 

and kurtosis were calculated and were used to measure the observations that were 

clustered around a central point, or to measure the asymmetry of the distribution. 

 

Skewness formula used through SPSS (v19.0): 
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Y is the sample mean, s is the sample standard deviation and N is the sample size of 

the dataset. When the skewness value is zero, the data is symmetrically distributed. 

Negative values represent data skewed to the left and positive values are skewed to the 

right. 

Kurtosis formula used through SPSS (v19.0): 
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Minus 3 (-3) was used in the formula to generate a statistic of zero if a normal distribution 

is present. 
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The skewness and kurtosis analysis on the datasets identified left and right skewness in 

the data, no data was normally distributed. Therefore, to compare means, the Kruskal-

Wallis test was performed to compare three or more independent groups of sampled 

data, which makes no assumptions about the distribution of the data. 

 

Kruskal-Wallis formula used through SPSS (v19.0): 
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Where 𝑛𝑖 is the number of observations in group 𝑖 and 𝑟𝑖𝑗is the rank (among all 

observations) of observation 𝑗 from group 𝑖. 𝑁 is the total number of observations across 

all groups.  and  is the average of all the 𝑟𝑖𝑗. 

 

6.3 Gene expression and length distributions of coding and noncoding 

sequences in Arabidopsis thaliana 

To start the investigation we looked at Arabidopsis thaliana where we obtained average 

intensity values from 1,000s of array experiments under varying environmental and tissue 

specific samples run by the Arabidopsis Functional Genomics Consortium (AFGC). The 

Average intensity values were obtained from the TAIR website. The average intensity 

value represents a large range of conditions and tissue types, therefore interpretation of 

the data can at this stage only be generalized. The data used was raw data, and is 

classified as “big data”. It can be difficult to identify patterns in the statistics in the 

underlying data from using descriptive statistics. 

6.3.1 Arabidopsis thaliana Gene Expression and Coding and Noncoding Sequences 

As a starting point, and based on previous research conducted on a similar study on gene 

expression and protein length, we used the same breakdown for the length data on our 

length regions (Brocchieri and Karlin, 2005). The purpose to split the data into five length 

categories is to get more insight into statistical information from the underlying data. If I 

did not consider breaking down the data into subsets, the signal of some statistical 

information of the data would become too weak to be identified. For the coding sequence, 
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the length data was split into 5 length categories (Tables 6.1 & 6.2). In the lowest category 

≤ 100 there were no values obtained, as the coding sequence started at length values 

above 100. In both datasets with and without introns the smaller the bp length of the 

coding sequence, the large the average intensity (gene expression). We used Pearson’s 

correlation to determine the statistical significance between the length of the coding and 

noncoding sequence and the average gene expression intensity. The correlation is 

measured between expression levels and gene length. Pearson correlation confirmed the 

observations with the correlation being negatively significant (-0.108 without introns; -

0.087 with introns). We used SPSS to calculate the correlation and the software also 

reports the level of significance and T-test results. This has been confirmed by previous 

studies that identified this trend in protein length (Li, 2007; Raghava and Han, 2005; 

Subramanian and Kumar, 2004). Raghava (2005) found significant negative correlation 

in the expression levels and gene length for Saccharomyces cerevisiae, with an r value 

of -0.18. This is consistent with the results obtained in this study for the Arabidopsis. 

Further testing from Raghava (2005) on two additional datasets also revealed the same 

results. 

It is important to note that the data studied in this thesis are different from the data studied 

by other researchers, however the purpose of comparing results with other studies is not 

to check the accuracy, but further confirm the results given by other researchers. 

  

Table 6.1 Coding sequence of Arabidopsis thaliana without introns. The average length (bp) in comparison to average 
intensity (gene expression). Sample size N=17,405 split into 5 length regions. 

Length (bp) of 
Coding 

Sequence (d1) 

Gene 
Number 

Mean 
Length 

Median 
Length 

Mean of 
Average 
Intensity 

Median 
Average 
Intensity 

Skewness Kurtosis 

      
Length 

Average 
Intensity 

Length 
Average 
Intensity 

 100 NA NA NA NA NA NA NA NA NA 

(100, 250) 70 210 210 11746 8803 -0.289 0.873 -0.210 -0.574 
(250, 500) 1478 407 417 9406 7786 -0.409 1.155 -0.804 1.620 
(500, 1000) 5057 778 789 8162 5658 -0.260 1.464 -1.037 1.897 

 1001 10800 1619 1416 7720 5051 3.706 1.739 26.534 3.381 

 
Pearson Correlation: r = -0.108* (*Correlation is significant at the 0.1 level (2-tailed)) 
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Table 6.2 Coding sequence of Arabidopsis thaliana with introns. The average length (bp) in comparison to average 
intensity (gene expression). Sample size N=17,405 split into 5 length regions. 

Length (bp) of 
Coding 

Sequence (D1) 

Gene 
Number 

Mean 
Length 

Median 
Length 

Mean of 
Average 
Intensity 

Median 
Average 
Intensity 

Skewness Kurtosis 

      
Length 

Average 
Intensity 

Length 
Average 
Intensity 

 100 NA NA NA NA NA NA NA NA NA 

(100, 250) 16 241 249 23359 27961 -1.934 -1.565 3.296 0.932 
(250, 500) 222 415 441 8150 5901 -0.753 1.771 -0.686 2.768 
(500, 1000) 1651 813 834 9593 7760 -0.608 1.124 -0.398 1.130 

 1001 15516 2430 2077 7821 5187 2.893 1.666 18.796 3.043 

 
Pearson Correlation: r = -0.087* (*Correlation is significant at the 0.1 level (2-tailed)) 

        

 

The data for the 5’ UTR lengths, with and without introns were also divided into five length 

categories (Tables 6.3 & 6.4). For the 5’ UTR data there were gene lengths in the smallest 

length range of ≤ 100. The tables show a similar trend as seen in the coding sequence 

data, with the smaller the length of the 5’ UTR the higher the average intensity (gene 

expression) values. When Pearson’s correlation was applied to this dataset, significant 

negative correlations were also observed (r = -0.045 without introns; r = -0.036 with 

introns). The dataset without introns exhibited a larger variation in gene expression from 

each length category than the dataset with introns. It was also observed that the length 

values from > 100 to ≤ 1000 did not vary considerably in the average intensity values. 

 

Table 6.3 5’ Un-translated region (UTR) of Arabidopsis thaliana without introns. Average length (bp) in comparison to 
average intensity (gene expression). Sample size N=17,405 split into 5 length regions. 

Length (bp) of 
5’ UTR (d2) 

Gene 
Number 

Mean 
Length 

Median 
Length 

Mean of 
Average 
Intensity 

Median 
Average 
Intensity 

Skewness Kurtosis 

      
Length 

Average 
Intensity 

Length 
Average 
Intensity 

 100 6833 65 70 8689 5804 -0.677 1.522 -0.355 2.412 

(100, 250) 7612 157 146 7548 5308 0.562 1.643 -0.806 2.889 
(250, 500) 2445 332 314 7658 4910 0.852 1.368 -0.124 1.196 
(500, 1000) 485 645 589 7657 4808 0.909 1.647 -0.216 2.994 

 1001 30 2312 2424 3881 3119 -0.152 4.509 -0.178 22.586 
 
Pearson Correlation: r = -0.045* (*Correlation is significant at the 0.1 level (2-tailed)) 
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Table 6.4 5’ Un-translated region (UTR) of Arabidopsis thaliana with introns. Average length (bp) in comparison to 
average intensity (gene expression). Sample size N=17,405 split into 5 length regions. 

Length (bp) of 
5’ UTR (D2) 

Gene 
Number 

Mean 
Length 

Median 
Length 

Mean of 
Average 
Intensity 

Median 
Average 
Intensity 

Skewness Kurtosis 

      
Length 

Average 
Intensity 

Length 
Average 
Intensity 

 100 6161 64 69 8777 5832 -0.648 1.522 -0.435 2.366 

(100, 250) 5803 158 147 7712 5393 0.535 1.588 -0.831 2.598 
(250, 500) 2851 349 338 7608 5057 0.459 1.451 -0.856 1.574 
(500, 1000) 2145 686 668 7216 4984 -.419 1.637 -0.797 3.083 

 1001 445 1596 1258 7606 4754 2.206 1.464 5.028 2.433 

 
Pearson Correlation: r = -0.036* (*Correlation is significant at the 0.1 level (2-tailed)) 

        

 

Taken together, these observations indicate that the 5’ UTR and the coding sequence of 

the Arabidopsis thaliana may be subject to evolutionary constraints in the management 

of gene expression. A theory many have considered is that to reduce the cost of energy 

in gene expression, natural selection supports shorter proteins and shorter introns 

(Castillo-Davis, et al., 2002). This could undoubtedly be the circumstance, with large 

protein lengths impacting on the energy cost of biosynthesis, with shorter protein lengths 

contributing to higher efficiency in synthesis (Wang, 2005). However, Wang (2005) found 

that newly evolved or derived proteins are on average, significantly longer than the older 

proteins, and these larger sizes may have some influence on protein stability and function 

(Claverie, 2003). 

Because the 5’ UTR and coding sequences are essential components of the production 

of proteins, in any living organism, a worthy question to ask would be does selection act 

on these sequences of genes to amplify transcription and translation effectiveness? 

Urrutia (2003) agree that due to the small size of the length sequences, in their case, 

protein size in relation to gene expression that selection is acting on these genes to 

maximise transcription and translation efficiency, since these sequences influence gene 

expression (Urrutia, 2003). 

Interestingly, when comparisons are make between the 5’UTR sequence and the coding 

sequence, the density of introns in these two sequences are very similar, however the 3’ 

UTR sequences contains less introns. Moreover, the introns in the 5’ UTR are on average 

longer than those in the coding and 3’ UTR sequence, which has been found in previous 

research (Chung, 2006). 
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Finally, the data for the 3’ UTR lengths, with and without introns were split into five length 

categories (Tables 6.5 & 6.6). The number of genes were concentrated between > 100 ≤ 

1000 length values, with small sample sizes in the smallest and largest length values. 

The datasets for the 3’ UTR showed a very unique result compared to the coding and 5’ 

UTR. Instead of the small length values having a high average gene expression intensity 

value it was lower. And in reverse the higher the length of the 3’ UTR the greater the gene 

expression intensity. The Pearson correlation r values were also positively significant (r 

= 0.105 without introns; 0.063 with introns). 

 

Table 6.5 3’ Un-translated region (UTR) of Arabidopsis thaliana without introns. The average length (bp) in comparison 
to average intensity (gene expression). Sample size N=17,405 split into 5 length regions.  

Length (bp) of 
3’ UTR (d3) 

Gene 
Number 

Mean 
Length 

Median 
Length 

Mean of 
Average 
Intensity 

Median 
Average 
Intensity 

Skewness Kurtosis 

      
Length 

Average 
Intensity 

Length 
Average 
Intensity 

 100 541 65 74 6878 3663 -0.625 1.426 -0.831 0.774 

(100, 250) 7949 192 197 7044 4738 -0.464 1.715 -0.739 3.113 
(250, 500) 7614 335 318 8852 6145 0.747 1.503 -0.485 2.465 
(500, 1000) 1161 631 599 9382 6239 1.010 1.508 0.633 2.262 

 1001 140 1327 1212 9782 7302 0.481 0.829 -1.304 -0.467 

 
Pearson Correlation: r = 0.105* (*Correlation is significant at the 0.1 level (2-tailed)) 

        

 

Table 6.6 3’ Un-translated region (UTR) of Arabidopsis thaliana with introns. The average length (bp) in comparison to 
average intensity (gene expression). Sample size N=17,405 split into 5 length regions. 

Length (bp) of 
3’ UTR (D3) 

Gene 
Number 

Mean 
Length 

Median 
Length 

Mean of 
Average 
Intensity 

Median 
Average 
Intensity 

Skewness Kurtosis 

      
Length 

Average 
Intensity 

Length 
Average 
Intensity 

 100 531 65 74 6878 3623 -0.600 1.417 -0.866 0.738 

(100, 250) 7803 192 197 7054 4737 -0.462 1.705 -0.740 3.080 
(250, 500) 7106 332 314 8839 6192 0.763 1.445 -0.461 2.205 
(500, 1000) 1655 649 603 9393 6208 0.940 1.583 0.064 2.430 

 1001 310 1437 1220 7504 5445 2.665 1.427 13.061 1.303 

 
Pearson Correlation: r = 0.063* (*Correlation is significant at the 0.1 level (2-tailed)) 

        

 

The scatter plot shows the gene expression intensity and the 3’ UTR length (≤ 100 bp) 

(Figure 6.1), with most of the genes around the average of 65 bp in length, being 

concentrated around the low end of the gene expression values.  
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Figure 6.1 Scatter plot of the gene expression average intensity and the mean length of the 3’UTR region without 
introns. The 3’ UTR length is categorised into ≤ 100 bp. Sample size of this category is N = 541 with an average 
length of 65 bp. 

 

The 3’ UTR gene regions lengths were opposite to that of the 5’ UTR and coding 

sequence. This dataset showed a positive correlation between the 3’ UTR length and 

gene expression intensity levels. A large amount of research has been accomplished on 

what function the poly(A) tail has in mRNA translation. From independent experiments 

performed over the last century it was established that the mRNA 3’ poly(A) tail has a 

large influence on the initiation and stimulation of translation in eukaryotes (Preiss, 1998; 

Sachs, 1997). Therefore it would be reasonable to propose that the increase in the 3’ 

UTR length may affect gene expression. Tanguay & Gallie (1996) concluded from 

experiments on the carrot protoplasts that there was an increase in stimulated expression 

by 24.5 fold when the 3’ UTR was increased to 27 bases (Tanguay and Gallie, 1996). 

This would suggest that not only does the structural features and content of the 5’ UTR 

sequence influence translational efficiency, but the 3’ UTR length may also have some 

bearing on the stimulation of mRNA translation in eukaryotes, although in a differing 

capacity (Kuile, 2000).  
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Since the research had accessible data with and without introns, it would be erroneous 

to exclude a discussion on this aspect of the genes architecture, even though this is not 

the main focus of the research. It has been determined that introns play an important role 

in gene expression among many eukaryotic organisms. A great deal of energy is 

expensed in transcription with at least two ATP molecules used per nucleotide. Therefore, 

the presence of long introns for highly expressed genes can create a very high energy 

cost to the organism. A study conducted by Castillo-Davis et al (2002) found that, in 

general intron length varied among low gene expression levels however the average 

intron length in highly expressed genes were notably shorter (Castillo-Davis, et al., 2002). 

This was confirmed by this research in the Arabidopsis species (Figure 6.2), showing that 

intron length of < 100 bp had a higher proportion of gene expression than intron lengths 

> 100 bp. Comparisons of each length group found significance, the mean ranking of the 

gene expression are significantly different among the four intron length categories 

(H=64.8, 3 df, p=0.000). H represents the Kruskal-Wallis test, which is a non-parametric 

test and does not assume that the data comes from a distribution that can be completely 

described by two parameters. The null hypothesis of the Kruskal–Wallis test is that the 

mean ranks of the groups are the same. 

 

 
Figure 6.2 Total intron length of Arabidopsis thaliana. The average length (bp) in comparison to average 
intensity (gene expression). Sample size N=123,854 split into 4 Intron length regions.  
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6.4 Gene expression and protein function in relation to coding and 

noncoding sequences 

The average intensity data tables were combined with the COG functional classification 

data tables for protein function and gene expression comparison analysis. The gene 

lengths were categorized based on the COG functional classification (refer to Chapter 5 

for details). Poorly characterized gene categories were removed from the dataset for 

more concise analysis, represented by 21% of the data. The functions were grouped into 

3 main categories, 1) information storage and processing; 2) cellular processes and 

signaling; and 3) Metabolism. 

For each gene region, the length subsets were used for comparisons in each of the 

protein function classifications. The 5’ UTR length region was subset into 5 length 

groupings (Figure 6.3). Each length subset for d2 exhibited distinctive expression levels 

with the various protein function categories. The smaller d2 lengths ( ≤ 100 bp) comprised 

functions for metabolism ([P] inorganic ion transport and metabolism) (Figure 6.3A), 

whereas in the subset length (100, 250) bp, the higher gene expression values spanned 

over metabolism and cellular processes and signaling functions ([G] carbohydrate 

transport and metabolism; [Z] cytoskeleton) (Figure 6.3B). As the median values lengths 

and gene expression levels increased, the functions were represented more in 

information storage and processing and cellular processes and signaling (Figure 6.3C-

E). The trend seen in the 5’ UTR data in all length regions is that metabolism was a 

frequent occurrence in the higher gene expression values. 
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Figure 6.3 Arabidopsis thaliana median length distributions for 5’ UTR (d2) (without introns) and gene expression levels 
in comparison with protein function classifications. A) d2 length subset ≤ 100; B) d2 length subset (100,250); C) d2 
length subset (250,500); D) d2 length subset (500, 1000); E) d2 length subset ≥ 1001. COG Protein classification 
groups [http://www.ncbi.nlm.nih.gov/COG/] were applied to the datasets. 
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The smaller d1 lengths ((100, 250) and (250, 500) bp) showed higher values in gene 

expression for the functions of information storage and processing and cellular processes 

and signaling (Figure 6.4A & 6.4B). As the length values increased the metabolism 

function was more prolific, in the high values of gene expression. For the coding 

sequence, d1 lengths, there was no length category for ≤ 100 bp, the lengths were subset 

into four categories, as the length started at higher values. 

 

 

 

 

 

 

Figure 6.4 Arabidopsis thaliana median length distributions for coding sequence (d1) (without introns) and gene 
expression levels in comparison with protein function classifications. A) d1 length subset (100, 250); B) d1 length 
subset (250, 500); C) d1 length subset (500, 1000); D) d1 length subset ≥ 1001. COG Protein classification groups 
[http://www.ncbi.nlm.nih.gov/COG/] were applied to the datasets. 
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The d3 lengths were also subset into five length groupings (Figure 6.5). Again the 

metabolism functional categories were observed over the range of d3 length subsets. 

However, in the smallest length subset (≤ 100 bp) the functional categories that showed 

the highest gene expression levels were [A] RNA processing and modification, [B] 

Chromatin structure and dynamics (information storage and processing) (Figure 6.5A). 

This trend was also seen in the highest length subset (≥ 1001 bp) with RNA processing 

and modification showing the higher gene expression levels (Figure 6.5E).  

For each gene region, coding and noncoding, in the upper length subsets, there was bias 

towards the metabolism functional categories. Overall, when looking at the whole dataset 

for the Arabidopsis, the highest gene expression obtained from the three functional 

categories was metabolism (Figure 6.6). Analysis to compare each functional category 

with the gene expression values found significant differences (H=408.9, 2 df, p=0.000). 

The metabolism functional group presented higher gene expression levels than 

information storage and cellular processes, and fell above the average gene expression 

levels for all genes. In contrast, information storage and cellular processes fell below the 

average gene expression levels for all genes. These results are analogous to previous 

studies, where replication and transcription were below the average activity in all genes, 

however metabolism was found be around the average activity in all genes (Schmid, 

2005). This would suggest that there are variations in functional classifications for gene 

expression in comparison to the average gene expression levels seen in all genes. 
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Figure 6.5 Arabidopsis thaliana mean length distributions for 3’ UTR (d3) (without introns) and gene expression levels 
in comparison with protein function classifications. A) d3 length subset ≤ 100; B) d3 length subset (100, 250); C) d3 
length subset (250,500); D) d3 length subset (500, 1000); E) d3 length subset ≥ 1001. COG Protein classification 
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Figure 6.6 Arabidopsis thaliana average intensity (gene expression) within 3 COG protein categories. Protein 
classifications as per COG functional classification is 1) Information storage and processing; 2) Cellular processes and 
signalling; 3) Metabolism. Sample size N=12,201, removal of poorly characterised proteins was applied to the dataset. 
- - - line indicates mean of all genes.  

Based on our results, there is concordance between what has been found in previous 

research and the data presented in this chapter. A summary of the statistics of the 

Arabidopsis genome completed by the Arabidopsis genome initiative (Initiative, 2000) 

found that 22.7% of the genes functional classes were cellular metabolism, followed by 

transcription (16.8%), based on a sample of 5,230. These results may explain why the 

sample of genes that were in these categories were high for our sample, metabolism 

being the most frequent function followed by transcription factors in all three regions. 

Furthermore, genes that are lowly expressed may only occur in a small range of tissue 

types, while highly expressed genes appear in the majority of tissues, making them easily 

distinguishable (Schmid, 2005).  

Different regions of the Arabidopsis plant exhibit fluctuating gene expression levels. For 

example, the roots have higher relative expression levels than those in the apex and 

flower tissue samples (Schmid, 2005). In higher plants, these organisms have defense 

mechanisms in the form of pathogenesis-related (PR) proteins and genes to combat 

infections and damage (Kitajima and Sato, 1999). It has been established that mRNA of 

particular genes decreases when the plant has been exposed to wounds and pathogens 

(Liu and Mehdy, 2007).This could compromise the value of generalized interpretations of 

this gene expression data, which encompasses all tissues types and conditions. 
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The difficulty in interpreting the relationship between gene expression and protein 

function may be mired by the different conditions of each gene expression experiment 

and an inaccurate functional protein category database for global use, where it can be 

difficult to define a function across a wide variety of proteins and organisms (Gerstein 

and Jansen, 2000). It is difficult to surmise the patterns for gene function based on this 

study’s gene expression dataset, due to the fact that the dataset covers a wide range of 

tissue types and conditions, however generalization of the data is possible, and a 

summary of the coding and noncoding length regions may offer some insight into 

particular patterns or relationships. 

Other studies have focused on correlations between gene expression and protein 

interactions with varied outcomes. Weak correlation between gene expression and 

protein interactions may be rationalized by several hypotheses proposed by Bhardwaj & 

Lu (2005). Firstly, the correlation between gene expression and protein interactions are 

only weakly observed in yeast, therefore other species should be considered, secondly 

the expression data is too noisy to identify any relationship, and thirdly the correlation is 

weak in all species and the relationship is difficult to identify (Bhardwaj and Lu, 2005), 

which could also apply to gene expression and gene function. Classifying and analyzing 

the function of proteins is one of the most important activities biologists can achieve in 

the post-genomic era. Gene expression data in addition to the protein-protein interactions 

(PPI) data may be used to deduce functions of unknown genes, enhancing the gene 

ontology databases (Tu, et al., 2006).  
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7 Canonical Correlation Analysis (CCA) - Drosophila 

melanogaster Case Study 

This chapter is based on an unpublished paper.  

7.1 Introduction 

To try and improve on the standard statistics methods, to investigate the relationship 

between gene expression and the length of the coding and noncoding sequences, a 

variety of complex statistics were employed. Canonical Correlation Analysis (CCA) was 

chosen to extend previous research conducted in prior chapters. In this case study, 

Drosophila was chosen as there was a suitable sample of gene expression that 

incorporated environmental conditions, whereas for Arabidopsis gene expression 

analysis was conducted on a large sample of gene expression data containing all 

conditions and tissue types.   

There are several circumstances in biological sciences where a researcher requires 

assessing a relationship between a set of dependent and a set of independent variables. 

Canonical Correlation Analysis (CCA) has been a useful statistical tool to examine 

patterns of interrelationships between sets of variables. Multivariate techniques in which 

CCA adopts, gives it a distinct advantage. Its benefits include reducing the need to run 

multiple comparisons, which not only saves time but can minimize Type I errors because 

it runs simultaneous comparisons in one test rather than over multiple statistical tests. It 

is more readily attainable due to the advent of statistical software, and can be more 

powerful under certain circumstances where other regression methods are lacking  

(Naylor, et al., 2010; Sherry and Henson, 2005). CCA has been effectively demonstrated 

in studies focusing on viral integration preferences (Gumus, et al., 2012), gene based 

tests in association with SNPs (Tang and Ferreira, 2012) and gene expression levels and 

genetic markers (Naylor, et al., 2010).  Naylor et al found that CCA out-powered pairwise 

univariate regression models in their SNP Simulations.  

Discovering genetic associations between the length distributions, of not only the coding 

sequence but the noncoding regions of a gene and gene expression levels under a 

number of environmental conditions has not been well illustrated. The research aims to 

employ the canonical correlation analysis method to attempt to establish correlations 

between gene expression and the length distributions of coding and noncoding 

sequences under various environmental conditions. Correlations between multiple 
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datasets may expose some hidden biological phenomenon that may not be obvious with 

other statistical testing. 

The sample size of the database was N=13,492. This database consisted of several 

replicates of genes that had various lengths within each of the gene regions. The sample 

size for individual genes was N=4,841. The length data was measured in base pairs (bp) 

and each of the sequence lengths included introns. 

Please refer to chapter 3 for descriptions on length data collection for Drosophila 

melanogaster. Microarray Dataset: Gene expression data was collected via the GEO 

Datasets (NCBI) website http://www.ncbi.nlm.nih.gov/geo/ (GDS2830). The gene 

expression data consisted of Drosophila melanogaster females from three biological 

replicates from seven selection regimes and one control regime using whole genome 

gene expression arrays (SØRensen, et al., 2007). Replicated selection lines were 

selected for resistance to acute heat survival, high temperature knock down, constant 

30°C during development, cold shock survival, desiccation, starvation, and longevity 

under non-stressful conditions. The raw CEL data from the microarray was transformed 

using R (v2.14.2) and the mas5 transform was applied to each of the replicates.  

7.2 Canonical correlation analysis (CCA) 

CCA is a useful technique that simultaneously tests the association between two sets of 

variables and can provide information concerning the nature of the links or patterns of 

interdependency that join the two sets, and also the number of (statistically significant) 

links between the sets.  CCA can be considered as nothing more than a Pearson r test, 

however it is designed to maximize the correlation between the two canonical synthetic 

variables represented by the independent and dependent variables in each set.  

The statistical problem entails identifying relationships between the length distributions 

of the coding and noncoding sequences and the gene expression intensity for each of 

the environmental conditions, with the goal of testing the strength of this relationship. The 

designation of the variables includes eight (8) metric-dependent and 3 metric-

independent variables (Figure 7.1). Set 1 (X) composes the signal intensity of the gene 

expression across multiple environmental conditions and set 2 (Y) represents the length 

of each region of the gene including the coding and noncoding sequence length 

measured in base pairs. 

http://www.ncbi.nlm.nih.gov/geo/
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Figure 7.1 Representation of Canonical Variates – linear combinations of variables. Y values measured in gene 
expression signal intensity under a variety of environmental conditions, X values measured in base pairs. 

The sample size of 13,492 was deemed too large for this test as it may affect the 

estimates of sampling error noticeably. Consequently replicates of each gene for varying 

lengths were averaged and only one value for each gene and each region length was 

recorded. The final sample size for testing was N=4,841, which is representative of the 

sample size for individual genes.  

The independent variables were assessed for meeting the basic distributional 

assumptions and were found to be skewed. A log function was applied to the independent 

variables to pass this assumption. The dependent variables had a mas5 transform 

applied to set normality as is required with any microarray raw data. 

The basic canonical correlation model is represented by two sets of variables X and Y 

(Figure 7.1). Each set is composed of variables, p variables in the X set and q variables 
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in the Y set. Canonical correlation analysis was run through SPSS Statistics v19 using 

MANOVA and R CCA library (v2.14.2). To test the significance of the canonical 

correlations Wilks’s lambda was used. 

7.3 Pearson’s Correlation 

The most common correlation test used by biologists to measure correlation between two 

variables is Pearson’s correlation. Pearson’s correlation reflects the degree of linear 

relationship between two variables. The gene expression data was combined into one 

average value set over all experimental conditions. The data was used to analyse the 

correlation between the gene expression over all experimental conditions and the length 

of each gene region averaged over duplicate genes. Pearson’s correlation (Table 7.1) 

showed significant positive correlations (p < 0.01) between gene expression under all 

experimental conditions in relation to the length distributions of the coding and noncoding 

sequences. 

Table 7.1 Pearson’s Correlation Analysis with Drosophila melanogaster relating to the length distributions of coding 
and noncoding sequences to gene expression under all environmental conditions. Sample size of data N=4,841. 

bp Mean Pearson’s Correlation 

D1 – Length 10.076 0.038* 

D2 – Length 6.802 0.160* 

D3 – Length 7.444 0.140* 

* Correlation is significant at the 0.01 level (2-tailed) 

 

The gene expression data was then split into 3 groups using percentiles. Each group was 

labelled as Low, Medium and High gene expression (Figure 7.2). 
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Figure 7.2 Mean length distributions (base pairs) of coding and noncoding sequences with Drosophila melanogaster 
over all experimental conditions split into low, medium, and high gene expression levels. 

The length of each gene region shows different distribution over the three gene 

expression levels (Fig 7.2). D1 (coding sequence) shows a large drop in mean length 

beyond medium gene expression. D3 (3’ un-translated sequence) displayed similar 

patterns to the D1 length.  Notably D2 (5’ un-translated sequence) shows a slight increase 

in length from low to high gene expression levels.  

We utilized CCA to determine a relationship between the length of the coding and 

noncoding regions of a protein coding gene, and the gene expression levels of Drosophila 

melanogaster females subjected to various environmental conditions.  The canonical 

correlation analysis was restricted to deriving three canonical functions because the 

independent variable set contained only three variables. To determine the number of 

canonical functions to include in the interpretation phase, the analysis focused on the 

level of statistical significance. 
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On examination of the canonical correlation values, the first two canonical correlation 

functions were considered noteworthy in the contexts of this research (Table 7.2).  The 

Wilks’ lambda statistic was employed which is a commonly used statistic to test for 

canonical correlation significance. The canonical functions 1 and 2 showed significance 

at α = 0.05. After scrutinizing the balance of variance over the two data sets, the first 

canonical correlation function was only reported. In the first canonical function, the 

canonical correlation (Rc) = 0.18421, indicating that approximately 3.4% of the variance 

is shared between the two variable sets and is represented by the gene expression 

category of longevity and the length region D2. The use of R2 and Rc significance tests 

determine the canonical functions to interpret. The Wilks’ Lambda significance 

determines the number of canonical functions used in the analysis. 

