188 research outputs found

    Multiuser MIMO-OFDM for Next-Generation Wireless Systems

    No full text
    This overview portrays the 40-year evolution of orthogonal frequency division multiplexing (OFDM) research. The amelioration of powerful multicarrier OFDM arrangements with multiple-input multiple-output (MIMO) systems has numerous benefits, which are detailed in this treatise. We continue by highlighting the limitations of conventional detection and channel estimation techniques designed for multiuser MIMO OFDM systems in the so-called rank-deficient scenarios, where the number of users supported or the number of transmit antennas employed exceeds the number of receiver antennas. This is often encountered in practice, unless we limit the number of users granted access in the base station’s or radio port’s coverage area. Following a historical perspective on the associated design problems and their state-of-the-art solutions, the second half of this treatise details a range of classic multiuser detectors (MUDs) designed for MIMO-OFDM systems and characterizes their achievable performance. A further section aims for identifying novel cutting-edge genetic algorithm (GA)-aided detector solutions, which have found numerous applications in wireless communications in recent years. In an effort to stimulate the cross pollination of ideas across the machine learning, optimization, signal processing, and wireless communications research communities, we will review the broadly applicable principles of various GA-assisted optimization techniques, which were recently proposed also for employment inmultiuser MIMO OFDM. In order to stimulate new research, we demonstrate that the family of GA-aided MUDs is capable of achieving a near-optimum performance at the cost of a significantly lower computational complexity than that imposed by their optimum maximum-likelihood (ML) MUD aided counterparts. The paper is concluded by outlining a range of future research options that may find their way into next-generation wireless systems

    Optimal low-complexity detection for space division multiple access wireless systems

    Get PDF
    A symbol detector for wireless systems using space division multiple access (SDMA) and orthogonal frequency division multiplexing (OFDM) is derived. The detector uses a sphere decoder (SD) and has much less computational complexity than the naive maximum likelihood (ML) detector. We also show how to detect non-constant modulus signals with constrained least squares (CLS) receiver, which is designed for constant modulus (unitary) signals. The new detector outperforms existing suboptimal detectors for both uncoded and coded systems

    Interference-Mitigating Waveform Design for Next-Generation Wireless Systems

    No full text
    A brief historical perspective of the evolution of waveform designs employed in consecutive generations of wireless communications systems is provided, highlighting the range of often conflicting demands on the various waveform characteristics. As the culmination of recent advances in the field the underlying benefits of various Multiple Input Multiple Output (MIMO) schemes are highlighted and exemplified. As an integral part of the appropriate waveform design, cognizance is given to the particular choice of the duplexing scheme used for supporting full-duplex communications and it is demonstrated that Time Division Duplexing (TDD) is substantially outperformed by Frequency Division Duplexing (FDD), unless the TDD scheme is combined with further sophisticated scheduling, MIMOs and/or adaptive modulation/coding. It is also argued that the specific choice of the Direct-Sequence (DS) spreading codes invoked in DS-CDMA predetermines the properties of the system. It is demonstrated that a specifically designed family of spreading codes exhibits a so-called interference-free window (IFW) and hence the resultant system is capable of outperforming its standardised counterpart employing classic Orthogonal Variable Spreading Factor (OVSF) codes under realistic dispersive channel conditions, provided that the interfering multi-user and multipath components arrive within this IFW. This condition may be ensured with the aid of quasisynchronous adaptive timing advance control. However, a limitation of the system is that the number of spreading codes exhibiting a certain IFW is limited, although this problem may be mitigated with the aid of novel code design principles, employing a combination of several spreading sequences in the time-frequency and spatial-domain. The paper is concluded by quantifying the achievable user load of a UTRA-like TDD Code Division Multiple Access (CDMA) system employing Loosely Synchronized (LS) spreading codes exhibiting an IFW in comparison to that of its counterpart using OVSF codes. Both system's performance is enhanced using beamforming MIMOs

    Performance Analysis of BER in CDMA using Various Coding & Simulation Techniques

    Get PDF
    Wireless Communication is the most important part of our life in today’s time. CDMA system has made it more secure system to communicate within the system. CDMA system has been developed enough to improve various problems like multipath fading, interference, cross talk etc. This paper inculcated various approaches to improve BER in CDMA system with different Coding & Simulation Techniques. This also represents various advantages and limitations of different evaluation/analysis methodology used to evaluate BER

