19 research outputs found

    Modeling Documents with Deep Boltzmann Machines

    Full text link
    We introduce a Deep Boltzmann Machine model suitable for modeling and extracting latent semantic representations from a large unstructured collection of documents. We overcome the apparent difficulty of training a DBM with judicious parameter tying. This parameter tying enables an efficient pretraining algorithm and a state initialization scheme that aids inference. The model can be trained just as efficiently as a standard Restricted Boltzmann Machine. Our experiments show that the model assigns better log probability to unseen data than the Replicated Softmax model. Features extracted from our model outperform LDA, Replicated Softmax, and DocNADE models on document retrieval and document classification tasks.Comment: Appears in Proceedings of the Twenty-Ninth Conference on Uncertainty in Artificial Intelligence (UAI2013

    Deep Temporal-Recurrent-Replicated-Softmax for Topical Trends over Time

    Full text link
    Dynamic topic modeling facilitates the identification of topical trends over time in temporal collections of unstructured documents. We introduce a novel unsupervised neural dynamic topic model named as Recurrent Neural Network-Replicated Softmax Model (RNNRSM), where the discovered topics at each time influence the topic discovery in the subsequent time steps. We account for the temporal ordering of documents by explicitly modeling a joint distribution of latent topical dependencies over time, using distributional estimators with temporal recurrent connections. Applying RNN-RSM to 19 years of articles on NLP research, we demonstrate that compared to state-of-the art topic models, RNNRSM shows better generalization, topic interpretation, evolution and trends. We also introduce a metric (named as SPAN) to quantify the capability of dynamic topic model to capture word evolution in topics over time.Comment: In Proceedings of the 16th Annual Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (NAACL-HLT 2018

    Mixed-variate restricted Boltzmann machines

    Get PDF
    Modern datasets are becoming heterogeneous. To this end, we present in this paper Mixed- Variate Restricted Boltzmann Machines for simultaneously modelling variables of multiple types and modalities, including binary and continuous responses, categorical options, multicategorical choices, ordinal assessment and category-ranked preferences. Dependency among variables is modeled using latent binary variables, each of which can be interpreted as a particular hidden aspect of the data. The proposed model, similar to the standard RBMs, allows fast evaluation of the posterior for the latent variables. Hence, it is naturally suitable for many common tasks including, but not limited to, (a) as a pre-processing step to convert complex input data into a more convenient vectorial representation through the latent posteriors, thereby oering a dimensionality reduction capacity, (b) as a classier supporting binary, multiclass, multilabel, and label-ranking outputs, or a regression tool for continuous outputs and (c) as a data completion tool for multimodal and heterogeneous data. We evaluate the proposed model on a large-scale dataset using the world opinion survey results on three tasks: feature extraction and visualization, data completion and prediction.<br /

    Master of Science

    Get PDF
    thesisRecent developments have shown that restricted Boltzmann machines (RBMs) are useful in learning the features of a given dataset in an unsupervised manner. In the case of digital images, RBMs consider the image pixels as a set of real-valued random variables, disregarding their spatial layout. However, as we know, each image pixel is correlated with its neighboring pixels, and direct modeling of this correlation might help in learning. Therefore, this thesis proposes using a Markov random field prior on the weights of the RBM model, which is designed to model these correlations between neighboring pixels. We compared the test classification error of our model with that of a traditional RBM with no prior on the weights and with RBMs with L1 and L2 regularization prior on the weights. We used the NIST dataset, which consists of images of handwritten digits for our experiments
    corecore