Table 7.2 Canonical Correlation Analysis with Drosophila melanogaster relating to the length distributions of coding 
and noncoding sequences to gene expression under various environmental conditions. * Represents significance at α 
0.05 

Measures of Overall Model Fit for Canonical Correlation Analysis 

Canonical Function Canonical Correlation Canonical R2 

1 0.18421 0.03393 

2 0.07390 0.00546 

3 0.04273 0.00183 

 

Multivariate Test of Significance 

Statistic Value F Statistic Sig. of F 

Wilks’ Lambda    

1 0.95904 8.47913 0.000* 

2 0.99272 2.52521 0.001* 

3 0.99817 1.47344 0.183 

 

For multiple x and y the canonical correlation analysis constructs two variates CVX1 and 

CVY1. The canonical weights are chosen so that they maximize the correlation between 

the canonical variates CVX1 and CVY1.   

For the first canonical function, the four highest canonical loadings, which are correlations 

between variables and the canonical variates, from the eight variables in Set 1, were 

longevity (-0.991), Heat shock (-0.975), starvation (-0.972 and heat knockdown (-0.972) 

(Table 7.3) in the canonical variate 1/ set 1 (CV1-1). However all variables in Set 1 

showed similar values using a cut off of 0.30 which has been the standard measure in 

other related studies. CV1-1 accounts for 94.4% of the variances in Set 1, while the other 

variate, CV2-1 shares 32% of its variance with Set 1.  
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Table 7.3 Canonical loadings for the First Canonical Function 

       

Set 1 Loading  Rc = 0.184  Set 2 Loading 

Cold -0.971  34%  D1 -0.204 

Constant 30 -0.970 CV1-1 (32%)  CV2-1 (16%) D2 -0.889 

ControlLine -0.961 94.4%  47.5% D3 -0.771 

Desiccation -09.61      

Heat -0.975      

KnockDown -0.972      

Longevity -0.991      

Starvation -0.972      

       

 

Of the three variables in Set 2, the two highest canonical loadings with a cut-off of 0.30 

were D2 (-0.889) and D3 (-0.771) (Table 7.3) in CV2-1. CV2-1 accounts for 47.5% of the 

variances in Set 2, while the other variate, CV1-1 shares 16% of the variances with Set 

2. All of the loadings for the canonical variate in Set 1 and Set 2 are negative, indicating 

the large values of the variables in Set 1 are associated with the large values of the 

variables in Set 2. 

Regression analysis was performed and significance was found for each dependent 

variable only with the D2 and D3 length covariates (p < 0.05) which was also the 

relationship seen in the canonical loadings for function 1. 

7.4 Discussion 

The standard Pearson’s correlation analysis on all experimental conditions showed 

positive correlations, indicating that the gene expression as a whole for the Drosophila 

melanogaster increases as the length distribution for each region increases. Furthermore 

when the gene expression data is segmented into low, medium and high expression 

levels the mean length changes over these expression subsets. There is an obvious 

decline in the length for D1 as the expression levels increase, indicating a negative 

relationship beyond the medium to high expression levels. D2 and D3 displayed similar 

trends. Other studies have found negative correlations associated with protein length and 

suggest the protein sequences and gene expression are subject to similar evolutionary 

dynamics (Duret and Mouchiroud, 1999; Lemos, et al., 2005). Previous research 

conducted by the author found negative correlations for the D1 and D2 lengths and 

positive correlations for D3 length in a model plant species (Caldwell, et al., 2010). The 

studies of gene expression changes associated with protein length, coding and 

noncoding sequences has helped to increase understanding of the fundamental 
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connection between these biological processes and structures, however it creates 

many more questions.  

Pearson’s correlation offer a generalized view and understanding of the relationship 

between the length distributions and gene expression over combined environmental 

conditions and can be extremely time consuming if there are multiple variables to test. 

CCA was easily applied to the two data sets using statistical software to further analysis 

the intricate relationship between length of the coding and noncoding regions and gene 

expression under varying environmental conditions. Lemos et al emphasize the 

relevance of incorporating a number of biologically important variables to genome-wide 

relationships to understand the influence of protein and gene expression evolution. 

The breakdown of the analysis showed two canonical correlation functions as being 

significant, and that for each dependent variable there was a weak relationship with D1. 

Importantly, the results show the maximized correlation for each data set for each 

variable, was between longevity (extended life span under non-stressful conditions) and 

D2. Both of these values were negative, indicating that the higher the expression levels 

of longevity, the longer the length of D2, 5’ un-translated region. The notion that aging is 

somehow a result of a lifetime of stresses, may show age dependent expression changes 

among those genes that are regulated by stress (Golden and Melov, 2007). Sorensen et 

al methodology in the gene expression test for stress response was to apply cold shock, 

heat shock, heat knockdown, desiccation and starvation to flies, following this protocol 

longevity selection was measured. This could indicate the stress response prior to 

measuring longevity impacted on gene expression. However, there were very small 

differences between all experimental regimes and requires further investigation. Whole-

genome analysis research on the C. elegans has supported the assessment that some 

changes in gene expression may play a role in specifying life span (Lund, et al.). Other 

relevant research to longevity and genome size has been shown in birds, where a highly 

significant relationship was seen (Monaghan and Metcalfe, 2001). What these findings 

represent and the mechanisms that influence it remain to be investigated. 

Many studies have shown that 5’ and 3’ un-translated regions influence post-

transcriptional regulation (Doran, 2008; Pesole, et al., 2000). Structural characteristics of 

5’ UTRs such as length have a high impact on the efficiency of the translational process. 

Intron presence and length has also been found to be a contributing factor in the 

enhanced expression levels among Arabidopsis (Chung, et al., 2006). There is also a 

higher occurrence of introns in the gene region corresponding to 5’UTR region, indicating 
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shorter exons (Pesole, et al., 2000). This may explain our results as the length data of all 

the regions contained introns, and these characteristics for the D2 data may have been 

identified from the canonical correlation analysis. The length region association with 

longevity is an interesting outcome of this analysis and requires further exploration.  

However, there are caveats in the application and interpretation of the results using CCA. 

Firstly this method has several assumptions as with all analyses. Adequate sample size 

is important to reduce the chances of Type II errors. In the preliminary testing CCA was 

applied to the N=13,492 dataset and the multivariate testing found significance with all 

canonical correlations, once the sample size was dropped to N=4,841 the Rc values 

improved and only the first two canonical correlations were significant. And secondly, 

CCA is used to test the linearity of relationships between variables, and may not be 

sensitive to nonlinear relationships as found in our previous research. 

Can we say that this method outweighs standard statistical tests? This method is not 

commonly used  by researchers in published papers, and the main reason for this is due 

to the complexity of interpreting the results (Thompson, 1980). However, if the technique 

is implemented correctly, and a good understanding of the results is produced the results 

offer the researcher a more complete view of the biological question. The method only 

saved a fraction of time in running the analysis, however, I did find it difficult to interpret 

and spent much more time deciphering the results into something meaningful. This led 

me to find another analysis tool to study the relationship between gene expression and 

the length of the coding and noncoding regions. 
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8 Genome Comparisons using Quantile Regression Analysis 

between Gene Expression and Length 

8.1 Introduction 

This chapter is slightly modified from the following two papers: 

Caldwell, R., Kongcharoen, J., Lin, Y., and Zhang, R. The Length Distributions of Noncoding and Coding Sequences 

in Relation to Gene Expression: A Study on Arabidopsis thaliana, Proceedings of IEEE International Conference on 

Bioinformatics and Computational Biology, 2010, Las Vegas, USA. 

Caldwell, R., Lin, Y., and Zhang, R. (2015) Comparisons between Arabidopsis thaliana and Drosophila melanogaster 

in relation to Coding and Noncoding Sequence Length and Gene Expression, International Journal of Genomics, vol. 

2015, Article ID 269127, 13 pages, 2015. doi:10.1155/2015/269127.  

 

Regression analysis is a special case of Canonical Correlation Analysis, and therefore 

used in this chapter to investigate the relationship between gene expression and the 

coding and noncoding sequences. Statistical approaches, such as quantile regression, 

is a practical statistical method utilized by many biologists in a range of ecological (Cade 

and Noon 2003) and bioinformatics (Huang, Zhu et al. 2008; Wang and He 2008) studies 

to investigate relationships between variables. The advantage of using such a model 

includes the robustness against outliners, and helps obtain a more comprehensive 

analysis of the relationship between variables by using different measures of central 

tendency and statistical dispersion. When dealing with sequence length and gene 

expression data, modelling techniques often have difficulty with this data, due to the data 

values ranging over several orders of magnitude. It is general practice to log transform 

the data, particularly when parametric statistical tests, such as t-test, ANOVA or linear 

regression are used. The log function tends to squeeze together the larger values and 

stretches out the smaller values allowing a better view of the data. 

8.2 Quantile regression Analysis on gene expression and length 

distributions in Arabidopsis thaliana  

Another extension to the standard statistics methods was to apply quantile regression 

analysis on our gene expression and length data. After preliminary analysis of the length 

distributions and gene expression using standard Pearson’s correlation, quantile 

regression was used to extend the effect of gene length distribution on the average gene 

expression intensity. This type of analysis exposes the influence of independent 

variable(s) on a dependent variable in terms of variation range and conditional distribution 

status in greater depth (Chen and Ding, 2008). 
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Please refer to chapter 3 regarding the data collection of Arabidopsis thaliana.  

Quantile regression models were used in this research to model average gene expression 

on the length of noncoding regions (3’ UTR and 5’ UTR’s) and coding regions for 

Arabidopsis thaliana using the dataset without introns, which was more reliable and has 

been validated by the data community and many published research studies, to test the 

viability of the statistical method. To build up an appropriate quantile regression model for 

the average gene expression intensity and the length of coding region dataset, we started 

with the linear quantile regression model. Then we tested the quadratic, the cubic and 

higher order quantile regressions until an appropriate model was found.  

Comparisons between different linear and nonlinear quantile regression models are 

based on model fit criteria Akaike Information Criterion (AIC) (Akaike, 1974) values of our 

final models to a number of alternative models of varying complexity levels at the same 

quantile. To assess whether the selection method resulted in an appropriate model, the 

AIC for quantile regression models are calculated as 

AIC = n x ln(SAF(τ)/n) + 2p 

where  n is the number of observations  

SAF(τ) is the weighted sum of absolute deviations minimized when estimating      

the τ th regression quantile with p parameters 

p is the number of parameters 

The AIC is an operational way of trading off the complexity of an estimated model against 

how well the model fits the data. The smaller the AIC is the better the model. The following 

models were used to fit Arabidopsis thaliana dataset: 

)()()()()( 2

121101int   dddQ
 

(1) 

)()()()( 2102int   ddQ
 

(2) 

)()()()()( 2

323103int   dddQ
 

(3) 

where )( 1int dQ  , )( 2int dQ   and )( 3int dQ   are the 
th quantile of the average gene 

expression intensity on the length of coding region, the length of 5’ UTR region and the 

length of 3’ UTR region covariates respectively. )(
2,1,0;

i i

are unknown parameters in the 

model and need to be estimated: )( is the error term in the model  ; 10   

Equations (1) and (3) are quadratic quantile regression models of the average gene 

expression intensity on the length of coding region and the length of 3’UTR region 
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respectively. Equation (2) is a linear quantile regression model of the average gene 

expression intensity on the length of 5’UTR region. 

Quantile regression was conducted on the length data for the coding region, 5’UTR region 

and 3’UTR region in relation to gene expression (8.1 a, b, c). The coefficients for 1d  and 

2d  in models (1) and (2) are negative for all quantile cases, however the coefficients for 

3d  (in model (3)) are positive. This indicates that the length of the coding region and the 

length of 5’UTR region (without introns) are negatively related to the quantiles of the 

average gene expression intensity while the length of 3’UTR region (without introns) are 

positively related. The patterns observed (Figure 8.1) shows the values of the quantile of 

the average gene expression intensity decreases as the value of 1d (a) or 2d (b) increases. 

However, as the value of 3d (c) increases so does the value of the quantile of the average 

gene expression intensity increase only in the length range of 0 to 1000 bp. As 3d  

increases after 1000 bp the quantile of the average gene expression intensity decreases. 

Therefore, the larger the quantile, the faster the quantile curve proceeds down, 1d

increases, while the quantile lines are steadier for 2d . After initial increases, the average 

gene expression intensity decreases as 3d  increases. 

Our study using the average gene expression intensity data of Arabidopsis thaliana has 

verified previous research (Li, 2007; Raghava and Han, 2005; Subramanian and Kumar, 

2004) that there is negative correlation between the length of the coding sequence (d1) 

as well as the 5’ un-translated region (d2) and gene expression levels. Further analysis 

has also found that the 3’ UTR showed a positive correlation. Previous research 

conducted by us found that there is a non-linear function relationship between the coding 

sequence length and the 5’ UTR region (Caldwell, et al., 2008), and supports the fact that 

there is a nonlinear relationship in the Arabidopsis data in relation to gene expression. 

Using quantile regression modelling, to further test this correlation, it has confirmed the 

results, and is capable of aiding in the investigation of coding and noncoding length 

distributions on gene expression. 
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Figure 8.1 The quantile curves of the average gene expression intensity on the length of coding region (a); the length 
of 5’UTR region (b) and the length of 3’UTR region (c). The conditional quantiles include the range of 0.3 to 0.7 in 
quantile increments of 0.1 with Arabidopsis thaliana. 

 

Negative correlations were found between the length of the 5’ UTR and coding sequence 

and gene expression. The observations of the 5’ UTR and coding sequence indicate that 

(a) 

(b) 

(c) 
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for Arabidopsis thaliana may be subject to evolutionary constraints in the management 

of gene expression. Longer 5’ UTR regions in eukaryotes can produce defective proteins 

due to a higher instance of mutation to the translation-initiation codons (Lynch, et al., 

2005). As discussed earlier, since the 5’ UTR and coding sequences are essential 

components of the production of proteins in any living organism, it is reasonable to 

assume that selection act on these sequences of genes to amplify transcription and 

translation effectiveness. Urrutia & Hurst (Urrutia, 2003) postulate that due to the small 

length size of the sequences, in their case, protein size in relation to gene expression 

that selection is acting on these genes to maximise transcription and translation 

efficiency. However, a model proposed by Lynch (Lynch, et al., 2005), for the evolution 

of 5’ UTR length suggests that the evolution of the length of this region is influenced by 

stochastic processes, rendering it selectively neutral. Reuter (Reuter, et al., 2008) 

disputed this model suggesting that UTR length evolution is affected by the gene’s 

function and secondary mRNA structures. The length of the 5’ UTR showed some 

influence in gene expression, to extend on this research further, gene function may 

indicate the evolutionary weight to changes in these lengths. 

Our results on the 3’ UTR gene regions lengths were reverse to that of the 5’ UTR and 

coding sequence. They showed a positive correlation between the 3’ UTR length and 

gene expression intensity levels. 3’ UTRs have been related to the stability of mRNA 

processing, but it can be difficult to interpret due to the involvement of the mRNA in all 

processes. The importance of this un-translated region is evident in many studies 

examining the presence of 3’ UTR in tumour growth (Briestanska and Plachy, 1996), 3’ 

–processing end sequences on gene expression in plant cells (Ingelbrecht, et al., 1989), 

regulation of mouse K Opioid receptor gene expression by different 3’ Un-translated 

regions (Hu, et al., 2002).  

Extension of the 3’ UTR has also been allied with a pathway known as nonsense-

mediated mRNA decay (NMD), where it was seen in Saccharomyces cerevisiae that 91% 

of the longer 3’ UTR mRNAs tested were affected by NMD (Kebaara and Atkin, 2009). 

Mutually, the 5’ and 3’ UTR’s involvement in gene expression is broadened to include 

further quality control mechanisms to strengthen the dependability of accurate protein 

formation (Chang, et al., 2007), and length is a contributing factor to these control 

mechanisms. The lengths of the 3’ UTR’s varies substantially within eukaryote genomes. 

Humans present longer 3’ UTRs, compared to plants with a difference of 33% in length 

(Pesole, et al., 2000).  The evolution of longer 3’ UTR’s, as seen in humans, may be 
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contributed to the regulation of gene expression which use this increase in length for post-

transcriptional control mechanisms (Hesketh, 2004). The results for the 3’ UTR for this 

particular plant species, showing higher levels of gene expression indicates that there 

are evolutionary forces at work and the increased length plays a role in the regulation of 

gene expression. Tanguay & Gallie (Tanguay and Gallie, 1996) concluded from 

experiments on carrot protoplasts that there was an increase in stimulated expression by 

24.5 fold when the 3’ UTR was increased to 27 bases. The un-translated region influence 

gene expression by way of RNA stability and translational efficiency (Hesketh, 2004; 

Tanguay and Gallie, 1996) (3’ UTR) and facilitating translation (5’ UTR). Our results 

support the role and importance of these regions in the regulation of gene expression. 

The results were interesting and not previously published regarding the positive 

correlation with the 3’ UTR and gene expression. We are now interested in comparing an 

animal and plant species to determine if the same patterns are ascertained or dissimilar, 

in both the coding and noncoding regions, with an emphasis on the 3’ UTR.  

8.3 Genome Comparisons using Quantile regression Analysis on gene 

expression and length distributions 

Advances in high-quality sequencing technologies (Franca, et al., 2002; Shapiro, et al., 

2013), and large-scale resource data sets (Marygold, et al., 2013; SY, et al., 2003) have 

enhanced genomics research. Conducting large-scale sequence comparisons has the 

advantage of identifying the genetic variation and speciation among organisms (Ball and 

Cherry, 2001). Whole-genome expression experiments have also expanded a new era in 

bioinformatics analyses (Kilian, et al., 2007; Richards, et al., 2012; Robinson, et al., 2012; 

Sorensen, et al., 2005). Understanding relationships and cross-referencing of expression 

data to large genome data can now be attained and facilitates a greater insight of 

organismal complexity and the tightly regulated process of gene expression.  

There is a continuing interest in the analysis of gene architecture and gene expression to 

determine the relationship that may exist (Murat, et al., 2012). Current investigations on 

the similarities and differences between plant and animal genome structure have led to 

a greater understanding in biochemical pathways, genetic mechanisms, sequence 

structures and functions (Kejnovsky, et al., 2009), and comparative studies are more 

powerful than studying the sequence of a single genome (Ball and Cherry, 2001). 

Furthermore, control of gene expression has been used as a measurement of variation 

and is often well conserved between species in the coding sequences. In unicellular 
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organisms such as the yeast Saccharomyces cerevisiae, research has found that highly 

expressed genes tend to have smaller compact protein sizes (Warringer and Blomberg, 

2006). Other animal genome studies have found that highly expressed genes have fewer 

and shorter introns, shorter coding sequences and protein lengths and favour more 

compactness in highly expressed genes (Rao, et al., 2010; Subramanian and Kumar, 

2004). Previous research, however, is divided in opinion, with highly expressed genes 

not always being compact in plants. There is evidence that suggests in higher plant 

genomes, highly expressed genes comprise longer introns and primary transcripts (Ren, 

et al., 2006) in contrast, with other research on Arabidopsis and rice, finding that highly 

expressed genes are more compact (Yang, 2009), specifically the lengths of the coding 

sequence (CDS) (Caldwell, et al., 2010). Negative correlation between protein length and 

gene expression breadth in the plant species Populus tremula was also observed 

(Ingvarsson, 2007). Taken together, these observations suggest that the differences in 

length in relation to gene expression is not merely due to adaptive evolution, but rather 

has specific biological significance (Smith and Eyre-Walker, 2002).  

Significance of noncoding regions is less understood across species compared to the 

coding regions. A range of genomic studies over the last decade has supported the 

opinion that there are tightly regulated processes and levels of control in the regulation 

of gene expression. This has included the untranslated gene regions, notably the 5’ and 

3’ untranslated regions (UTRs) which may play the most important role in the regulation 

of gene expression (Andofatto, 2005). A study by Lin & Li (2012) revealed a strong 

negative correlation between the 5’ UTR length and expression correlation with cytosolic 

ribosomal protein patterns in S. cerevisiae and C. albicans (Lin and Li, 2012), with highly 

expressed eukaryotic genes tending to have more compact 5’ UTR regions (Grisdale and 

Fast, 2011). A plant study on both Arabidopsis and rice also reported  negative correlation 

between expression levels and noncoding sequences (both 5’ and 3’ UTRs) (Yang, 

2009). 

The aim of this study was to apply a quantile regression model to re-examine the 

correlation of gene region lengths and expression levels of Arabidopsis using a different 

and larger set of gene expression data. The research also extended to another species, 

Drosophila melanogaster, so this study not only expanded objects but also conducted a 

comparison between a plant and animal species. 
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8.4 Methods 

8.4.1 Datasets 

Sequence and gene expression data were collected from a selection of publicly 

accessible databases and websites for each of the plant and animal species. 

The Arabidopsis thaliana sequence data were downloaded from the TAIR website 

ftp://ftp.arabidopsis.org/home/tair/Sequences/blast_datasets/TAIR10_blastsets/. The 

sequence data used were generated from the TAIR10 (December 2010) release. Gene 

expression data were downloaded from the NCBI GEO Datasets database (series 

GSE34188) (Hanada, et al., 2013) including the annotation file which contained only one 

gene model for each gene. The downloaded expression data were already normalized by 

Bioconductor (www.bioconductor.org) R software. The final sample size for analysis was 

18,445 genes, excluding two (2) genes from the coding sequence that only had 1 bp which 

was classified as an intron. The accession string and ID reference from the arrays were 

used to link the data together to create a master database of length and gene expression 

data for analysis.   

The Drosophila melanogaster sequence data were downloaded from the Flybase website: 

http://www.flybase.com.au/. The raw CEL gene expression data files were downloaded 

from the NCBI GEO Datasets database 

(http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE42255) under series 

GSE42255 (Landis, et al., 2012). Affymetrix microarrays were used to analyse the adult 

Drosophila and the raw CEL files were normalized using the Bioconductor 

(www.bioconductor.org) affy package in the R software environment. The annotation file 

was included and the Entrez UniGene name (GC numbers) and the ID from the platform 

data table was used to link the data together to create a master database of length and 

gene expression. The final sample size of unique genes was 3,290 for analysis.   

The downloaded text files for each organism were cleaned using visual basic scripts and 

imported into MS Excel, all length data for both coding and noncoding sequences 

excludes introns. For each organism the gene expression experiments included multiple 

replicates of the control as well as abiotic stress conditions. For this study we have only 

reported on the control condition expression from the GEO datasets for both organisms, 

to simplify the analysis reporting. Abiotic stress conditions will be investigated at a later 

stage. 

ftp://ftp.arabidopsis.org/home/tair/Sequences/blast_datasets/TAIR10_blastsets/
http://www.bioconductor.org/
http://www.flybase.com.au/
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE42255
http://www.bioconductor.org/
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8.4.2 Statistical Analysis 

Pearson’s correlation was used to test the gene expression data to determine the 

reliability of the control replicates. The R2 value was found never below 0.95, 

demonstrating the accuracy and reproducibility of the raw data. Therefore, the mean of 

the results of the control biological replicas were used in the statistical analysis reporting. 

The gene expression measurements are represented by gene expression signal intensity. 

In this study we are interested in whether the length of the coding and noncoding 

sequence has a significant impact on the probability distribution of the gene expression 

under control conditions. Quantiles are statistics that describe the subdivisions of a ranked 

set of data values into equal proportions. Divisions can be made in four parts 

corresponding to 25%, 50% and 75% of the data. Firstly, to examine how the data 

behaves between the sequence length of each region, and gene expression, the length 

data for each region (5’ UTR, CDS, and 3’ UTR) were split into 4 quartiles (group 1, 2, 3, 

& 4).  

Strong skewness was identified in all the length datasets for each gene region. For 

example, the distribution of the 5’ UTR length without introns in Arabidopsis thaliana was 

positively skewed (skewness = 2.511) (Figure 8.2). Consequently, the Kruskal-Wallis 

nonparametric analysis method using SPSS version 19 (SPSS IBM, New York, U.S.A)  

was applied to the data to determine whether there are differences between the quartile 

groups, in relation to gene expression and the length of the coding and noncoding regions. 

This test makes no assumptions about the distribution of the data. 
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Where 𝑛𝑖 is the number of observations in group 𝑖 and 𝑟𝑖𝑗is the rank (among all 

observations) of observation 𝑗 from group 𝑖. 𝑁 is the total number of observations across 

all groups.  and  is the average of all the 𝑟𝑖𝑗. 
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Figure 8.2 18,445 genes in Arabidopsis thaliana for the 5’ untranslated (UTR) region length, excluding introns. 
The distribution of this data is positively skewed (skewness = 2.511) 

8.4.3 Quantile Regression Analysis 

The purpose of regression analysis is to expose the relationship between the independent 

variable (x) and dependent variables (y). Conditional quantile regression is useful in 

modelling the quantile value of the dependent variable on the independent variable. In 

this study, the dependent variable is represented by the log of gene expression, under 

control conditions, and the independent variable is represented by the log of the sequence 

length. The lengths considered include the coding and noncoding sequence (5’ UTR, 

CDS, 3’ UTR). The model considered was linear and is represented by: 

  xControl loglog 10  (5) 

x represents the following attributes: Log 5’ UTR, Log CDS, and Log 3’ UTR. 

The quantile subsets used ranged from 0.1 to 0.9 in 0.1 increments. The Log of the data 

was used to expand the data points for an enhanced view of the quantile regions. 

Regression analysis was performed in R. We used a linear model to be consistent with 

the analysis between organisms and to alleviate discrepancies in the analysis.  

8.5 Results – Length Subset Analysis 

To understand the relationship of the length of the coding and noncoding sequences and 

gene expression, the data of the lengths for each type of coding and noncoding region 

were grouped into four quartile subsets, respectively.  For each quartile subset (1, 2, 3, 

4), the gene expression data in each of these quartiles were averaged. Through the 

nonparametric analysis method, the mean of the gene expression conditional on the four 

quartile groups for each length region, respectively, were significantly different (p-value < 

0.000) (Figure 8.3A & 8.4A). 
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For Arabidopsis the coding sequences shows a linear negative relationship between the 

four quartiles (groups 1 – 4) and their average gene expression intensity, indicating as the 

length increases, the gene expression intensity decreases. This pattern is also seen in 

Drosophila (Figure 8.4A). The same pattern is also seen in the full transcript length, which 

follows the same negative relationship, in both the animal and plant species.  

However, the noncoding sequences, show dissimilar trends from the coding sequence. 

The relationship between the length of the 5’ UTR and gene expression intensity for 

Arabidopsis indicates a quadratic form, with an increase in length until the average gene 

expression intensity peaks for those genes in the 3rd group determined by the 3rd quartile, 

and then starts to decrease (Figure 8.3A).  

The pattern seen in the 3’ UTR length data was more positively correlated in relation to 

the average gene expression intensity, in contrast to the CDS and 5’ UTR sequence 

length. This pattern implies that as the length of the 3’ UTR increases (from 1 to 3318 

base pairs) the gene expression intensity increases (Figure 8.3A).  

Furthermore, in Drosophila, the noncoding sequences in relation to the average gene 

expression intensity varied considerably from Arabidopsis. The patterns showed a 

reversal in the 3’ and 5’ UTR sequence length in relation to the average gene expression. 

The 3’ UTR gene expression intensity increased until the 2nd quartile and then decreased 

at the 4th quartile, again showing signs of a non-linear relationship.  The pattern in the 5’ 

UTR for Drosophila was very distinctive, displaying a cubic polynomial pattern with one 

turning point, (Figure 8.4A). 

In summary, the findings based on the 4 quartile subsets shows some variability between 

the coding and noncoding sequences as well as between animal and plant species. The 

quartile analysis indicates that the coding sequence is negatively correlated to the 

average gene expression intensity for both the animal and plant species. The full 

transcript sequence, which includes the flanking 5’ and 3’ UTRs also shows negative 

correlation to the average gene expression intensity again in both species. However, 

when the gene is divided into coding and noncoding regions, differing patterns emerge 

from each of these gene regions in the plant and animal species. It is important to note 

that these gene region lengths do not include introns, the gene expression values are 

measured under control conditions, and the gene length and gene expression data for 

this analysis has not been transformed.  
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To determine the validity of the findings in the first set of gene expression experiments, a 

second set of gene expression data was downloaded from the GEO Dataset website. The 

raw CEL gene expression files were downloaded GDS3933 (González-Pérez, et al., 

2011) – Arabidopsis and GSE36507 – Drosophila and normalised by MAS5 using R. The 

label and hybridization protocols for Arabidopsis varied between each experimental 

sample, the first sample using Agilent Low RNA Input Linear Amplification Kit and the 

second sample using GeneChip® 3’ IVT Express Kit. In both samples, total RNA was 

extracted. 

For Drosophila both the gene expression samples used 7-9 day old adults, with total RNA 

extraction. The labels used were biotin however the protocols for labelling varied between 

the gene expression samples. Hybridization protocols followed similar methods. Length 

data and the master databases containing the length and gene expression data were 

generated with the same method as outlined in the methods section above.  

The quartile results show similar results to the first set of gene expression analysis. The 

noncoding sequences (5’ and 3’ UTRs) in both the animal and plant species displayed 

an increase in the first two quartiles, then decreased. However, for the coding sequence 

there was not such a dramatic decline in gene expression from each quartile (Figure 8.3B 

& 8.4B).  

To test the distribution of gene expression across the four quartile groups, nonparametric 

analysis was applied to the new gene expression samples. As seen in the previous 

example, the mean of the gene expression conditional on the four quartile groups for 

each length region, respectively, were significantly different (p-value <0.0000 at 

significance level 0.05) (Figure 8.3B & 8.4B). 

For the experimental analyses with the quartile length subsets, it is difficult to achieve a 

general opinion on patterns observed in the coding and noncoding sequences in relation 

to gene expression. The data in the four subsets do not have sufficient resolution to 

determine accurately, identifiable patterns in both the animal and plant species. However, 

based on the nonparametric analysis both samples’ results were unanimous in showing 

significant differences between the gene expression and the four quartile length groups. 