    Multiuser MIMO-OFDM Systems using Subcarrier Hopping

    No full text
    Recently space division multiple access (SDMA) assisted multiple-input–multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) systems invoking multiuser detection (MUD) techniques have attracted substantial research interest, which is capable of exploiting both transmitter multiplexing gain and receiver diversity gain. A new scheme referred to here as slowsubcarrierhopping (SSCH) assisted multiuser SDMA-OFDM, is proposed. It is shown that, with the aid of the so-called uniform SSCH (USSCH) pattern, the multiuser interference (MUI) experienced by the high-throughput SDMA-OFDM system can be effectively suppressed, resulting in a significant performance improvement. In the investigations conducted, the proposed USSCH-aided SDMA-OFDM system was capable of outperforming a range of SDMA-OFDM systems considered, including the conventional SDMA-OFDM system dispensing with the employment of frequency-hopping techniques. For example, at an Eb/N0 value of 12 dB, the proposed USSCH/SDMA-OFDM system reduced the bit error ratio (BER) by about three orders of magnitude, in comparison to the conventional SDMA-OFDM system, while maintaining a similar computational complexity

    Hybrid Iterative Multiuser Detection for Channel Coded Space Division Multiple Access OFDM Systems

    No full text
    Space division multiple access (SDMA) aided orthogonal frequency division multiplexing (OFDM) systems assisted by efficient multiuser detection (MUD) techniques have recently attracted intensive research interests. The maximum likelihood detection (MLD) arrangement was found to attain the best performance, although this was achieved at the cost of a computational complexity, which increases exponentially both with the number of users and with the number of bits per symbol transmitted by higher order modulation schemes. By contrast, the minimum mean-square error (MMSE) SDMA-MUD exhibits a lower complexity at the cost of a performance loss. Forward error correction (FEC) schemes such as, for example, turbo trellis coded modulation (TTCM), may be efficiently combined with SDMA-OFDM systems for the sake of improving the achievable performance. Genetic algorithm (GA) based multiuser detection techniques have been shown to provide a good performance in MUD-aided code division multiple access (CDMA) systems. In this contribution, a GA-aided MMSE MUD is proposed for employment in a TTCM assisted SDMA-OFDM system, which is capable of achieving a similar performance to that attained by its optimum MLD-aided counterpart at a significantly lower complexity, especially at high user loads. Moreover, when the proposed biased Q-function based mutation (BQM) assisted iterative GA (IGA) MUD is employed, the GA-aided system’s performance can be further improved, for example, by reducing the bit error ratio (BER) measured at 3 dB by about five orders of magnitude in comparison to the TTCM assisted MMSE-SDMA-OFDM benchmarker system, while still maintaining modest complexity

    On Development of Some Soft Computing Based Multiuser Detection Techniques for SDMA–OFDM Wireless Communication System

    Get PDF
    Space Division Multiple Access(SDMA) based technique as a subclass of Multiple Input Multiple Output (MIMO) systems achieves high spectral efficiency through bandwidth reuse by multiple users. On the other hand, Orthogonal Frequency Division Multiplexing (OFDM) mitigates the impairments of the propagation channel. The combination of SDMA and OFDM has emerged as a most competitive technology for future wireless communication system. In the SDMA uplink, multiple users communicate simultaneously with a multiple antenna Base Station (BS) sharing the same frequency band by exploring their unique user specific-special spatial signature. Different Multiuser Detection (MUD) schemes have been proposed at the BS receiver to identify users correctly by mitigating the multiuser interference. However, most of the classical MUDs fail to separate the users signals in the over load scenario, where the number of users exceed the number of receiving antennas. On the other hand, due to exhaustive search mechanism, the optimal Maximum Likelihood (ML) detector is limited by high computational complexity, which increases exponentially with increasing number of simultaneous users. Hence, cost function minimization based Minimum Error Rate (MER) detectors are preferred, which basically minimize the probability of error by iteratively updating receiver’s weights using adaptive algorithms such as Steepest Descent (SD), