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ABSTRACT

Recent developments have shown that restricted Boltzmann machines (RBMs) are use-

ful in learning the features of a given dataset in an unsupervised manner. In the case of

digital images, RBMs consider the image pixels as a set of real-valued random variables,

disregarding their spatial layout. However, as we know, each image pixel is correlated

with its neighboring pixels, and direct modeling of this correlation might help in learning.

Therefore, this thesis proposes using a Markov random field prior on the weights of the

RBM model, which is designed to model these correlations between neighboring pixels.

We compared the test classification error of our model with that of a traditional RBM

with no prior on the weights and with RBMs with L1 and L2 regularization prior on the

weights. We used the MNIST dataset, which consists of images of handwritten digits for

our experiments.
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λ weight decay
sig sigmoid function
k number of sampling steps in Gibbs sampling
σ standard deviation of Gaussian distribution used for initialization of

weight matrix
S represents whole training set
S′ represents a subset of the training set
η learning rate
p(x) probability of random variable x; x is a vector
P(X) marginal probability of random variable X, where X is a vector of size 28 x 28
s number of nodes at visible layer
t number of nodes at hidden layer
v represents visible layer
h represents hidden layer
E(X) total energy of random variable X
Z potential function or normalization constant
L likelihood function
l loss-function
θ represents all the hyper-parameters
F (x) free energy of random variable x
e Euler’s number; approximately equal to 2.718
W weight matrix of size sXt
b bias vector at visible layer
c bias vector at hidden layer
R real-number
wij weight of edge between ith visible node and jth hidden node
∆ represents hyper-parameter after update
∂ represents partial derivative symbol
K Laplacian kernel
K′ bi-harmonic 13 stencil kernel
∇ gradient operator
∗ convolution operator
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CHAPTER 1

INTRODUCTION

In the last few years, many models have been designed using the idea behind the re-

stricted Boltzmann machine (RBM) [8]. Such models have become popular in data analysis

and pattern recognition, with various applications including image processing [14, 27, 35],

classification [19, 21, 23, 24, 29, 30], feature learning [4, 11, 26], object detection [3, 13, 26],

learning patterns [31,32], document representation [16,20,36], movie recommendation [28],

and so on. RBMs are a special case of Boltzmann machine [4]. The Boltzmann machine is a

type of Markov random field [12] with stochastic processing units. A Boltzmann machine

is a network with symmetrically connected neuronlike units that make stochastic decisions

about whether to be on or off. Boltzmann machines have a simple learning algorithm

that allows them to discover interesting features that represent complex relationships in

training data. The structure of a Boltzmann machine is shown in Figure 1.1. Here, the

learning is very slow with many layers of feature detectors, but it is fast in RBMs [9] that

have a single layer of feature detectors. Many hidden layers can be learned efficiently by

composing RBMs with each layer feature activation behaving as input for the next layer.

In Boltzmann machines there are two types of units: one is the visible unit and the other

is the hidden unit. RBMs have both types of units arranged in two layers. The visible units

constitute the input layer, where the visible unit for each pixel is a digital image or a word

representation from a sentence. The hidden layer learns the model dependencies between

the observations (features of image pixels and their dependencies, in case of image pixels).

They are viewed as nonlinear feature detectors. In the RBM setting, each neuron/unit in

one layer is connected to all the units in the other layer. However, there is no connection

between neurons in the same layer thus the name ”restricted.” RBM structure is shown in

Figure 1.2.
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Figure 1.1: Boltzmann machine [5].

Figure 1.2: restricted Boltzmann machine.
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Since the 1980s, RBM design has come a long way and now they are used in more

interesting and complex problems due to an increase in computational power and the de-

velopment of new learning strategies. The learning in the case of RBM is tractable and eas-

ily approximated by sampling in comparison to other neural network models. Currently,

RBMs are popular as building blocks for deep neural networks, where trained/learned

features of the hidden layer of one RBM behave as input to another RBM or another

model for detecting more complex features. By stacking RBMs in this way, one can learn

features to get more detailed high-level representations. The same deep representation

concept makes the RBMs useful in classification and regression using supervised learning

algorithms.

These Boltzmann machines can be regarded as probabilistic graphical models, namely

undirected graphical models known as Markov random fields. The theoretical journey

of graphical models, especially Markov random fields, results in the development of var-

ious algorithms. Therefore, in the next chapter we are going to give examples of MRF

and graphical models in detail. Training of an RBM is usually based on gradient-based

maximization of the likelihood of the RBM. Solving the maximization of likelihood of an

undirected graphical model or its gradient is computationally expensive. Thus, sampling-

based methods are employed to approximate the gradient of the likelihood. Generally,

sampling is not straightforward in the case of undirected graphical models. However, for

RBM, the Markov Chain Monte Carlo (MCMC) method of Gibbs sampling is an efficient

method for sampling the target distribution. These methods, along with general MCMC

theory, will also be discussed in the next chapter. RBMs are energy-based models and

share the idea of solving the likelihood maximization. Therefore, it becomes necessary to

understand the idea of energy-based models (EBM).

The purpose of this thesis is to apply spatial Markov random field priors during train-

ing of RBMs in order to get a better fit for the data. The idea of using an MRF prior

comes from the correlation of digital image pixels, which share their properties with their

neighbouring pixels. Therefore, we present experiments to compare this prior with other

possible priors on RBMs during training with various model settings. The idea of an MRF

prior on an RBM is discussed in Chapter 3 and the experimental setup and results are

mentioned in Chapter 4 of this thesis.



CHAPTER 2

BACKGROUND

Boltzmann machines are probabilistic graphical models with undirected graphs, also

known as Markov random fields. This chapter will give all the required background to

understand energy-based models and specifically restricted Boltzmann machines (RBM) in

particular. Understanding the concept of a restricted Boltzmann machine and its training

requires knowledge of multiple areas. Here, we will describe the required background to

understand RBMs, their training and learning, along with general likelihood representa-

tions for the model.