The results reported in the length subset analysis of this paper and the results on the 

relationship between gene expression intensity, and length in general, published in the 

literature, have directed us to employ a different analytical method to examine more 

precisely this relationship.  
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Figure 8 . 3  Relationship of gene expression in Arabidopsis thaliana within the coding and noncoding sequence regions. The gene expression intensity 
from GEO Datasets - GSE31488 (A) and GDS3933 (B) are plotted versus the quartile score for coding sequence, transcript, 5’ UTR and 3’ UTR regions. 
Each data point represents the mean for the samples in each quartile. Error bars represent standard error. 
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Figure 8 .4  Relationship of gene expression in Drosophila melanogaster within coding and noncoding regions. The gene expression intensity from GEO 
Datasets – GSE42255 (A) and GSE36507 (B) are plotted versus the quartile score for coding sequence, transcript, 5’ UTR and 3’ UTR regions. Each 
data point represents the mean for the samples in each quartile. Error bars represent standard error. 
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8.6 Quantile Regression Analysis 

The Log function was used to transform the data for an improved view of the quantile 

regions, a method not applied in the analysis above. Distinct patterns in the quantile 

regression for both the animal and plant species are evident in the analysis. Firstly, the 

length of the 5’ UTR and the gene expression in both Arabidopsis (Table 8.1 / Figure 8.5) 

and Drosophila (Table 8.4 / Figure 8.8) show a positive correlation in the majority of 

quantiles, indicating as the length of the 5’ UTR increases gene expression increases. 

However, in the Drosophila at the 9th quartile, the pattern changes, and shows a negative 

correlation, indicating that in this quartile for the Drosophila, the 5’ UTR length increases 

as the gene expression decreases.  

For the CDS length, each species shows a different pattern among the quantiles. For 

Arabidopsis (Table 8.2 / Figure 8.6), the pattern shows a positive correlation for the first 

six (6) quantiles, and then from 7th quantile there appears to be negative correlation. This 

would indicate that within the first six quantiles as the CDS length increases, the gene 

expression increases, and this is reversed past the 7th quantile. The Drosophila result 

(Table 8.5 / Figure 8.9) in all quantiles shows negative correlation, indicating as the CDS 

length increases, gene expression decreases. This shows two very distinctive patterns 

between the animal and plant species when the CDS is examined. 

Finally for the 3’ UTR length, the interesting result for both Arabidopsis (Table 8.3 / Figure 

8.7) and Drosophila (Table 8.6 / Figure 8.10) was that all quantiles showed positive 

correlation between the 3’ UTR length and gene expression. This suggests that as the 3’ 

UTR length increases, gene expression increases. 

Overall, the CDS length and gene expression appeared dissimilar between the animal 

and plant species, with different patterns observed. However, when comparing the 5’ UTR 

and 3’ UTR lengths (noncoding regions of the gene) with gene expression data, 

similarities emerged.  
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Table 8.1 Quantile regression analysis results on Arabidopsis thaliana between the log of 5’ UTR sequence length and 
the log of gene expression (GSE31488 gene expression experiment data) 

 

      Quantile  Value Std. Error t value Pr (>|t|) 

      0.1 Intercept -0.49412 0.26154 -1.88925 0.05887 

 Log 5’ UTR 0.76284 0.05660 13.47864 0.00000 

      0.2 Intercept 1.59094 0.19615 8.11066 0.00000 

 Log 5’ UTR 0.66533 0.04014 16.57554 0.00000 

      0.3 Intercept 3.42035 0.14372 23.79799 0.00000 

 Log 5’ UTR 0.47395 0.02935 16.14634 0.00000 

      0.4 Intercept 4.54025 0.11701 38.80151 0.00000 

 Log 5’ UTR 0.36948 0.02413 15.30925 0.00000 

      0.5 Intercept 5.41919 0.10368 52.26962 0.00000 

 Log 5’ UTR 0.29044 0.02129 13.64508 0.00000 

      0.6 Intercept 6.21008 0.09453 65.69373 0.00000 

 Log 5’ UTR 0.22153 0.01970 11.24759 0.00000 

      0.7 Intercept 6.86249 0.09495 72.27477 0.00000 

 Log 5’ UTR 0.18379 0.01959 9.38290 0.00000 

      0.8 Intercept 7.78214 0.09417 82.63627 0.00000 

 Log 5’ UTR 0.10587 0.02002 5.28773 0.00000 

      0.9 Intercept 8.71224 0.13789 63.18310 0.00000 

 Log 5’ UTR 0.06857 0.02834 2.41939 0.01556 

 

Figure 8.5 Quantile regression plot for Arabidopsis thaliana with quantiles range from 0.1 to 0.9 in increments of 0.1, 
respectively. 
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Table 8.2 Quantile regression analysis results on Arabidopsis thaliana between the log of CDS sequence length and 
the log of gene expression (GSE31488 gene expression experiment data) 

 

      Quantile  Value Std. Error t value Pr (>|t|) 

      0.1 Intercept -7.25569 0.44465 -16.31763 0.00000 

 Log CDS 1.49091 0.06397 23.30774 0.00000 

      0.2 Intercept -3.42118 0.35382 -9.66938 0.00000 

 Log CDS 1.15369 0.04837 23.85127 0.00000 

      0.3 Intercept 0.34012 0.25491 1.33425 0.18214 

 Log CDS 0.74619 0.03464 21.54367 0.00000 

      0.4 Intercept 2.92526 0.21057 13.89182 0.00000 

 Log CDS 0.47024 0.02846 16.52017 0.00000 

      0.5 Intercept 5.05024 0.20765 24.32114 0.00000 

 Log CDS 0.24374 0.02887 8.44371 0.00000 

      0.6 Intercept 6.58158 0.19429 33.87460 0.00000 

 Log CDS 0.09393 0.02720 3.45279 0.00056 

      0.7 Intercept 7.89733 0.19186 41.16143 0.00000 

 Log CDS -0.02494 0.02698 -0.92442 0.35528 

      0.8 Intercept 9.37143 0.20560 45.58077 0.00000 

 Log CDS -0.15842 0.02889 -5.48414 0.00000 

      0.9 Intercept 11.57666 0.23543 49.17176 0.00000 

 Log CDS -0.36614 0.03348 -10.93737 0.01556 

 

Figure 8.6 Quantile regression plot for Arabidopsis thaliana with quantiles range from 0.1 to 0.9 in increments of 0.1, 
respectively. 
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Table 8.3 Quantile regression analysis results on Arabidopsis thaliana between the log of 3’ UTR sequence length and 
the log of gene expression (GSE31488 gene expression experiment data) 

 

      Quantile  Value Std. Error t value Pr (>|t|) 

      0.1 Intercept -1.28003 0.43043 -2.97380 0.00295 

 Log 3’ UTR 0.80649 0.08240 9.78727 0.00000 

      0.2 Intercept -0.05783 0.36157 -0.15994 0.87293 

 Log 3’ UTR 0.90699 0.06794 13.34944 0.00000 

      0.3 Intercept 0.76806 0.22584 3.40086 0.00067 

 Log 3’ UTR 0.92050 0.04268 21.56976 0.00000 

      0.4 Intercept 1.59305 0.20227 7.87587 0.00000 

 Log 3’ UTR 0.88246 0.03802 23.21245 0.00000 

      0.5 Intercept 2.10509 0.16906 12.45189 0.00000 

 Log 3’ UTR 0.88162 0.03187 27.66366 0.00000 

      0.6 Intercept 2.77838 0.16847 16.49139 0.00000 

 Log 3’ UTR 0.84038 0.03151 26.66661 0.00000 

      0.7 Intercept 3.31070 0.15947 20.76044 0.00000 

 Log 3’ UTR 0.82708 0.03010 27.48028 0.00000 

      0.8 Intercept 4.04752 0.19399 20.86466 0.00000 

 Log 3’ UTR 0.79168 0.03630 21.81226 0.00000 

      0.9 Intercept 4.96045 0.15761 31.47265 0.00000 

 Log 3’ UTR 0.76333 0.03044 25.07947 0.00000 

 

Figure 8.7 Quantile regression plot for Arabidopsis thaliana with quantiles range from 0.1 to 0.9 in increments of 0.1, 
respectively. 
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Table 8.4 Quantile regression analysis results on Drosophila melanogaster between the log of 5’ UTR sequence length 
and the log of gene expression (GSE42255 gene expression experiment data) 

 

      Quantile  Value Std. Error t value Pr (>|t|) 

      0.1 Intercept 2.99298 0.24447 12.24295 0.00000 

 Log 5’ UTR 0.09999 0.05405 1.85007 0.06439 

      0.2 Intercept 3.70770 0.18407 20.14305 0.00000 

 Log 5’ UTR 0.10567 0.04101 2.57692 0.01001 

      0.3 Intercept 4.23852 0.16040 26.42456 0.00000 

 Log 5’ UTR 0.10295 0.03436 2.99667 0.00275 

      0.4 Intercept 4.60339 0.13736 33.51435 0.00000 

 Log 5’ UTR 0.10315 0.03002 3.43561 0.00060 

      0.5 Intercept 4.95174 0.12961 38.20391 0.00000 

 Log 5’ UTR 0.09782 0.02782 3.51598 0.00044 

      0.6 Intercept 5.31990 0.11417 46.59480 0.00000 

 Log 5’ UTR 0.08538 0.02580 3.30864 0.00095 

      0.7 Intercept 5.57721 0.14373 38.80300 0.00000 

 Log 5’ UTR 0.10068 0.02962 3.39947 0.00068 

      0.8 Intercept 6.44681 0.17437 36.97142 0.00000 

 Log 5’ UTR 0.00413 0.03571 0.11577 0.90784 

      0.9 Intercept 7.68730 0.22150 34.70589 0.00000 

 Log 5’ UTR -0.12948 0.04432 -2.92142 0.00351 

 

Figure 8.8 Quantile regression plot for Drosophila melanogaster with quantiles range from 0.1 to 0.9 in increments of 
0.1, respectively. 
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Table 8.5 Quantile regression analysis results on Drosophila melanogaster between the log of CDS sequence length 
and the log of gene expression (GSE42255 gene expression experiment data) 

 

      Quantile  Value Std. Error t value Pr (>|t|) 

      0.1 Intercept 4.84616 0.57613 8.41160 0.00000 

 Log CDS -0.19783 0.08014 -2.46860 0.01361 

      0.2 Intercept 6.07890 0.44560 13.64200 0.00000 

 Log CDS -0.27198 0.06264 -4.34194 0.00001 

      0.3 Intercept 7.03180 0.34350 20.47108 0.00000 

 Log CDS -0.33594 0.04954 -6.78088 0.00000 

      0.4 Intercept 7.59350 0.32054 23.68971 0.00000 

 Log CDS -0.36004 0.04521 -7.96411 0.00000 

      0.5 Intercept 7.95531 0.28030 28.38178 0.00000 

 Log CDS -0.36548 0.04029 -9.07219 0.00000 

      0.6 Intercept 8.49326 0.26724 31.78114 0.00000 

 Log CDS -0.40083 0.03742 -10.71079 0.00000 

      0.7 Intercept 9.08676 0.28572 31.80286 0.00000 

 Log CDS -0.44001 0.04007 -10.98103 0.00000 

      0.8 Intercept 9.70859 0.34560 28.09197 0.00000 

 Log CDS -0.47106 0.04905 -9.60348 0.00000 

      0.9 Intercept 11.36497 0.42722 26.60187 0.00000 

 Log CDS -0.61925 0.05964 -10.38366 0.00000 

 

Figure 8.9 Quantile regression plot for Drosophila melanogaster with quantiles range from 0.1 to 0.9 in increments of 
0.1, respectively. 
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Table 8.6 Quantile regression analysis results on Drosophila melanogaster between the log of 3’ UTR sequence length 
and the log of gene expression (GSE42255 gene expression experiment data) 

 

      Quantile  Value Std. Error t value Pr (>|t|) 

      0.1 Intercept 4.03542 0.08225 49.06280 0.00000 

 Log 3’ UTR 0.35700 0.01546 23.09641 0.00000 

      0.2 Intercept 4.48795 0.08257 54.35470 0.00000 

 Log 3’ UTR 0.31840 0.01614 19.72846 0.00000 

      0.3 Intercept 4.85297 0.06886 70.47384 0.00000 

 Log 3’ UTR 0.28407 0.01273 22.30680 0.00000 

      0.4 Intercept 5.03650 0.06313 79.77872 0.00000 

 Log 3’ UTR 0.27350 0.01290 21.20361 0.00000 

      0.5 Intercept 5.15329 0.05986 86.09041 0.00000 

 Log 3’ UTR 0.27983 0.01173 23.85901 0.00000 

      0.6 Intercept 5.37147 0.06384 84.13507 0.00000 

 Log 3’ UTR 0.26200 0.01199 21.84826 0.00000 

      0.7 Intercept 5.61639 0.06897 81.43580 0.00000 

 Log 3’ UTR 0.24204 0.01329 18.21441 0.00000 

      0.8 Intercept 5.94198 0.07576 78.43611 0.00000 

 Log 3’ UTR 0.20878 0.01507 13.85648 0.00000 

      0.9 Intercept 6.14204 0.09774 62.84273 0.00000 

 Log 3’ UTR 0.21414 0.01879 11.39432 0.00000 

 

Figure 8.10 Quantile regression plot for Drosophila melanogaster with quantiles range from 0.1 to 0.9 in increments of 
0.1, respectively. 
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Table 8.7 Quantile regression analysis results on Arabidopsis thaliana between the log of 5’ UTR sequence length and 
the log of gene expression (GDS3933 gene expression experiment data) 

 

      Quantile  Value Std. Error t value Pr (>|t|) 

      0.1 Intercept 0.76451 0.06266 12.20094 0.00000 

 Log 5’ UTR 0.13061 0.01399 9.33390 0.00000 

      0.2 Intercept 1.10719 0.05709 19.39225 0.00000 

 Log 5’ UTR 0.12840 0.01203 10.67434 0.00000 

      0.3 Intercept 1.46345 0.04631 31.60327 0.00000 

 Log 5’ UTR 0.09359 0.00930 10.06655 0.00000 

      0.4 Intercept 1.76655 0.02690 65.66343 0.00000 

 Log 5’ UTR 0.05411 0.00541 10.00009 0.00000 

      0.5 Intercept 1.91977 0.02053 93.49082 0.00000 

 Log 5’ UTR 0.03789 0.00419 9.03235 0.00000 

      0.6 Intercept 2.04182 0.01720 118.70693 0.00000 

 Log 5’ UTR 0.02580 0.00356 7.23725 0.00000 

      0.7 Intercept 2.12815 0.01635 130.17843 0.00000 

 Log 5’ UTR 0.01962 0.00340 5.77582 0.00000 

      0.8 Intercept 2.22796 0.01691 131.74460 0.00000 

 Log 5’ UTR 0.01224 0.00355 3.44724 0.00057 

      0.9 Intercept 2.34085 0.01530 153.04522 0.00000 

 Log 5’ UTR 0.00692 0.00338 2.04747 0.04064 

 

Figure 8 .11 Quantile regression plot for Arabidopsis thaliana with quantiles range from 0.1 to 0.9 in increments of 0.1, 
respectively. 
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Table 8.8 Quantile regression analysis results on Arabidopsis thaliana between the log of CDS sequence length and 
the log of gene expression (GDS3933 gene expression experiment data) 

 

      Quantile  Value Std. Error t value Pr (>|t|) 

