17,753 research outputs found

    Applying MDL to Learning Best Model Granularity

    Get PDF
    The Minimum Description Length (MDL) principle is solidly based on a provably ideal method of inference using Kolmogorov complexity. We test how the theory behaves in practice on a general problem in model selection: that of learning the best model granularity. The performance of a model depends critically on the granularity, for example the choice of precision of the parameters. Too high precision generally involves modeling of accidental noise and too low precision may lead to confusion of models that should be distinguished. This precision is often determined ad hoc. In MDL the best model is the one that most compresses a two-part code of the data set: this embodies ``Occam's Razor.'' In two quite different experimental settings the theoretical value determined using MDL coincides with the best value found experimentally. In the first experiment the task is to recognize isolated handwritten characters in one subject's handwriting, irrespective of size and orientation. Based on a new modification of elastic matching, using multiple prototypes per character, the optimal prediction rate is predicted for the learned parameter (length of sampling interval) considered most likely by MDL, which is shown to coincide with the best value found experimentally. In the second experiment the task is to model a robot arm with two degrees of freedom using a three layer feed-forward neural network where we need to determine the number of nodes in the hidden layer giving best modeling performance. The optimal model (the one that extrapolizes best on unseen examples) is predicted for the number of nodes in the hidden layer considered most likely by MDL, which again is found to coincide with the best value found experimentally.Comment: LaTeX, 32 pages, 5 figures. Artificial Intelligence journal, To appea

    Beyond Outerplanarity

    Full text link
    We study straight-line drawings of graphs where the vertices are placed in convex position in the plane, i.e., convex drawings. We consider two families of graph classes with nice convex drawings: outer kk-planar graphs, where each edge is crossed by at most kk other edges; and, outer kk-quasi-planar graphs where no kk edges can mutually cross. We show that the outer kk-planar graphs are (4k+1+1)(\lfloor\sqrt{4k+1}\rfloor+1)-degenerate, and consequently that every outer kk-planar graph can be (4k+1+2)(\lfloor\sqrt{4k+1}\rfloor+2)-colored, and this bound is tight. We further show that every outer kk-planar graph has a balanced separator of size O(k)O(k). This implies that every outer kk-planar graph has treewidth O(k)O(k). For fixed kk, these small balanced separators allow us to obtain a simple quasi-polynomial time algorithm to test whether a given graph is outer kk-planar, i.e., none of these recognition problems are NP-complete unless ETH fails. For the outer kk-quasi-planar graphs we prove that, unlike other beyond-planar graph classes, every edge-maximal nn-vertex outer kk-quasi planar graph has the same number of edges, namely 2(k1)n(2k12)2(k-1)n - \binom{2k-1}{2}. We also construct planar 3-trees that are not outer 33-quasi-planar. Finally, we restrict outer kk-planar and outer kk-quasi-planar drawings to \emph{closed} drawings, where the vertex sequence on the boundary is a cycle in the graph. For each kk, we express closed outer kk-planarity and \emph{closed outer kk-quasi-planarity} in extended monadic second-order logic. Thus, closed outer kk-planarity is linear-time testable by Courcelle's Theorem.Comment: Appears in the Proceedings of the 25th International Symposium on Graph Drawing and Network Visualization (GD 2017

    Layout of Graphs with Bounded Tree-Width

    Full text link
    A \emph{queue layout} of a graph consists of a total order of the vertices, and a partition of the edges into \emph{queues}, such that no two edges in the same queue are nested. The minimum number of queues in a queue layout of a graph is its \emph{queue-number}. A \emph{three-dimensional (straight-line grid) drawing} of a graph represents the vertices by points in Z3\mathbb{Z}^3 and the edges by non-crossing line-segments. This paper contributes three main results: (1) It is proved that the minimum volume of a certain type of three-dimensional drawing of a graph GG is closely related to the queue-number of GG. In particular, if GG is an nn-vertex member of a proper minor-closed family of graphs (such as a planar graph), then GG has a O(1)×O(1)×O(n)O(1)\times O(1)\times O(n) drawing if and only if GG has O(1) queue-number. (2) It is proved that queue-number is bounded by tree-width, thus resolving an open problem due to Ganley and Heath (2001), and disproving a conjecture of Pemmaraju (1992). This result provides renewed hope for the positive resolution of a number of open problems in the theory of queue layouts. (3) It is proved that graphs of bounded tree-width have three-dimensional drawings with O(n) volume. This is the most general family of graphs known to admit three-dimensional drawings with O(n) volume. The proofs depend upon our results regarding \emph{track layouts} and \emph{tree-partitions} of graphs, which may be of independent interest.Comment: This is a revised version of a journal paper submitted in October 2002. This paper incorporates the following conference papers: (1) Dujmovic', Morin & Wood. Path-width and three-dimensional straight-line grid drawings of graphs (GD'02), LNCS 2528:42-53, Springer, 2002. (2) Wood. Queue layouts, tree-width, and three-dimensional graph drawing (FSTTCS'02), LNCS 2556:348--359, Springer, 2002. (3) Dujmovic' & Wood. Tree-partitions of kk-trees with applications in graph layout (WG '03), LNCS 2880:205-217, 200

    Archaeological Studies for the San Antonio Channel Improvement Project, including Investigations at Guenther\u27s Upper Mill (41BX342)

    Get PDF
    Under Contract No. DACW63-81-C-0022 to the Department of the Army, Corps of Engineers, Fort Worth District, the Center for Archaeological Research, The University of Texas at San Antonio, in the spring of 1981, conducted historic research and survey in the areas to be affected by the San Antonio Channel Improvement Project. In the summer of 1981, extensive archaeological testing and excavation were done to determine the extent of the structural remains on the sites of Guenther\u27s Upper Mill and the Stribling House. In the spring and summer of 1982, the Center documented the removal and replacement of the mill\u27s west wall. As a result of the investigations, it can now be affirmed that most of the foundation of the east section of the mill is still present beneath the ground. The main foundation walls are made of cut limestone and measure two feet in thickness, except for the west wall which is three feet thick. Of the other buildings at various times related to the mill, only portions of a late (ca. 1910) stone and cement foundation for the Reigler Creamery still remain in the ground. The survey revealed no other cultural resources to be affected by the project

    Numerical Simulation of Snow Deposition Around living Snow Fences

    Get PDF
    In this study, computational fluid dynamics (CFD) was used to investigate the air flow around porous snow fences to gain insight into snow transport and deposition in the vicinity of fences. Numerical simulations were performed to validate the CFD approach using experimental data from a wind tunnel study. Subsequent simulations were used to test the use of a porosity model to represent fence geometry and determine the effect of fence spacing for fences comprised of multiple rows. The results demonstrate that CFD simulations can reproduce the aerodynamics around porous fences. Additionally, the flow field generated with a porosity model is in close agreement with that from a model with explicit representation of fence porosity. Simulations of fences comprised of two rows spaced at various distances demonstrate that when the row spacing is small the fence behaves as a single row
    corecore