2.1 Graphical Models
A probabilistic graphical model (PGM) [22] is a probabilistic model in which a graph

represents the conditional dependent or independent structure between random variables,

which are represented as nodes of a graph. They encode conditional independence as-

sumptions or factorization of joint probabilities. A directed graphical model is known as

a Bayesian network, and an undirected graphical model is called a Markov random field

(MRF). Both families encompass the properties of factorization and independence, but they

differ in the set of conditional independences they can encode and the factorizations of the

distribution that they induce.

2.1.1 Undirected Graphs

An undirected graph is an ordered pair G = (V, E), where V represents a finite set of

nodes and E represents a set of undirected edges. An edge is a connecting line of a pair

of nodes for V. If there is an edge between nodes u and v; {u, v} ∈ E, then v belongs to

the neighbourhood of u and vice versa. The neighbourhood Nu = {v ∈ V : {u, v} ∈ E}

of u is defined by the set of nodes directly connecting to u. An example of an undirected
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graph is shown in Figure 2.1, where {v3, v4, v6} are the neighbours of node v5. These

connecting edges define dependencies between the random variables represented as nodes

in the graph.

A clique is a subset of V in which all nodes are pairwise connected. A clique is max-

imal if no node can be added such that the resulting set will still be a clique. A set

of random variables X is called a Markov random field if the joint probability distri-

bution P fulfills the Markov property with respect to the graph. The property will be

fulfilled if a node (representing a random variable) is conditionally independent of all

other variables given its neighbours. The probability of x could be written in terms of the

nonnegative functions {ψc}c∈C where C is set of all possible maximal cliques, then P(x)

will be P(x) = 1
Z ∏c∈C ψc(x). The normalization constant Z = ∑x ∏c∈C ψc(x) is called

the partition function. The same becomes P(x) = 1
Z e−E(x) with E = ∑c∈C ln ψc(xc). This

distribution with all nonnegative factors is called a Gibbs distribution.

2.2 Markov Chain and Markov Chain Monte Carlo Techniques
When generating samples from a distribution P(x), sometimes the target distribution

does not yield samples. One solution is to construct a Markov chain where the stationary

distribution converges to P.

Figure 2.1: Undirected graphical model, with G = (V,E), V ∈ {v1, . . . , v7} where subset
{v4, v5, v6, v7} forms a maximal clique and (v4 ⊥ v2|v1, v5, v7) shows conditional

independence.
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2.2.1 Markov Chain

A Markov chain is a time-discrete stochastic process, where the next state of the system

depends only on the current state and not the sequence of events which occurred earlier.

Markov chains consist of discrete random variables with a finite set of possible values.

Formally, a first order Markov chain is defined as a series of random variables x(1), . . . , x(M)

such that the following conditional independence property holds for m ∈ {1, . . . , M− 1}.

P(x(m+1)|x(1), . . . , x(m)) = P(x(m+1)|x(m)). (2.1)

Equation 2.1 is referred to as a Markov property. We can then specify the Markov

chain by giving the probability distribution for the initial variable P(x(0)) together with

the conditional probabilities for subsequent variables in the form of transition probabilities

Tm(x(m), x(m+1)) ≡ P(x(m+1)|x(m)). The Markov chain is called homogeneous if the transi-

tion probability is the same for all m. If P(x(m+1)|x(m)) = P in the case of a homogeneous

Markov chain, and if the starting distribution is µ(0), the distribution µ(k) after k discrete

times will be given by µ(k)T = µ(0)TP(k).

A distribution is said to be invariant or stationary with respect to a Markov chain if

each step in the chain leaves that distribution invariant, that is, a distribution π for which

πT = πTP.

A sufficient condition for ensuring that the required distribution P(x) is invariant is

to choose the transition probability that satisfies the condition π(i)Pij = π(j)Pji. This is

called the “detailed balance condition.” Our goal is to use a Markov chain to sample from

a given distribution. We can achieve this if we set up a Markov chain such that the desired

distribution is invariant.

2.2.2 Gibbs Sampling

Gibbs Sampling [17] is a simple and widely applicable Markov chain Monte Carlo al-

gorithm that can be seen as a special case of Metropolis-Hastings algorithm [1]. It is a

simple MCMC algorithm for producing samples from the joint probability distribution of

multiple random variables. The basic idea is to construct a chain by updating each variable

based on its conditional distribution given the state of the other random variables.

Consider a Markov random field x = (x1, x2, . . . , xN) with respect to an undirected

graph G = (V, E), where V ∈ {1, 2, . . . , N). As each step of the Gibbs sampling procedure
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involves replacing the value of one of the variables by a value drawn from the distribution

of that variable conditioned on the values from the remaining variables. Thus we replace

value xi by a value drawn from the distribution P(xi|x−i), where xi denotes the ith compo-

nent of X and x−i denotes x1, . . . , xN but with xi omitted. This procedure is followed for

each variable to be updated randomly or sequentially from some distribution.

Algorithm 1 Gibbs Sampling

1. Initialize {xi : i = 1, . . . , N}.

2. For τ = 1, . . . , T:

• sample x(τ+1)
1 from P̃(x1|xτ

2 , xτ
3 , . . . , xτ

N). ‘

• sample x(τ+1)
2 from P̃(x2|x(τ+1)

1 , xτ
3 , . . . , xτ

N).
...

• sample x(τ+1)
j from P̃(xj|x(τ+1)

1 , . . . , x(τ+1)
(j−1) , xτ

(j+1), . . . , xτ
N).

...

• sample x(τ+1)
N from P̃(xN |x(τ+1)

1 , x(τ+1)
2 , . . . , x(τ+1)

(N−1)).

2.2.3 Metropolis-Hastings Algorithm

Gibbs sampling belongs to the broader class of Metropolis-Hastings algorithms [1]. All

MCMC algorithms of this class generate the transition of Markov chain in two steps. In

the first step, a candidate state is picked at random from the proposed distribution. In the

second step, the candidate state which is the new state of the Markov chain is accepted

with an acceptance probability ensuring that a detailed balance holds.