      0.1 Intercept -0.19868 0.15081 -1.31744 0.18772 

 Log CDS 0.22601 0.02155 10.48761 0.00000 

      0.2 Intercept 0.44103 0.11273 3.91235 0.00009 

 Log CDS 0.17926 0.01574 11.39117 0.00000 

      0.3 Intercept 1.22926 0.08138 15.10571 0.00000 

 Log CDS 0.09495 0.01100 8.63142 0.00000 

      0.4 Intercept 1.89539 0.04992 37.97150 0.00000 

 Log CDS 0.01738 0.00666 2.61013 0.00907 

      0.5 Intercept 2.21277 0.03694 59.90485 0.00000 

 Log CDS -0.01660 0.00509 -3.25824 0.00113 

      0.6 Intercept 2.39485 0.03619 66.17765 0.00000 

 Log CDS -0.03350 0.00508 -6.59286 0.00000 

      0.7 Intercept 2.58925 0.03022 85.68926 0.00000 

 Log CDS -0.05279 0.00423 -12.48248 0.00000 

      0.8 Intercept 2.72644 0.03013 90.48563 0.00000 

 Log CDS -0.06385 0.00433 -14.75102 0.00000 

      0.9 Intercept 2.84588 0.03396 83.79063 0.00000 

 Log CDS -0.06942 0.00490 -14.18200 0.00000 

 

Figure 8 .12 Quantile regression plot for Arabidopsis thaliana with quantiles range from 0.1 to 0.9 in increments of 0.1, 
respectively. 
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Table 8.9 Quantile regression analysis results on Arabidopsis thaliana between the log of 3’ UTR sequence length and 
the log of gene expression (GDS3933 gene expression experiment data) 

 

      Quantile  Value Std. Error t value Pr (>|t|) 

      0.1 Intercept 0.026500 0.131040 0.202270 0.839710 

 Log 3’ UTR 0.254060 0.024960 10.177990 0.000000 

      0.2 Intercept 0.404410 0.120200 3.364370 0.000770 

 Log 3’ UTR 0.244440 0.022430 10.895530 0.000000 

      0.3 Intercept 0.868450 0.077930 11.144220 0.000000 

 Log 3’ UTR 0.195080 0.014290 13.648320 0.000000 

      0.4 Intercept 1.242830 0.048620 25.563150 0.000000 

 Log 3’ UTR 0.145700 0.008920 16.330550 0.000000 

      0.5 Intercept 1.450620 0.040690 35.652010 0.000000 

 Log 3’ UTR 0.121350 0.007440 16.313380 0.000000 

      0.6 Intercept 1.614860 0.033970 47.538100 0.000000 

 Log 3’ UTR 0.102630 0.006330 16.220570 0.000000 

      0.7 Intercept 1.722880 0.028790 59.848790 0.000000 

 Log 3’ UTR 0.093360 0.005410 17.256770 0.000000 

      0.8 Intercept 1.816540 0.034440 52.742530 0.000000 

 Log 3’ UTR 0.087470 0.006430 13.599130 0.000000 

      0.9 Intercept 1.942250 0.034110 56.939020 0.000000 

 Log 3’ UTR 0.080820 0.006430 12.572240 0.000000 

 

Figure 8 .13 Quantile regression plot for Arabidopsis thaliana with quantiles range from 0.1 to 0.9 in increments of 0.1, 
respectively. 
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Table 8.10 Quantile regression analysis results on Drosophila melanogaster between the log of 5’ UTR sequence 
length and the log of gene expression (GSE36507 gene expression experiment data) 

 

      Quantile  Value Std. Error t value Pr (>|t|) 

      0.1 Intercept 1.28497 0.06779 18.95641 0.00000 

 Log 5’ UTR 0.07333 0.01374 5.33611 0.00000 

      0.2 Intercept 1.59194 0.04478 35.54779 0.00000 

 Log 5’ UTR 0.05687 0.00909 6.25711 0.00000 

      0.3 Intercept 1.73679 0.02932 59.23962 0.00000 

 Log 5’ UTR 0.05415 0.00614 8.82520 0.00000 

      0.4 Intercept 1.82558 0.02286 79.85883 0.00000 

 Log 5’ UTR 0.05229 0.00465 11.24806 0.00000 

      0.5 Intercept 1.90830 0.01715 111.28562 0.00000 

 Log 5’ UTR 0.04659 0.00343 13.60097 0.00000 

      0.6 Intercept 1.99646 0.01926 103.68233 0.00000 

 Log 5’ UTR 0.03888 0.00388 10.01241 0.00000 

      0.7 Intercept 2.06843 0.01618 127.85772 0.00000 

 Log 5’ UTR 0.03482 0.00320 10.86927 0.00000 

      0.8 Intercept 2.16414 0.01809 119.63192 0.00000 

 Log 5’ UTR 0.02680 0.00357 7.50320 0.00000 

      0.9 Intercept 2.33342 0.02376 98.21304 0.00000 

 Log 5’ UTR 0.00693 0.00468 1.48068 0.13875 

 

Figure 8.14 Quantile regression plot for Drosophila melanogaster with quantiles range from 0.1 to 0.9 in increments of 
0.1, respectively. 
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Table 8.11 Quantile regression analysis results on Drosophila melanogaster between the log of CDS sequence length 
and the log of gene expression (GSE36507 gene expression experiment data) 

 

      Quantile  Value Std. Error t value Pr (>|t|) 

      0.1 Intercept 1.41356 0.14825 9.53503 0.00000 

 Log CDS 0.02975 0.02106 1.41256 0.15784 

      0.2 Intercept 1.81659 0.08947 20.30396 0.00000 

 Log CDS 0.00639 0.01276 0.50060 0.61667 

      0.3 Intercept 1.99122 0.06902 28.85156 0.00000 

 Log CDS -0.00075 0.00975 -0.07669 0.93887 

      0.4 Intercept 2.11710 0.04834 43.79536 0.00000 

 Log CDS -0.00646 0.00688 -0.93966 0.34744 

      0.5 Intercept 2.23380 0.03819 58.48915 0.00000 

 Log CDS -0.01500 0.00536 -2.79907 0.00514 

      0.6 Intercept 2.36145 0.03839 61.51257 0.00000 

 Log CDS -0.02540 0.00533 -4.76824 0.00000 

      0.7 Intercept 2.45361 0.03457 70.97384 0.00000 

 Log CDS -0.03070 0.00489 -6.27982 0.00000 

      0.8 Intercept 2.58566 0.03616 71.50751 0.00000 

 Log CDS -0.04147 0.00506 -8.19982 0.00000 

      0.9 Intercept 2.73350 0.03934 69.48483 0.00000 

 Log CDS -0.05262 0.00554 -9.49641 0.00000 

 

Figure 8.15 Quantile regression plot for Drosophila melanogaster with quantiles range from 0.1 to 0.9 in increments of 
0.1, respectively. 
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Table 8.12 Quantile regression analysis results on Drosophila melanogaster between the log of 3’ UTR sequence 
length and the log of gene expression 

      Quantile  Value Std. Error t value Pr (>|t|) 

      0.1 Intercept 1.53054 0.08075 18.95458 0.00000 

 Log 3’ UTR 0.01735 0.01533 1.13164 0.25784 

      0.2 Intercept 1.79567 0.04229 42.46001 0.00000 

 Log 3’ UTR 0.01303 0.00840 1.55044 0.12110 

      0.3 Intercept 1.89908 0.03645 52.09484 0.00000 

 Log 3’ UTR 0.01735 0.00720 2.40887 0.01604 

      0.4 Intercept 1.95487 0.02397 81.56678 0.00000 

 Log 3’ UTR 0.02306 0.00468 4.92510 0.00000 

      0.5 Intercept 1.99859 0.01908 104.74509 0.00000 

 Log 3’ UTR 0.02653 0.00382 6.95355 0.00000 

      0.6 Intercept 2.03241 0.01928 105.41200 0.00000 

 Log 3’ UTR 0.02976 0.00376 7.90712 0.00000 

      0.7 Intercept 2.08155 0.01642 126.79634 0.00000 

 Log 3’ UTR 0.03018 0.00309 9.75937 0.00000 

      0.8 Intercept 2.16193 0.01891 114.31813 0.00000 

 Log 3’ UTR 0.02546 0.00356 7.15683 0.00000 

      0.9 Intercept 2.27943 0.02397 95.09426 0.00000 

 Log 3’ UTR 0.01735 0.00458 3.79243 0.00015 

 

Figure 8.16 Quantile regression plot for Drosophila melanogaster with quantiles range from 0.1 to 0.9 in increments of 
0.1, respectively. 
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The quantile regression statistical analyses was again applied to the second set of gene 

expression data to substantiate this method under different gene expression 

experiments. The results show very similar patterns to the previous gene expression 

experiment, indicating the model is robust in studying the relationship between gene 

expression and the length of coding and noncoding regions in different species (Tables 

8.7-8.12 / Figures 8.11-8.16). Both gene expression datasets showed statistical 

significance across all quantile groups, indicating a relationship between the coding and 

noncoding length and gene expression in animal and plant species.  

The observed expression trends in both experimental datasets suggests that there are 

differences between animal and plant species when considering CDS length and that the 

noncoding regions show similar patterns of positive correlation to gene expression. 

8.7 Discussion 

We aimed to develop an understanding of the relationship between the coding and 

noncoding sequence length in association with gene expression between an animal and 

plant species. In brief the findings suggest from the quantile regression analysis: (i) the 

patterns seen between the CDS length and gene expression intensity in Arabidopsis and 

Drosophila are different, the plant species showing both positive and negative correlation 

dependent on the quantile whilst the animal species showing a consistent negative 

correlation among all quantiles; (ii) in both the animal and plant species the 3’ UTR length 

and gene expression exhibit positive correlation.  

The current research has confirmed our previous findings with the Arabidopsis (Caldwell, 

et al., 2010) and is also consistent with previous research, where it was found that highly 

expressed genes have larger primary transcripts [15]. Extensive studies with Arabidopsis 

has inferred that multistimuli response genes (genes that are differentially expressed in 

response to a large number of different external stimuli) have significantly longer upstream 

intergenic regions and are generally shorter (Walther, et al., 2007). A more recent study 

investigating the translational efficiency in Arabidopsis has proposed that the sequence 

context immediately upstream from the AUG initiation codon in plant genes are critical in 

determining  translational efficiency (Kim, et al., 2014).  Other studies investigating the 

role of the 5’ UTR in translational regulation found that nucleotide composition, length, 

potential secondary structure and the presence of uAUGs have a considerable effect on 

ribosome loading in Arabidopsis (Kawaguchi and Bailey-Serres, 2005). Furthermore, 

additional studies have focused on the GC content showing large variability among 
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species, ~20 to 60% variation in eukaryotes (Lynch, 2007). Based on findings from Duret 

and Stoletzki GC3-rich genes tend to be shorter than GC3-poor genes (Duret and 

Mouchiroud, 1999; Stoletzki, 2011). To investigate the hypothesis of synonymous codon 

usage (SCU), which is described as highly expressed genes undergoing stronger 

translational selection, for example higher GC content, in seeded plants, Serres-Giardi et 

al tested GC3-rich and GC-poor genes against expression. It was found that in 154 plant 

species tested, expression was significantly and positively correlated with GC3  (Serres-

Giardi, et al., 2012). The results from these studies are interesting with respect to our 

results, and may support and extend the understanding of gene architecture and gene 

expression in plants.  

In addition, the patterns found in the coding sequences for Drosophila is consistent with 

previous research with animals. A study on Gallus gallus (chicken), found that the coding 

sequence length is negatively correlated with expression level (Rao, et al., 2010) as 

shown in the Drosophila in this study. In other animal investigations, the research also 

reported that in highly expressed genes the length of the coding sequence and protein 

lengths were small (Raghava and Han, 2005; Subramanian and Kumar, 2004). A popular 

bioinformatics technique used to detect subtle variations in sequences was used to 

identify differences between the 3’ UTR and protein coding sequences in the Drosophila. 

Interestingly, the study found greater number of segments in the 3’ UTR, suggesting 

greater functional complexity in the 3’ UTRs than in the coding sequence (Algama, et al., 

2014). This could explain the differences in the CDS and 3’ UTR patterns found in this 

study.  Genome size is also another important aspect in determining variability between 

organisms. A Drosophila melanogaster study has shown that genomes are subjected to 

constant change not only in their size but in their composition (Boulesteix, et al., 2006).  

Identification of similarities and differences in genomes, particularly between animals and 

plants that might result in speciation has had a great deal of interest, with gene families, 

gene loss and gene amplification being the focus of these studies (Ball and Cherry, 2001). 

The genomes of Arabidopsis and Drosophila are of similar size, however the number of 

genes identified vary, ~26,000 for Arabidopsis and ~14,000 for Drosophila. Differences 

start to emerge when gene families are examined, Arabidopsis appear to have 11,000 

gene families, which have more than five members, in contrast to Drosophila which 

encode fewer genes (Initiative, 2000). Understanding the genome structure of these 

organisms before examining the finer details of the genome itself is an important strategy. 
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When the coding sequence is examined in association with gene expression there seems 

to be divergence in Arabidopsis and Drosophila, although we cannot yet conclude and 

refer in general to the difference between animal and plant genomes. Differences seen in 

the animal and plants species may be described by differences in life strategies 

(Kejnovsky, et al., 2009). Plant genomes appear much more dynamic (Murat, et al., 2012), 

due to the sessile nature and response to adverse conditions through biochemical 

complexity and developmental plasticity (Wilczek, et al., 2009). In contrast, animal 

genomes are more conserved and stable, attributable to the ability to avoid adverse 

conditions (Murat, et al., 2012). There has been overwhelming evidence that natural 

selection appears to support the compactness of highly expressed genes in both animal 

and plant species (Castillo-Davis, et al., 2002; Eisenberg and Levanon, 2003; Rao, et al., 

2010; Stenoien, 2007; Yang, 2009). These results may elucidate to the theory on 

reduction costs of energy with shorter proteins and sequences, contributing to minimizing 

the cost of synthesis (Vilaprinyo, et al., 2010).  However it is important to highlight that the 

length of the coding region is only one of several factors that contribute to the complex 

nature of natural selection, species complexity and gene regulation. 

Furthermore, the noncoding untranslated sequences have been identified as important 

components in the regulation of transcription and translation, influencing translation 

initiation, stability, elongation, and the termination of the mRNA translation (Barrett, et al., 

2012). Modification to the lengths of the 5’ UTR and 3’ UTR sequences may contribute 

to the selective constraints between animal and plants species, and may be influenced 

by environmental conditions (Chen, et al., 2011). For the 3’ UTR regions, the results of 

this study have shown similarities in the patterns between Arabidopsis and Drosophila, 

that is, positive correlation between length and gene expression. This is in agreement 

with our previous research for Arabidopsis (Caldwell, et al., 2010).   

The regulation of many genes has been known to be controlled primarily by 3’ UTR’s, 

particularly those involved in development (Merritt, et al., 2008). Other research has 

found that there was positive correlation with transposon and simple sequence repeats 

(SSRs), with these elements affecting the length and variation of both the 5’ and 3’ UTRs 

(Liu, et al., 2012). Differing lengths of the untranslated regions could also be affected by 

either selection or genetic drift (Chen, et al., 2011). These results may enforce the 

concept that these untranslated regions are prone to a higher level of environmental and 

evolutionary constraints compared to the coding sequences and it is plausible that 

selection shapes these lengths. However, Chen et al (2011) looked at over 15 species 
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and found that the elongation of 5’ UTR alone cannot lead to the emergence of 

organismal complexity (Chen, et al., 2011), indicating that the untranslated regions may 

not be a true indication of organism evolution, thus supporting the similarities found in 

this research in the untranslated regions. 

