4,657 research outputs found

    Efficient binary tomographic reconstruction

    Full text link
    Tomographic reconstruction of a binary image from few projections is considered. A novel {\em heuristic} algorithm is proposed, the central element of which is a nonlinear transformation ψ(p)=log(p/(1p))\psi(p)=\log(p/(1-p)) of the probability pp that a pixel of the sought image be 1-valued. It consists of backprojections based on ψ(p)\psi(p) and iterative corrections. Application of this algorithm to a series of artificial test cases leads to exact binary reconstructions, (i.e recovery of the binary image for each single pixel) from the knowledge of projection data over a few directions. Images up to 10610^6 pixels are reconstructed in a few seconds. A series of test cases is performed for comparison with previous methods, showing a better efficiency and reduced computation times

    The Discrete radon transform: A more efficient approach to image reconstruction

    Get PDF
    The Radon transform and its inversion are the mathematical keys that enable tomography. Radon transforms are defined for continuous objects with continuous projections at all angles in [0,π). In practice, however, we pre-filter discrete projections take

    Capturing Nucleation at 4D Atomic Resolution

    Full text link
    Nucleation plays a critical role in many physical and biological phenomena ranging from crystallization, melting and evaporation to the formation of clouds and the initiation of neurodegenerative diseases. However, nucleation is a challenging process to study in experiments especially in the early stage when several atoms/molecules start to form a new phase from its parent phase. Here, we advance atomic electron tomography to study early stage nucleation at 4D atomic resolution. Using FePt nanoparticles as a model system, we reveal that early stage nuclei are irregularly shaped, each has a core of one to few atoms with the maximum order parameter, and the order parameter gradient points from the core to the boundary of the nucleus. We capture the structure and dynamics of the same nuclei undergoing growth, fluctuation, dissolution, merging and/or division, which are regulated by the order parameter distribution and its gradient. These experimental observations differ from classical nucleation theory (CNT) and to explain them we propose the order parameter gradient (OPG) model. We show the OPG model generalizes CNT and energetically favours diffuse interfaces for small nuclei and sharp interfaces for large nuclei. We further corroborate this model using molecular dynamics simulations of heterogeneous and homogeneous nucleation in liquid-solid phase transitions of Pt. We anticipate that the OPG model is applicable to different nucleation processes and our experimental method opens the door to study the structure and dynamics of materials with 4D atomic resolution.Comment: 42 pages, 5 figures, 12 supplementary figures and one supplementary tabl
    corecore