2.3 Energy-Based Models (EBM)
Energy based models [6] capture dependencies between variables by associating a

scalar energy to each configuration of the variables. Most probabilistic models can be

viewed as special types of energy-based models in which the energy function satisfies

certain normalization conditions, and the loss function is the negative log-likelihood that

is minimized by learning. Many existing models could be expressed simply through the
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Algorithm 2 Metropolis-Hastings Algorithm [1]

1. Initialization: pick an initial state x at random;

2. Randomly pick a state x′ according to g(x′|x);

3. Accept the state according to α(x′|x), where α(x′|x) = min
(

1, P(x′)
P(x)

g(x|x′)
g(x′|x)

)
;

If not accepted, transition doesn’t take place, and so there is no need to update
anything. Else, the system transits to x’

4. Go to 2 until T states were generated;

5. Save the state x, go to 2.

framework of energy based models.

According to EBM, there is energy associated with each random variable, higher en-

ergy means lower probability. Energy-based probabilistic models define the probabilistic

distribution as :

P(X) =
e−E(X)

Z
. (2.2)

The normalization factor Z is known as the Partition function by the analogy from the

physical systems, with respect to energy-based models.

Z = ∑
X

e−E(X).

Energy based models can be learned by performing a stochastic gradient descent on

the experimental negative log-likelihood of the training data. Optimizing the loss-function

with stochastic gradient methods is often more efficient than black box convex optimiza-

tion methods. The log-likelihood of the data and loss function is defined as:

L(θ,D) = 1
N ∑

xi∈D
log p(xi). (2.3)

`(θ,D) = −L(θ,D). (2.4)

In most of the cases, we do not observe the x fully, therefore, to increase the expressive-

ness of the model, we introduce nonobserved variables (or latent variables) h. Then, we

can write EBM with hidden units as,
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P(x) = ∑
h

P(x, h) = ∑
h

e−E(x,h)

Z
. (2.5)

To map this formulation similar to Equation 2.2, we introduce another notation called

Free Energy, which is defined as follows:

F (x) = − log ∑
h

e−E(x,h). (2.6)

Therefore, we can write,

P(x) =
e−F (x)

Z
, with Z = ∑

x
e−F (x). (2.7)

The gradient of Equation 2.7 with respect to all the parameters θ of the model can be

calculated as described below:

∂ log p(x)
∂θ

= − ∂

∂θ
log

e−F (x)

Z
,

= − ∂

∂θ
(−F (x)− log Z) ,

= − ∂

∂θ

(
−F (x)− log ∑

x
e−F (x)

)
,

=
∂

∂θ
F (x)−∑

x
F (x̃),

=
∂

∂θ
F (x)−∑

x̃
p(x̃)

∂

∂θ
F (x̃),

=
∂

∂θ
F (x)−∑

x̃
Ep

[
∂

∂θ
F (x)

]
,

∂ log p(x)
∂θ

=
∂

∂θ
F (x)− 1

|N | ∑
x̃∈N

∂

∂θ
F (x̃). (2.8)

Note that the above gradient contains two terms, which are referred to as positive and

negative phases in Equation 2.8 [8]. The first term increases the probability of training

data while the second term decreases the probability of samples generated by the model.

This is why they are named positive and negative phases –not because of their sign in the

above Equation 2.8.

Samples used to estimate the negative phase gradient are referred as negative particles

and here referred as N . The samples make the expectation over all possible configura-

tions of input x tractable. These samples are sampled according to P (i.e., using MCMC
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algorithm). With the above equation we have a stochastic algorithm for learning an EBM.

Markov chain Monte Carlo methods for sampling are well suited for models such as RBM.

2.4 Restricted Boltzmann Machine
An RBM is a Markov random field associated with a bipartite undirected graph as

shown in Figure 1.2. It consists of s visible units V = (v1, v2, . . . , vs), which represent the

input observed data, and t hidden units H = (h1, h2, . . . , ht) to capture the dependencies

between the observed data, that is, the combination of features learned by the model.

Binary RBMs (V, H) take values (v, h) ∈ {0, 1}s+t, and the joint probability distribution

under the RBM model is given by

P(v, h) =
e−E(v,h)

Z
,

with energy function defined as:

E(v, h) = −b′v− c′h− h′Wv, (2.9)

where W is a matrix of real valued weights of size s× t, and b and c are the biases of the

visible and hidden units respectively. To map this formula similar to P(x) = e−E(x)
Z , we

define free energy of RBM and it is given as:

F (v) = ∑
h

E(v, h),

= −b′v−∑
i

log ∑
hi

ehi(ci+Wiv).

P(v, h) =
e−F (v)

Z
.

As we have already stated in Chapter 1, an RBM has connections only between the

layer of visible variables and the layer of hidden variables, but not between the nodes of

the same layer. In the probabilistic context, this means that the variables at the hidden

layer are independent given the state of the visible units, and vice versa.

P(h|v) =
t

∏
i=1

P(hi|v) (2.10)

P(v|h) =
s

∏
j=1

P(vj|h) (2.11)

The conditional independence between the variables in the same layer makes the Gibbs

sampling easy. Instead of sampling new values for all variables one by one, the state of
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all variables in one layer can be sampled jointly. Thus, we can perform Gibbs sampling

in 2 steps: first, sample the new state of hidden variables given observed data P(h|v) as

described in Equation 2.10 and second, sample the new state of visible variables given the

new state of hidden variables P(v|h) as in Equation 2.11. This is referred to as block Gibbs

sampling [14].