Furthermore, recent experimental studies have shed light on the complex ceRNA network 

dynamics in prostate cancer using the alternative cleavage and polyadenylation (APA). 

This study concluded that long 3’ UTRs tend to harbour more microRNA response 

elements (MREs) which in turn would influence biological process when the 3’ UTR length 

is modified. The understanding of 3’ UTR shortening has great potential in creating 

prognostic markers for oncogene expression (Li, et al., 2014). Other research in 

mammalian brain development proposes that lengthening of 3’ UTRs offers considerable 

versatility in biological processes (Miura, et al., 2013). The findings in this study have 

amplified the importance of the noncoding 5’ and 3’ UTR regions, and has shown 

differences in these regions compared to the coding sequence. 

At a global scale, the picture emerging is that animal and plant species show similarities 

and divergences when comparisons are made with gene expression and the length 

distributions of the coding and noncoding regions. However, studying the association 

between expression levels and length can be intricate to interpret, including sample size 

variation between organisms, statistical methodology and data transformation. It was our 

intention to take advantage of available genomic data to identify general responses and 

relations. Using the available technologies and data our results have shown some 

interesting correlation between gene expression and the basic gene architecture, length, 

especially in the 3’ UTR region.  Further research is required to explore more details in 

the gene length distribution variations of different genes and different organisms, 

including known highly expressed genes such as heat shock protein genes (HSPs). 
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9 Conclusion and Future Research 

9.1 Conclusion 

“….. bioinformatics, defined as the computational handling and processing of genetic 

information, has become one of the most highly visible fields of modern science.” (Ouzounis and 

Valencia, 2003) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.1 Workflow summary of the main research points conducted in this thesis 
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The research in this thesis has validated the data that is publicly available on the web. It 

has scrutinized the data is available, including gene expression data and has shown 

patterns not discovered previously by other research studies. With the large amount of 

data readily available, it is important that strict guidelines on creating, storing and testing 

data is followed for the future science community to be confident the data is of high quality 

and accurate. 

A big challenge in the post-genome-sequencing era, for deciphering the gene regulation 

networks, is to improve computational techniques that were lacking in accuracy. It has 

been shown that using the TSS-TLS and TLS-TSC distances, promoter prediction can 

be improved with the NNPP2.2 algorithm. However, this new technique does not have to 

be restricted to this program, but may be applied post-process to many other promoter 

prediction algorithms that also suffer from a high incidence of false positives. 

The work in this thesis has also shown that there is a possible correlation between the 

coding and noncoding regions of protein coding genes using a variety of statistical 

methods. Other factors were also introduced, such as protein function and gene 

expression that have been a topic of interest for many scientists. Standard statistical 

models have identified interesting areas for further investigate, giving a focus and 

direction for this thesis, and allowing more complex models to be used to describe identify 

patterns and correlations, not previously found. 

Using The Arabidopsis Information Resource (TAIR) database it has been possible to 

evaluate the relationship between the coding and noncoding sequences in relation to 

gene expression in the Arabidopsis thaliana. The research in this thesis has confirmed 

previous research on protein lengths. The patterns found have contributed some 

generalized understanding about the relationship between gene expression and protein 

function. Our results show excellent concordance with previous studies that have 

identified highly expressed genes are more compact when looking at the coding 

sequence length in both animal and plant species. However the noncoding sequence 

length show variation among animal and plant species.  

Furthermore, the CCA method was fruitful in identifying associations between length 

distributions and gene expression. The research has successfully used CCA to 

categorize the relationship between the length distributions of coding and noncoding 

genes and gene expression exposed to various environmental factors. It is an easily 

accessible and customizable tool that that can boost insight into more complex 

relationships between gene architecture and gene expression. The analysis has found a 
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relationship between the 5’ un-translated region and longevity, however this method is 

difficult to interpret and is limited by sample size. Therefore, these results should be 

treated with caution until they are confirmed by additional studies.  

The difficulty in using model organisms is that they are often not “typical” and the results 

can be misleading if used to compare with other organisms. Limitations include for 

Arabidopsis has no know root symbioses; Drosophila are not pathogens or pest (Tagu, 

et al., 2014). However this research is much generalised and other research has 

benefited from such model organism use.  

 

 

9.2 Outlook 

The following section suggests future improvements to the approach, statistical analysis 

and data used in this thesis: 

1. Other aspects of a protein, such as structure, regulation and localization are 

defined much more clearly and may show an obvious relationship with gene 

expression (Gerstein and Jansen, 2000); 

2. To extend on the findings with gene expression data, it would be prudent to 

including in future studies controlled vocabularies, such as Gene Ontology 

(describing gene product characteristics and gene product annotation data) which 

would aid in the analysis of genome-wide response patterns; 

3. Other factors which are worth considering would be tissue type which would be 

beneficial in broadening understanding;  

4. An extension on the quantile regression model that uses the interaction of all three 

regions ( 21,dd  and 3d ) could show which length region has the most influence on 

the average gene expression intensity; 

5. Focus on specific gene families, such as heat shock proteins and apply quantile 

regression analysis to gene expression and length data (forthcoming work related 

to or developing themes in this thesis). 

 

In conclusion, in delving into the patterns of statistical properties of different gene regions 

and their correlation we intended to elucidate the spatial organization rules between 

various gene functional elements and the difference in such organizations among 

different living organisms and gene families.  We believe that these rules and differences 



Chapter 9 –Conclusion and Future Research 

158 

 

are the results of organism complexity and reflect the complexity differences in the 

regulation of gene expression. The information described in this thesis provides the basis 

for further exploration into gene regulation and architecture, with regard to sequence 

length of the coding and noncoding regions. With more organism genome-wide data 

becoming available to study and new methods and technologies to explore, we can look 

forward to a surge in genome-wide comparative research. 
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NCBI Excel Macro 

 

 
' FormatXls Macro 

' Macro created 22/10/2007 by Rachel Caldwell 

' 

    Columns("H:K").Select 

    Selection.Delete Shift:=xlToLeft 

    Columns("A:A").Select 

    Selection.Copy 

    Range("H1").Select 

    ActiveSheet.Paste 

    Columns("A:A").Select 

    Application.CutCopyMode = False 

    Selection.Delete Shift:=xlToLeft 

    Range("C1").Select 

    Selection.EntireColumn.Insert 

    Range("F1").Select 

    Selection.EntireColumn.Insert 

    Range("C1").Select 

    ActiveCell.FormulaR1C1 = "CDS 1" 

    Range("F1").Select 

    ActiveCell.FormulaR1C1 = "CDS 2" 

    Range("C2").Select 

    ActiveCell.FormulaR1C1 = "=RC[-1]-RC[-2]+1" 

    Range("F2").Select 

    ActiveCell.FormulaR1C1 = "=RC[-1]*3+3" 

    Range("C2").Select 

    ActiveWindow.ScrollRow = 8 

    Range("C2:C1495").Select 

    Selection.FillDown 

    Range("F2").Select 

    Range("F2:F1495").Select 

    Selection.FillDown 

    Range("A1:I1").Select 

    Selection.Font.Bold = True 

    Cells.Select 

    Cells.EntireColumn.AutoFit 

    Range("A1").Select 

End Sub 
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TAIR Database Cleanup Script 

 

 
ORDER IN VBS SCRIPT TO RUN 

 

1. Paragraph removal + addition of < to replace 

2. Paragraph addition (adds a paragraph marker in replacement to > 

3. Line removal and replacement - removes space|space and replaces with a * 

4. Line removal 2 removes space, with just a * 

 

TAIR 10 contains release of 27,416 protein coding genes. 

CDS file = All Arabidopsis coding sequences including predicted sequences. Similar to the transcript file but 

lacking the 5' and 3' UTRs and no introns. 

 

Dim strSearchString, objFSO, objFile  

Const ForReading = 1  

Const ForWriting = 2  

 

' Removes Line Feed from Text File and replaces with comma 

 

Set objFSO = CreateObject("Scripting.FileSystemObject")  

Set objFile = objFSO.OpenTextFile("C:\temp\FlyBase_FastA CDS 20111029.txt", ForReading)  

strSearchString = objFile.ReadAll  

objFile.Close  

 

Set objFile = objFSO.OpenTextFile("C:\temp\FlyBase_FastA CDS 20111029.txt", ForWriting)  

objFile.Write Replace(strSearchString, VbLf, ",")  

objFile.Close  

 

' Removes comma from text file 

 

Set objFSO = CreateObject("Scripting.FileSystemObject")  

Set objFile = objFSO.OpenTextFile("C:\temp\FlyBase_FastA CDS 20111029.txt", ForReading)  

strSearchString = objFile.ReadAll  

objFile.Close  

 

Set objFile = objFSO.OpenTextFile("C:\temp\FlyBase_FastA CDS 20111029.txt", ForWriting)  

objFile.Write Replace(strSearchString, ",", "")  

objFile.Close  

 

' Adds line fields in where there are > 

 

Set objFSO = CreateObject("Scripting.FileSystemObject")  

Set objFile = objFSO.OpenTextFile("C:\temp\FlyBase_FastA CDS 20111029.txt", ForReading)  

strSearchString = objFile.ReadAll  

objFile.Close  

 

Set objFile = objFSO.OpenTextFile("C:\Temp\FlyBase_FastA CDS 20111029.txt", ForWriting)  

objFile.Write Replace(strSearchString, ">", VbCrLf)  

objFile.Close 
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Protein Category script – MS Excel 
 

Formula: 

 

=VLOOKUP(B2,'Lookup Protein Table'!$A$2:$B$26,2) 

 

 

Lookup Protein Table worksheet data 

 

Code Category Description 

[A] 1  RNA processing and modification  

[B] 1 Chromatin structure and dynamics  

[C] 3 Energy production and conversion  

[D] 2 Cell cycle control, cell division, chromosome partitioning  

[E] 3 Amino acid transport and metabolism  

[F] 3 Nucleotide transport and metabolism  

[G] 3 Carbohydrate transport and metabolism  

[H] 3 Coenzyme transport and metabolism  

[I] 3 Lipid transport and metabolism  

[J] 1 Translation, ribosomal structure and biogenesis  

[K] 1 Transcription  

[L] 1 Replication, recombination and repair  

[M] 2 Cell wall/membrane/envelope biogenesis  

[N] 2 Cell motility  

[O] 2 Posttranslational modification, protein turnover, chaperones  

[P] 3 Inorganic ion transport and metabolism  

[Q] 3 Secondary metabolites biosynthesis, transport and catabolism  

[R] 4 General function prediction only  

[S] 4 Function unknown  

[T] 2 Signal transduction mechanisms  

[U] 2 Intracellular trafficking, secretion, and vesicular transport  

[V] 2 Defense mechanisms  

[W] 2 Extracellular structures  

[Y] 2 Nuclear structure  

[Z] 2 Cytoskeleton  

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix C – R and SPSS Codes 
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Canonical Correlation SPSS Syntax 
 

 

INCLUDE 'C:/Program Files/IBM/SPSS/Statistics/19/Samples/English/Canonical correlation.sps'. 

CANCORR SET1=Cold, Constant30, ControlLine, Desiccation, Heat, KnockDown, Longevity, Starvation / 

SET2=D1, D2, D3 / . 

 

# Note if it errors you must clear all the windows before you can proceed with running the macro again. 
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Running Canonical Correlation Analysis in R 

 

Make sure there is only 12 columns in the file – will error. 

Read the file (must be csv file) 

> mm<-read.table("D melanogaster Gene Expression Canonical Analysis small sample.csv", sep = ",", header = 

TRUE) 

 

> library(fields) 

 

To run stats on file: 

> t(stats(mm)) 

 

# define the two sets of variables 

> GeneLength<-mm[,2:4] 

> GeneExp<-mm[,5:11] 

 

# correlations 

 

> library(CCA) 

> matcor(GeneLength,GeneExp) 

 

R Canonical Correlation Analysis 

> cc1<-cc(GeneLength,GeneExp) 

# display the canonical correlations 

> cc1[1] 

# raw canonical coefficients 

> cc1[3:4] 

# compute canonical loadings 

>cc2<-comput(GeneLength, GeneExp, cc1) 

 

#Display canonical loadings 

>cc2[3:6] 

> plot(cca.fit) 
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Quantile Regression in R 

  

library(quantreg) 

CdsData<-read.csv("DmelCDS.csv", strip.white=TRUE) 

 

CDS<-CdsData[,1] 

Control<-CdsData[,2] 

 

Lcontrol<-log(Control) 

LCDS<-log(CDS) 

LCDS2<- LCDS^2 

plot(LCDS, Lcontrol, cex = 0.05, type = "n", 

     xlab = "LCDS", ylab = "Lcon") 

points(LCDS, Lcontrol, cex = 0.05, col = "blue") 

#plot(LCDS, Lcontrol, cex = 0.5, col = "blue") 

#abline(rq(Lcontrol ~ LCDS + LCDS2, tau=0.9), col="red") 

 

a0<-summary(rq(Lcontrol ~ LCDS+LCDS2, tau = 0.9))$coefficient[1,1] 

a1<-summary(rq(Lcontrol ~ LCDS+LCDS2, tau = 0.9))$coefficient[2,1] 

a2<-summary(rq(Lcontrol ~ LCDS+LCDS2, tau = 0.9))$coefficient[3,1] 

A<-a0+a1*LCDS+a2*LCDS2 

points(LCDS, A,cex = 0.05,col="red") 

a0 

a1 

a2 

taus<-c(0.8,0.7,0.6,0.5,0.4,0.3,0.2,0.1) 

 coeA1<-c() 

for (i in 1:length(taus)) { 

  a0<-summary(rq(Lcontrol ~ LCDS, tau = taus[i]))$coefficient[1,1] 

  a1<-summary(rq(Lcontrol ~ LCDS, tau = taus[i]))$coefficient[2,1] 

  A<-a0+a1*LCDS 

  coeA1[i]<-a1 

  points(LCDS, A, cex = 0.05, col= "red") 

} 

coeA 
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> library(quantreg) 

real<-read.csv("AthFiveUTR.csv",strip.white=TRUE) 

FiveUTR<-real[,1] 

Control<-real[,2] 

LControl<-log(Control) 

LFiveUTR<-log(FiveUTR) 

plot(LFiveUTR,LControl,cex=.5,type="p",col="black",xlab="Log 5' UTR Sequence Length bp",ylab="Log Gene 

Expression Intensity") 

taus<-c(.1,.2,.3,.4,.5,.6,.7,.8,.9) 

f<-rq(LControl~LFiveUTR,tau=taus) 

for(i in 1:length(taus)){abline(coef(f)[,i],col="red")} 

summary(f) 

quantreg.plot<-summary(f) 

plot(quantreg.plot) 

qr10<-rq(LControl~LFiveUTR,tau=0.1)  

anova(qr10,qr20) 

Quantile Regression Analysis of Deviance Table 

 

Model: LControl ~ LFiveUTR 

Joint Test of Equality of Slopes: tau in (Raghava and Han) 

 

  Df Resid Df F value  Pr(>F)   

1  1    36889  5.2053 0.02252 * 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

real<-read.csv("AthCDS.csv",strip.white=TRUE) 

CDS<-real[,1] 

Control<-real[,2] 

LControl<-log(Control) 