2.4.1 Neural Network With Binary Units

The conditional probability that a single unit equals one can be interpreted as a sigmoid

activation function sig(x) = 1
1−e−x because

P(hi = 1|v) = sig(ci + Wiv) (2.12)

and

P(vj = 1|h) = sig(bj + W ′j h). (2.13)

Therefore, the RBM is viewed as a deterministic function {0, 1}s → Rt that maps an

input v ∈ {0, 1}s to y ∈ Rt with yi = P(Hi = 1|v). That is, an observation is mapped to

the expected value of the hidden neuron given the observation.

2.4.2 Log-Likelihood

As mentioned in the paper [14], the log-likelihood gradient of an MRF can be written

in terms of the sum of two expectations as described in Equation 2.14.

∂logL(θ|v)
∂θ

= −∑
h

p(h|v)∂E(v, h)
∂θ

+ ∑
v,h

p(v, h)
∂E(v, h)

∂θ
. (2.14)

The first term in Equation 2.14 is the expectation of an energy gradient under the condi-

tional distribution of the hidden variables given a training example v. It can be computed

efficiently because it factorizes nicely. For example, with respect to the parameter wij we

get:

∑
h

p(h|v)∂E(v, h)
∂wij

= ∑
h

p(h|v)hivj

= ∑
h

t

∏
r=1

p(hr|v)hivj = ∑
hi

∑
h−i

p(hi|v)p(h−i|v)hivj.

After rearranging the equation:

= ∑
hi

p(hi|v)hivj ∑
h−i

p(h−i|v) = p(Hi = 1|v)vj.
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∑
h

p(h|v)∂E(v, h)
∂wij

= sig

(
s

∑
j=1

wijvj + ci

)
vj . (2.15)

As we know, the joint probability could be written in terms of conditional probability,

p(v, h) = p(v)p(h|v) = p(h)p(v|h). Therefore, the second term in Equation 2.14 can be

written as ∑v p(v)∑h p(h|v) ∂E(v,h)
∂θ or ∑h p(h)∑v p(v|h) ∂E(v,h)

∂θ . However, the computation

remains intractable for regular sized RBMs because its complexity is still exponential in

the size of the smallest layer (the outer sum still runs over either 2s or 2t states).

Using the simplified derivation of the first term obtained above in the log-likelihood

equation with respect to the weight wij from Equation 2.15, the log-likelihood becomes:

∂logL(θ|v)
∂wij

= p(Hi = 1|v)vj −∑
v

p(v)∑
h

p(h|v)hivj,

= p(Hi = 1|v)vj −∑
v

p(v)p(Hi = 1|v)vj.

This gives the often stated rule:

∑
v∈S

∂logL(θ|v)
∂wij

∝ 〈vihj〉data − 〈vihj〉model . (2.16)

In the same way, we can obtain the derivatives with respect to the bias parameter bj of

the jth visible variable:
∂logL(θ|v)

∂bj
= vj −∑

v
p(v)vj. (2.17)

And with respect to the bias parameter ci of the ith hidden variable:

∂logL(θ|v)
∂ci

= p(Hi = 1|v)−∑
v

p(v)p(Hi = 1|v). (2.18)

The second term in the log-likelihood gradient with respect to model parameters is

approximated by calculating the expectation of samples using the model distribution.

These samples are generated from the model using the Gibbs sampling as described in

Figure 2.2, which requires running the Markov chain long enough to ensure convergence.

Therefore, we need a method to reduce the computational cost of the Monte Carlo Markov

chain using other efficient algorithms.

2.4.3 Algorithms to Approximate Log-Likelihood Gradients

For training RBM, we need to have some method for approximating the estimation

of likelihood with model distribution. All training algorithms for RBMs approximate
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Figure 2.2: Gibbs sampling in RBM (referenced from [8]).

the log-likelihood gradient given some data and perform gradient descent on these ap-

proximations. Some of those algorithms for approximating log-likelihood gradients are

described here, starting with contrastive divergence learning.

2.4.3.1 Contrastive Divergence

To calculate expectation of the samples obtained from the model distribution, first we

need to generate samples. To obtain an unbiased estimate of a log-likelihood gradient

using MCMC typically requires many sampling steps. However, it has been shown that

this estimate can be obtained after running the chain for just a few steps of the model

training. This learning algorithm is known as contrastive divergence (CD) [18]. This

algorithm is the standard way of training RBMs.

The idea of CD is simple, instead of approximating the model term in a log-likelihood

gradient with a sample from the distribution (which is obtained by running a Markov

chain and sampling until the convergence condition is not met), we run a Gibbs chain for

k-steps (usually k = 1 works [18]).

Initialize the chain with sample v(0) and run the chain for k-steps and obtain sample

v(k); each step consists of obtaining the h using p(h|v(t)) and then v(r+1) from p(v|h(r)) as

defined in Equation 2.12 and 2.13. Then the gradient of log-likelihood with respect to all

the parameters θ for one training example v(0) is then approximated using Equation 2.16,

2.17 and 2.18.

This operation for each training sample is costly in terms of computational burden.

Therefore, the training is done in batches of a fixed size, each batch is called mini-batch,

which is the subset of the overall training data. This process is efficient because it reduces

the computational burden between parameter updates.
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Algorithm 3 k-step contrastive divergence
1: for v ∈ S′ do
2: v(0) ← v
3: for r = 0, . . . , k− 1 do
4: for i = 1, . . . , t do
5: sample h(r)i ∼ p(hi|v(r))
6: ;
7: end for
8: for j = 1, . . . , s do
9: sample v(r+1)

j ∼ p(vj|h(r))
10: ;
11: end for
12: end for
13: for i = 1, . . . , t, j = 1, . . . , s do
14: ∆wij ← ∆wij + p(Hi = 1|v(0)).v(0)j − p(Hi = 1|v(k)).v(k)j
15: end for
16: for i = 1, . . . , t do
17: ∆ci ← ∆ci + p(Hi = 1|v(0) − p(Hi = 1|v(k))
18: end for
19: for j = 1, . . . , s do
20: ∆bj ← ∆bj + v(0)j − v(k)j
21: end for
22: end for

Usually, the stationary distribution is not always reached after k-sampling steps. This

v(k) is not a sample from the model distribution, and the equation of the gradient update

step in CD is biased, but the bias vanishes as k→ ∞. CD-1 is at present the most commonly

used algorithm for RBM training.

2.4.3.2 Persistent Contrastive Divergence (PCD)

Generally CD-n is preferred over CD-1, if enough running time is available. Our goal

here is to generate samples from model distribution to approximate the expectation. The

standard way is to run a Markov chain, but running a Markov chain for many steps is

time consuming. However, in between the model changes slightly. We can take this

idea and initialize the Markov chain at the stage in which it ended in the previous step.

This initialization will be very close to the model distribution, even though the model

has changed slightly in the parameter update. In the case of RBMs, there is only one

distribution from which we need samples. Thus, we can use this algorithm for training

mini-batches. Using only a few data points from training samples and generating few
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samples from model distribution to calculate the negative samples. That is, one keeps a

“persistent” chain which we run for k-Gibbs steps. After parameter update the initial state

of the current Gibbs chain is equal to v(k) from the previous update step.

The PCD algorithm [33] is further studied for potential refinement and the variant is

called fast-persistent contrastive divergence (FPCD) [34]. FPCD tries fast mixing of the

Gibbs chain by introducing additional parameters w f
ij, b f

j , c f
i referred to as fast parameters.

This set of parameters is only used in sampling not in the model itself. They place a role

when calculating the parameter update during Gibbs sampling. The general parameters

now become the sum of the regular parameters and the fast parameter, that is, the Gibbs

sampling is based on probabilities:

p̃(Hi = 1|v) = sig

(
s

∑
j=1

(wij + w f
ij)vj + (cj + c f

j )

)
,

and

p̃(Vi = 1|h) = sig

(
t

∑
i=1

(wij + w f
ij)hi + (bi + b f

i )

)
.

There is no change in the learning update rule.

There is another promising sampling technique for RBM known as parallel tempering

[15] which introduces a supplementary Gibbs chain that samples from increasingly smooth

replicas of the original distribution.



CHAPTER 3

MARKOV RANDOM FIELD PRIOR ON RBM

This chapter will formulate the idea of a Markov random field prior on RBM. We will

define what an MRF prior is in the context of RBMs and how it will affect the log-likelihood

calculation of RBM with a spatial MRF prior.

3.1 Markov Random Field Prior
When we train the RBM model using no prior and plot the filters that are obtained after

training on MNIST dataset, we see that they look very noisy, which can be seen in Figure

3.1. That’s where the proposed idea in this thesis of a spatial MRF prior comes in. The idea

comes from the fact that image pixels share correlation with immediate neighbors, but

they are conditionally independent from the pixels which are farther away. RBM model

weights can be visualized as a stack of images size 28x28 as shown in Figure 3.2. Although

before diving into MRF prior we have evaluated our RBM model with respect to L1 and L2

regularization on weights for smoothing of images filters.

The distribution of p(W) is a Gaussian distribution, where mean of the distribution is

the average of the value learned from its neighbors.

p(W) ∝ exp

(
−λ ∑

i,j

(
wi,j −

1
4
(
wi−1,j + wi+1,j + wi,j−1 + wi,j+1

))2
)

.

The effect mentioned above can be obtained by applying the convolution operator on

weight filter and Laplacian kernel. The Laplacian L(x, y) of an image with pixel intensity

values I(x, y) is given by:

L(x, y) =
∂2 I
∂x2 +

∂2 I
∂y2 .

Since the input weight filter is represented as a set of discrete pixels, we have to find a

discrete convolution kernel that can approximate the second derivatives in the definition

of the Laplacian, and that kernel is:
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Figure 3.1: RBM weights leaned without any regularization with h = 500 after 15 epochs
of the training set.

Figure 3.2: RBM weights.
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K =

0 1 0
1 −4 1
0 1 0


3.1.1 Evaluating Gradient of Log-Likelihood

The log-likelihood of RBM will incorporate one more term corresponding to a spatial

MRF prior. Therefore, the log-likelihood could be written as:

∂

∂θ
logL(θ|v) = −∑

h
p(h|v) ∂

∂θ
E(v.h) + ∑

v,h
p(v, h)

∂

∂θ
E(v, h)− ∂

∂θ
λ||∇W||2. (3.1)

Here, θ = {W, b, c}; the parameters of the RBM model. Where the Equation 3.1 will have

a last term 0 when the gradient will be taken with respect to b & c, that is, the parameter

update for b & c will remain unchanged from general RBM with no prior to the RBM with

spatial MRF prior. The gradient update change will occur only when trying to find the

optimized W.

Equation 3.1, after writing in terms of convolution with Laplacian kernel results in:

∂

∂θ
logL(θ|v) = −∑

h
p(h|v) ∂

∂θ
E(v.h) + ∑

v,h
p(v, h)

∂

∂θ
E(v, h)− ∂

∂θ
λ||W ∗ K||2. (3.2)

Gradient of the log-likelihood with respect to W mentioned in Equation 3.2 will become:

∂

∂W
logL(θ|v) = −∑

h
p(h|v) ∂

∂W
E(v.h) + ∑

v,h
p(v, h)

∂

∂W
E(v, h)− 2λW ∗ K ∗ K. (3.3)

The above Equation 3.3 in gradient of spatial MRF prior will become biharmonic with

discrete random variables. The classical 13-point stencil for the biharmonic operator is

easily derived by applying the standard 5-point Laplacian operator twice, as in Equation

3.4 [7]. Therefore, the second order gradient of spatial MRF prior with respect to W will

become equivalent to:

∇||∇wij||2 ∝ 2[20wij − 8(wi+1,j + wi−1,j + wi,j+1 + wi,j−1)

+ 2(wi+1,j+1 + wi+1,j−1 + wi−1,j+1 + wi−1,j−1)

+ (wi+2,j + wi−2,j + wi,j+2 + wi,j−2)].