LCDS<-log(CDS) 

plot(LCDS,LControl,cex=.5,type="p",col="black",xlab="Log CDS Sequence Length bp",ylab="Log Gene 

Expression Intensity") 

taus<-c(.1,.2,.3,.4,.5,.6,.7,.8,.9) 

f<-rq(LControl~LCDS,tau=taus) 

for(i in 1:length(taus)){abline(coef(f)[,i],col="red")} 

quantreg.plot<-summary(f) 

plot(quantreg.plot) 

summary(f) 
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#TABLE of results: 

fit2<-summary(rq(LControl~LCDS, tau=c(.1,.2,.3,.4,.5,.6,.7,.8,.9))) 

 latex(fit2, caption="Arabidopsis thalania", transpose = TRUE) 

 real<-read.csv("AthThreeUTR.csv",strip.white=TRUE) 

 ThreeUTR<-real[,1] 

 Control<-real[,2] 

 LControl<-log(Control) 

 LThreeUTR<-log(ThreeUTR) 

 plot(LThreeUTR,LControl,cex=.5,type="p",col="black",xlab="Log 3' UTR Sequence Length bp",ylab="Log 

Gene Expression Intensity") 

 taus<-c(.1,.2,.3,.4,.5,.6,.7,.8,.9) 

 f<-rq(LControl~LThreeUTR,tau=taus) 

 for(i in 1:length(taus)){abline(coef(f)[,i],col="red")} 

quantreg.plot<-summary(f) 

plot(quantreg.plot) 

summary(f) 

 

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 

real<-read.csv("DmelFiveUTR.csv",strip.white=TRUE) 

FiveUTR<-real[,1] 

Control<-real[,2] 

LControl<-log(Control) 

LFiveUTR<-log(FiveUTR) 

plot(LFiveUTR,LControl,cex=.5,type="p",col="black",xlab="Log 5' UTR Sequence Length bp",ylab="Log Gene 

Expression Intensity") 

taus<-c(.1,.2,.3,.4,.5,.6,.7,.8,.9) 

f<-rq(LControl~LFiveUTR,tau=taus) 

for(i in 1:length(taus)){abline(coef(f)[,i],col="red")} 

quantreg.plot<-summary(f) 

plot(quantreg.plot) 

summary(f) 

 

real<-read.csv("DmelCDS.csv",strip.white=TRUE) 

CDS<-real[,1] 

Control<-real[,2] 

LControl<-log(Control) 

LCDS<-log(CDS) 

plot(LCDS,LControl,cex=.5,type="p",col="black",xlab="Log CDS Sequence Length bp",ylab="Log Gene 

Expression Intensity") 

taus<-c(.1,.2,.3,.4,.5,.6,.7,.8,.9) 
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f<-rq(LControl~LCDS,tau=taus) 

for(i in 1:length(taus)){abline(coef(f)[,i],col="red")} 

quantreg.plot<-summary(f) 

plot(quantreg.plot) 

summary(f) 

 

real<-read.csv("DmelThreeUTR.csv",strip.white=TRUE) 

ThreeUTR<-real[,1] 

Control<-real[,2] 

LControl<-log(Control) 

LThreeUTR<-log(ThreeUTR) 

plot(LThreeUTR,LControl,cex=.5,type="p",col="black",xlab="Log 3' UTR Sequence Length bp",ylab="Log 

Gene Expression Intensity") 

taus<-c(.1,.2,.3,.4,.5,.6,.7,.8,.9) 

f<-rq(LControl~LThreeUTR,tau=taus) 

for(i in 1:length(taus)){abline(coef(f)[,i],col="red")} 

quantreg.plot<-summary(f) 

plot(quantreg.plot) 

summary(f) 

 

Non-Linear Model – Quantile Regression 

> a0 

[1] 14.90438342 

> a1 

[1] -1.674027926 

> a2 

[1] 0.07782366078 

>  

> taus<-c(0.8,0.7,0.6,0.5,0.4,0.3,0.2,0.1) 

>  coeA1<-c() 

> for (i in 1:length(taus)) { 

+   a0<-summary(rq(Lcontrol ~ LCDS, tau = taus[i]))$coefficient[1,1] 

+   a1<-summary(rq(Lcontrol ~ LCDS, tau = taus[i]))$coefficient[2,1] 

+   A<-a0+a1*LCDS 

+   coeA1[i]<-a1 

+   points(LCDS, A, cex = 0.05, col= "red") 

+ } 

> coeA1 

[1] -0.4710644187 -0.4400077846 -0.4008260150 -0.3654767826 

[5] -0.3600360019 -0.3359369747 -0.2719822981 -0.1978264703 
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library(quantreg) 

CdsData<-read.csv("DmelCDS.csv", strip.white=TRUE) 

 

CDS<-CdsData[,1] 

Control<-CdsData[,2] 

 

Lcontrol<-log(Control) 

LCDS<-log(CDS) 

LCDS2<- LCDS^2 

plot(LCDS, Lcontrol, cex = 0.05, type = "n", 

     xlab = "LCDS", ylab = "Lcon") 

points(LCDS, Lcontrol, cex = 0.05, col = "blue") 

#plot(LCDS, Lcontrol, cex = 0.5, col = "blue") 

#abline(rq(Lcontrol ~ LCDS + LCDS2, tau=0.9), col="red") 

 

a0<-summary(rq(Lcontrol ~ LCDS+LCDS2, tau = 0.9))$coefficient[1,1] 

a1<-summary(rq(Lcontrol ~ LCDS+LCDS2, tau = 0.9))$coefficient[2,1] 

a2<-summary(rq(Lcontrol ~ LCDS+LCDS2, tau = 0.9))$coefficient[3,1] 

A<-a0+a1*LCDS+a2*LCDS2 

points(LCDS, A,cex = 0.05,col="red") 

a0 

a1 

a2 

taus<-c(0.8,0.7,0.6,0.5,0.4,0.3,0.2,0.1) 

 coeA1<-c() 

for (i in 1:length(taus)) { 

  a0<-summary(rq(Lcontrol ~ LCDS, tau = taus[i]))$coefficient[1,1] 

  a1<-summary(rq(Lcontrol ~ LCDS, tau = taus[i]))$coefficient[2,1] 

  A<-a0+a1*LCDS 

  coeA1[i]<-a1 

  points(LCDS, A, cex = 0.05, col= "red") 

} 

coeA1 
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chr<-read.csv("Ath.csv", header=TRUE, sep=",",fill=TRUE) 

d1<-chr$d1 

d2<-chr$d2 

d3<-chr$d3 

inten<-chr$inten 

D1<-chr$D1 

D2<-chr$D2 

D3<-chr$D3 

q3<-chr$q3 

cate<-chr$cate 

 

cor.test(d1,d2,method="spearman") 

cor.test(d1,d3,method="spearman") 

cor.test(d2,d3,method="spearman") 

 

 

boxplot(inten~q3,ylim=c(0,30000),xlab="Quantile",ylab="gene expression intensity") 

 

boxplot(d1,d2,d3) 

 

 

 boxplot(len ~ dose, data = ToothGrowth, 

             boxwex = 0.25, at = 1:3 - 0.2, 

 

 

y<-inten 

x<-d3 

 library(MASS) 

   lqsmodel1 <- lqs(y~x, method="lts") 

   plot(x,y) 

    abline(lqsmodel1,col=3) 

 

quantile(d1,prob=c(0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1),na.ram=T)  

bre<-c(135,525,741,885,1029,1155,1284,1431,1614,2090,10725) 

table(cut(d1,bre,right=F)) 

 

#quantile(d2,prob=c(0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1),na.ram=T)  

#bre<-c(1,51,71,85,102,121,144,182,228,314,3209) 

#table(cut(d2,bre,right=F)) 
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#quantile(d3,prob=c(0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1),na.ram=T)  

#bre<-c(2,147,180,206,229,253,282,314,363,463,2016) 

#table(cut(d3,bre,right=F)) 

  

#quantile(d1)  

#bre<-c(135,816,1155,10725) 

#table(cut(d1,bre,right=F)) 

 

#library(fBasics) 

#kurtosis(d1) 

#skewness(d1) 

#kurtosis(d2) 

#skewness(d2) 

#kurtosis(d3) 

#skewness(d3) 

#kurtosis(inten) 

#skewness(inten) 

 

 

#plot(inten~d1,xlim=c(0,6000)) 

 

#par(mfrow = c(1,2)) 

#qqnorm(d1,xlab="d1",ylab="Length") 

#qqnorm(inten,xlab="inten",ylab="Length") 

 

 

#hist(d1,xlim=c(0,4000),xlab="length of coding region without intron") 

#hist(d2,xlim=c(0,1000),xlab="length of noncoding region (5'UTR) without intron") 

#hist(d3,xlim=c(0,1100),xlab="length of noncoding region (3'UTR) without intron") 

#hist(inten,xlim=c(0,40000),xlab="average gene expression intensity") 

 

 

library(quantreg) 

 

 plot(d1,inten,panel.first = grid(8,8),pch = 1, cex = 1.2,xlab="length of coding region without 

intron",ylab="average gene expression intensity",col="grey") 

 

 #plot(d3,inten,panel.first = grid(8,8),pch = 1, cex = 1.2,xlab="length of noncoding region (3'UTR) without 

intron",ylab="average gene expression intensity",col="grey",xlim=c(0,1800)) 
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 #plot(d2,inten,panel.first = grid(8,8),pch = 1, cex = 1.2,xlab="length of noncoding region (5'UTR) without 

intron",ylab="average gene expression intensity",col="grey",xlim=c(0,1000)) 

 

 

tau_set<-seq(0.30,0.70,0.10) 

 

for (tau_value in tau_set) 

{ 

 ##################################### 

 ##### estimate inten~d1+d1^2 quantile regression 

 ##################################### 

   

 #print(fit.ml<-lm(inten~d3+I(d3^2))) 

 #print(fit.ml.summary<-summary(fit.ml)) 

 #print(AIC(fit.ml)) 

 

 

 print(fit.l<-rq(inten~d1+I(d1^2),tau=tau_value)) 

 print(fit.l.summary<-summary(fit.l,se="iid")) 

 #print(AIC(fit.l)) 

 

 #print(fit.l1<-rq(inten~d3+I(d3^2),tau=tau_value)) 

 #print(fit.l1.summary<-summary(fit.l1,se="iid")) 

 #print(AIC(fit.l1)) 

  

 #print(fit.l2<-rq(inten~d2,tau=tau_value)) 

 #print(fit.l2.summary<-summary(fit.l2,se="iid")) 

 #print(AIC(fit.l2)) 

 

 #fit.ml.value <-fit.ml$coef[1] + fit.ml$coef[2] * d3 + fit.ml$coef[3] * d3^2  

 

 fit.l.value <-fit.l$coef[1] + fit.l$coef[2] * d1 + fit.l$coef[3] * d1^2  

 

 #fit.l1.value <-fit.l1$coef[1] + fit.l1$coef[2] * d3 + fit.l1$coef[3] * d3^2  

 

 #fit.l2.value <-fit.l2$coef[1] + fit.l2$coef[2] * d2  

 

 lines(d1,fit.l.value,col="brown") 

 #lines(d3,fit.l1.value,col="blue") 

 #lines(d3,fit.ml.value,col="yellow") 
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 #lines(d2,fit.l2.value,col="red") 

} 

 

plot(summary(rq(inten~d1+I(d1^2),tau=tau_set,data=chr)), parm=1,mar=c(5,5,4,2)+0.2 

,ylab="Intercept",xlab="Quantile") 

plot(summary(rq(inten~d1+I(d1^2),tau=tau_set,data=chr)), parm=2,mar=c(5,5,4,2)+0.2 

,ylab="The length of coding region",xlab="Quantile") 

plot(summary(rq(inten~d1+I(d1^2),tau=tau_set,data=chr)), parm=3,mar=c(5,5,4,2)+0.2 

,ylab="The length of coding region square",xlab="Quantile") 

 

 

library(quantreg) 

 

tau_set <- seq(0.3,0.7,0.1) 

 

 

for (tau_value in tau_set) 

{ 

 

 ##################################### 

 ##### estimate inten~d1+d2+d3 quantile regression 

 ##################################### 

 

 print(fit.poly<-rq(inten~d1+I(d1^2)+d2+d3+I(d3^2),tau=tau_value)) 

 print(fit.poly.summary<-summary(fit.poly,se="iid")) 

 print(AIC(fit.poly)) 

} 

plot(summary(rq(inten~d1+I(d1^2)+d2+d3+I(d3^2),tau=tau_set,data=chr)), parm=1,mar=c(5,5,4,2)+0.2 

,ylab="Intercept",xlab="Quantile") 

plot(summary(rq(inten~d1+I(d1^2)+d2+d3+I(d3^2),tau=tau_set,data=chr)), parm=2,mar=c(5,5,4,2)+0.2 

,ylab="The length of coding region",xlab="Quantile") 

plot(summary(rq(inten~d1+I(d1^2)+d2+d3+I(d3^2),tau=tau_set,data=chr)), parm=3,mar=c(5,5,4,2)+0.2 

,ylab="The length of coding region square",xlab="Quantile") 

plot(summary(rq(inten~d1+I(d1^2)+d2+d3+I(d3^2),tau=tau_set,data=chr)), parm=4,mar=c(5,5,4,2)+0.2 

,ylab="The length of 5'UTR region",xlab="Quantile") 

plot(summary(rq(inten~d1+I(d1^2)+d2+d3+I(d3^2),tau=tau_set,data=chr)), parm=5,mar=c(5,5,4,2)+0.2 

,ylab="The length of 3'UTR region",xlab="Quantile") 

plot(summary(rq(inten~d1+I(d1^2)+d2+d3+I(d3^2),tau=tau_set,data=chr)), parm=6,mar=c(5,5,4,2)+0.2 

,ylab="The length of 3'UTR region square",xlab="Quantile") 
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Normalisation of Expression data using MAS5 in R 

 

local({pkg <- select.list(sort(.packages(all.available = TRUE)),graphics=TRUE) 

if(nchar(pkg)) library(pkg, character.only=TRUE)}) 

affy.data = ReadAffy() 

eset.mas5 = mas5(affy.data) 

exprSet.nologs = exprs(eset.mas5) 

colnames(exprSet.nologs) 

write.table(exprSet, file="DmResults.txt", quote=F, sep="\t") 

data.mas5calls = mas5calls(affy.data) 

data.mas5calls.calls = exprs(data.mas5calls) 

write.table(data.mas5calls.calls, file="Dmcalls.txt", quote=F, sep="\t") 

write.table(exprSet, file="DmResults.txt", quote=F, sep="\t") 

exprSet = log(exprSet.nologs, 2) 

write.table(exprSet, file="DmResults.txt", quote=F, sep="\t") 

local({pkg <- select.list(sort(.packages(all.available = TRUE)),graphics=TRUE) 

if(nchar(pkg)) library(pkg, character.only=TRUE)}) 

eset.rma = JustRMA() 

local({pkg <- select.list(sort(.packages(all.available = TRUE)),graphics=TRUE) 

if(nchar(pkg)) library(pkg, character.only=TRUE)}) 

library(made4) 

Overview(eset) 

overview(eset) 

overview(eset.mas5) 

 


	Investigation of the length distributions of coding and noncoding sequences in relation to gene architecture, function, and expression
	Recommended Citation

	tmp.1468794566.pdf.H8Jao