(3.4)

Equation 3.4 could be simplified and optimized by applying a convolution of weight

filter with biharmonic discrete kernel.

K′ =


0 0 1 0 0
0 2 −8 2 0
1 −8 20 −8 1
0 2 −8 2 0
0 0 1 0 0
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Therefore the resultant gradient of log-likelihood with respect to W, will become :

∂

∂W
logL(θ|v) = −∑

h
p(h|v) ∂

∂W
E(v.h) + ∑

v,h
p(v, h)

∂

∂W
E(v, h)− λ′(W ∗ K′). (3.5)

3.2 Learning Algorithm
Here, we will be merging all the pieces together to show one single pseudo learning

algorithm which we have used for RBM training. Algorithm 4 provides top level steps

for the RBM learning procedure, with costs calculated by optimizing the log-likelihood

gradient to get the optimized parameters and finally get the cost as defined in Equation

3.6:

log PL(x) ∼ N ∗ log[sig(Free energy(x̃)− Free energy(x))]. (3.6)

Algorithm 4 Restricted Boltzmann Machine Learning Algorithm [8]
1: Load dataset, divide into Training, Test and Development set.
2: Initialize a persistent chain with 0’s of size (#batch size, #hidden);
3: Initialize model parameters with small uniform values for weights W ∈ (−4 ∗

6
#hidden+#visible , 4 ∗ 6

#hidden+#visible ) and biases with 0 vector of size # of hidden and # of
visible units ;

4: for t = 1, . . . , T : do
5: for u = 1, . . . , n batches : do
6: Get mean cost by running Contrastive Divergence (CD) or Persistent Contrastive

Divergence (PCD) mentioned earlier in Section 2.4.3.1 and 2.4.3.2 respectively
until convergence;

7: ;
8: end for
9: end for

10: Represent weight filters learned after each epoch;

The detailed description of the parameters and other experiments are provided in

Chapter 4 with various results and model settings.



CHAPTER 4

EXPERIMENTS

This section will present the experiments illustrating the RBM in practice when various

priors are applied during training. After the experimental setup, we will show the learned

weights by RBM model after a certain number of epochs with respect to regularization and

their variance. All the experiments in this thesis are implemented using the open-source

library Theano [2] and over the top of already available code for RBM training with binary

units [8].

4.1 Experimental Setup
The experiments are performed on a publicly available MNIST digital hand written

dataset [25], where each image is a 28x28 gray pixel image, binarized with a threshold

value of 127. The training set of MNIST consists of 60,000 samples of digital images, out

of which 10,000 were kept as a development set. The test set consists of separate 10,000

digital images which are never used or seen during training.

For training, the RBM is initialized with small uniform random weights [10] and zero

bias parameters for both hidden and visible layers. The models were trained using CD− 15

or PCD − 15, with various sizes of model varying the number of hidden units h; h ∈

{100, 200, 500, 1000, 2000}. Different priors are applied to verify the behaviour of RBM

such as, L1 regularization, L2 regularization, and spatial MRF prior for which we have tried

different weight decay parameters λ; λ ∈ {0.00001, 0.0001, 0.001, 0.01, 0.1}. The learning

rate was kept fixed η = 0.1 for the training model to compare the results on common

ground. To keep the number of hyper-parameters low, we did not use any momentum

term.

In Figure 4.1, we can see the effect of increasing the size of RBM along with the misclas-

sification error rate on the test dataset. It shows that after a while the increase in size won’t
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Figure 4.1: Classification error on test dataset in traditional RBM with respect to increase
in hidden units.

change the classification much and model starts to overfit the MNIST data. Figure 4.2

shows the effect of various priors on RBM. The lowest misclassification error was achieved

using RBM of size h = 1000 with spatial prior. The reason for this is shown later in terms

of features learned during training. We can see the features in Figure 4.3.

4.2 Classification of MNIST Dataset
One way to classify the MNIST dataset is to use the RBM weights to initialize a feed-

forward neural network augmented with an output layer corresponding to the 10 possible

label classes from (0− 9), which can then be fine-tuned in a supervised fashion for classi-

fication. Another way could be to use the trained state of the hidden unit as an input layer

to the logistic regression layer on top of it with its weights learned during training; given

class probability it can further be fine-tuned using back-propagation, as in the supervised

manner.

Here, we have used the second approach and are able to report some cool testing

evaluations for the model using the logistic layer on top of the RBM with the learned



22

Figure 4.2: Classification error on test dataset.

hidden layer and reporting various test set errors on MNIST dataset using the model. The

classification model is shown in Figure 4.4. All the results are posted in Appendix A.

The results from Table 4.1 show that the RBM trained with spatial MRF prior can

give the best classification model on the MNIST dataset with a gain of almost 1% over

traditional RBM (with no prior) or RBM trained using L1 and L2 prior, but in all of these

cases the filters learned were not that sharp and clear. The results from the spatial MRF

prior are more reliable as they can learn small changes in the spatial layout of the image

and use that information in training. The images in the MNIST dataset are very tiny

(28x28) and also very noisy. Therefore, we are assuming the model described in this thesis

didn’t perform as close to the 1% misclassification error rate on the testing dataset.

The learned weights for the spatial MRF prior are shown in Figure 4.3, where the filters

appear to contain the structure of the digits but the remaining pixels don’t have the perfect

smooth area surrounding the digit structure. As you can see in Table 4.1, the weight

decay parameter for the case of spatial MRF prior is very small as compared to the other

regularizer, that is because the gradient of the spatial MRF prior consists of a convolution

of weights with biharmonic kernels, which have large coefficient values. Therefore, the
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(a) RBM with no prior (b) RBM with L1 regularization

(c) RBM with L2 regularization (d) RBM with spatial MRF prior

Figure 4.3: Result of 10*10 matrix of filters learned with various models during their best
results with h = 1000.
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Figure 4.4: Learned hidden layer behaves as input to the logistic layer for classification of
MNIST handwritten digits with different set of weights and biases for connection

between the hidden layer of RBM and the logistic layer for classification.

Table 4.1: MNIST test classification error.
Number of Hidden units→
Models ↓

100 200 500 1000 2000

No prior 3.37 2.28 1.50 1.38 1.38
L2 regularization and λ = .0001 3.39 2.56 1.50 1.40 1.35
L2 regularization and λ = .001 2.97 2.27 1.51 1.50 1.44
L1 regularization and λ = .0001 3.31 2.12 1.65 1.38 1.46
L1 regularization and λ = .001 3.21 2.34 1.89 1.84 1.90
Spatial MRF prior and λ = 10−7 3.54 2.67 2.75 2.41 2.31
Spatial MRF prior and λ = 10−8 3.23 2.46 1.79 1.30 1.42
Spatial MRF prior and λ = 10−9 3.04 2.35 1.57 1.39 1.42
Spatial MRF prior and λ = 10−10 3.44 2.37 1.55 1.27 1.37

weight decay parameter has to be small enough to compensate for the effect of convolution

with a high valued kernel.

Table 4.2 describes the effect of a random seed in a hyper parameter initialization. We

ran some experiments with a random seed defined as a factor of current time converted

into seconds and ran the experiments 10 times for all 4 RBM models with regularization

variation, that is, with no prior, with L1 regularization, L2 regularization, and spatial MRF

prior described in this thesis. From the results it is clear that mean of the model described

in this paper provides the lowest mean with significant difference compared to the next

best model, which is RBM with no prior. Although there is a difference, which we can

see in the standard deviation of these models that they have difference at second position

after decimal (except RBM with L2 regularization). The test classification error mean is still
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Table 4.2: Experimental analysis of test classification error with respect to random
initialization (seed) factor. Experiments are initialized randomly with h = 1000, η = 0.1

and λ = 0.0001 for L1 and L2 regularization, and λ = 10−10 for spatial MRF prior.
Model Mean Std. deviation

No prior 1.345 ± 0.053
L1 regularization 1.416 ± 0.057
L2 regularization 1.463 ± 0.105
Spatial MRF prior 1.284 ± 0.069

least in the case of RBM with spatial prior. These results are important to note the effect

of randomness in the model. For almost all of our model, we have chosen 123 as random

seed arbitrarily.

According to Figure 4.3, we have compared various models described and observed

during this thesis. The first image contains filters learned from the training of the RBM

with no prior. The results have noisy filters with some of the filters being complete blobs

of minimum pixel values shown in dark in the image and some contain weird shapes

which do not resembles digits. As we move along to the second image in the figure,

that is, filters learned from training with L1 prior, we see that prior tends to smooth

out the weight values for the whole filter and gives some kind of sparse effect to them.

Therefore, the filters learned from the L1 prior are not considered as best representing this

dataset. The third image in the figure is of weight filters learned after applying the L2

prior, which, when compared with the weights learned from RBM with no prior, seems

to smooth some of the filters but still remains noisy and shows some scope for further

improvement. Finally, we see the last image of Figure 4.3. This is filters learned from RBM

with spatial MRF prior, the noise is reduced and the filters are smoothed. But as we can

see, the weight filters learned using spatial MRF prior tend to describe some checker-board

patterns in the filters. These could be reduced by updating the gradient and zeroing

out randomly selected pixels or do alternate even/odd position pixel gradient updates

only in each iteration. Those ideas will be tried in the future to see whether the model

with spatial MRF prior with less of a checker-board effect does a better job classifying

the MNIST dataset. Also, we will evolve this model and try some of the deep networks

on the same lines as deep Boltzmann machine (DBM), with spatial MRF prior on the

bottom most layer of the DBM with remaining layers as RBM with no prior or with L2
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prior. The deep network on the same idea could be interesting to work with and might

provide better classification because as a model gets deep, it tends to learn more complex

representations of the input data. MNIST dataset might benefit from the deep architecture

of the DBM. Another experiment could involve using some other dataset with real world

examples to evaluate the network described here. It would be helpful to use data where

the image includes thicker objects which tend to show more properties in the example. The

digits dataset has very thin digits which might be affecting the performance of the system

measured.



APPENDIX A

TEST CLASSIFICATION ERROR RESULTS

In this appendix, we have tried to state the results of test classification errors obtained

after training the RBM model with various settings. Various settings such as initializa-

tion of model parameters with different seed, initialization of parameter from uniform

and random distribution, various priors on the traditional RBM model described in this

document and reporting the results based upon all of the above settings along with varied

weight decay parameters.

Table A.1: MNIST test dataset classification error in RBM with no prior.
Number of hidden units→
Weight initialization ↓

100 200 500 1000

Uniform initialization with seed = 123 3.37 2.28 1.50 1.38
Uniform initialization with seed = 1234 3.39 2.23 1.77 1.47
Gaussian initialization with std = .1 3.51 2.31 1.50 1.50
Gaussian initialization with std = .01 3.34 2.12 1.50 1.43
Gaussian initialization with std = .001 3.36 2.45 1.59 1.41

Table A.2: MNIST test dataset classification error in RBM with L2 regularization with
λ = 0.00001.

Number of hidden units→
Weight initialization ↓

100 200 500 1000

Uniform initialization with seed = 123 3.40 2.32 1.53 1.44
Uniform initialization with seed = 1234 3.40 2.39 1.68 1.60
Gaussian initialization with std = .1 3.41 2.16 1.52 1.39
Gaussian initialization with std = .01 3.32 2.12 1.57 1.47
Gaussian initialization with std = .001 3.54 2.35 1.55 1.36
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Table A.3: MNIST test dataset classification error in RBM with L2 regularization with
λ = 0.0001.

Number of hidden units→
Weight initialization ↓

100 200 500 1000

Uniform initialization with seed = 123 3.39 2.56 1.50 1.40
Uniform initialization with seed = 1234 3.51 2.23 1.61 1.58
Gaussian initialization with std = .1 3.48 2.11 1.56 1.45
Gaussian initialization with std = .01 3.40 2.22 1.65 1.55
Gaussian initialization with std = .001 3.59 2.37 1.48 1.32

Table A.4: MNIST test dataset classification error in RBM with L2 regularization with
λ = 0.001.

Number of hidden units→
Weight initialization ↓

100 200 500 1000

Uniform initialization with seed = 123 2.97 2.27 1.51 1.50
Uniform initialization with seed = 1234 3.19 2.11 1.60 1.47
Gaussian initialization with std = .1 3.00 2.41 1.51 1.40
Gaussian initialization with std = .01 2.82 2.24 1.56 1.45
Gaussian initialization with std = .001 3.05 2.07 1.41 1.47

Table A.5: MNIST test dataset classification error in RBM with L2 regularization with
λ = 0.01.

Number of hidden units→
Weight initialization ↓

100 200 500 1000

Uniform initialization with seed = 123 2.41 1.96 1.44 1.63
Uniform initialization with seed = 1234 2.58 1.87 1.48 1.57
Gaussian initialization with std = .1 2.44 1.81 1.66 1.60
Gaussian initialization with std = .01 2.65 1.74 1.64 1.62
Gaussian initialization with std = .001 2.73 1.79 1.65 1.56

Table A.6: MNIST test dataset classification error in RBM with L2 regularization with
λ = 0.1.

Number of hidden units→
Weight initialization ↓

100 200 500 1000

Uniform initialization with seed = 123 2.47 2.00 2.00 1.88
Uniform initialization with seed = 1234 2.34 2.08 1.95 2.15
Gaussian initialization with std = .1 2.37 2.21 2.05 2.04
Gaussian initialization with std = .01 2.53 2.17 1.97 2.05
Gaussian initialization with std = .001 2.38 2.13 1.96 1.92
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Table A.7: MNIST test dataset classification error in RBM with spatial MRF prior.
Number of hidden units→
Weight decay parameter ↓

100 200 500 1000

λ = 10−6 8.64 8.14 8.04 8.14
λ = 10−7 3.54 2.67 2.75 2.41
λ = 10−8 3.23 2.46 1.79 1.30
λ = 10−9 3.04 2.35 1.57 1.39
λ = 10−10 3.44 2.37 1.55 1.27

Table A.8: MNIST test dataset classification error in RBM with L1 regularization.
Number of hidden units→
Weight decay parameter ↓

100 200 500 1000

λ = 0.0001 3.31 2.12 1.65 1.38
λ = 0.001 3.21 2.34 1.89 1.84
λ = 0.01 2.92 2.17 1.90 2.02
λ = 0.1 2.24 2.13 2.05 1.84
λ = 1 2.27 1.86 1.77 1.88
λ = 10 3.61 2.89 2.76 2.72

Table A.9: MNIST test dataset classification error in RBM with L2 regularization.
Number of hidden units→
Weight decay parameter ↓

100 200 500 1000

λ = 0.0001 3.39 2.56 1.50 1.40
λ = 0.001 2.97 2.27 1.51 1.50
λ = 0.01 2.41 1.96 1.44 1.63
λ = 0.1 2.47 2.00 2.00 1.88
λ = 1 2.85 2.86 2.58 2.55
λ = 10 2.62 2.58 2.43 2.60



APPENDIX B

WEIGHT FILTERS OBTAINED

In this appendix, we have tried to state the results obtained after the training of the

RBM model with different settings.

• First set of weight filters are initialized from uniform distribution, which is defined

as: W = U
(
−4 ∗ 6

#hidden+#visible , 4 ∗ 6
#hidden+#visible

)
and the results are achieved after

15 epochs on training examples (Figure B.1).

• Second set of weight filters are obtained after applying L1 regularization on tradi-

tional RBM and weights are initialized as previous setting and results are achieved

after 15 epochs (Figure B.2).

• Third set of weight filters are obtained after applying L2 regularization on traditional

RBM and weights are initialized as previous setting and results are achieved after 15

epochs (Figure B.3).

• Fourth set of weight filters are obtained after applying L2 prior on traditional RBM

with weights initialized by from Gaussian distribution N (0, 0.01) and with λ =

0.0001 and the results are achieved after 15 epochs (Figure B.4).

• Final set of weight filters are obtained after applying spatial MRF prior on traditional

RBM and weights are initialized as previous setting and results are achieved after 15

epochs (Figure B.5).
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(a) # of hidden units =100 (b) # of hidden units =200

(c) # of hidden units =500 (d) # of hidden units =1000

Figure B.1: Result of 10*10 matrix of filters learned with traditional RBM using various
number of hidden units after 15 epochs.



32

(a) # of hidden units =100 (b) # of hidden units =200

(c) # of hidden units =500 (d) # of hidden units =1000

Figure B.2: Result of 10*10 matrix of filters learned with RBM with L1 regularization after
15 epochs and λ = 0.001.
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(a) # of hidden units =100 (b) # of hidden units =200

(c) # of hidden units =500 (d) # of hidden units =1000

Figure B.3: Result of 10*10 matrix of filters learned with RBM with L2 regularization after
15 epochs and λ = 0.00001 , also uniform weight initialization with seed = 1234.
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(a) # of hidden units =100 (b) # of hidden units =200

(c) # of hidden units =500 (d) # of hidden units =1000

Figure B.4: Result of 10*10 matrix of filters learned with RBM with L2 prior and Gaussian
initialization with std = 0.01 with λ = 0.0001 and obtained after 15 epochs.
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(a) # of hidden units =100 (b) # of hidden units =200

(c) # of hidden units =500 (d) # of hidden units =1000

Figure B.5: Result of 10*10 matrix of filters learned with RBM with spatial MRF prior
after 15 epochs and λ = 10−10 and uniform weight initialization.
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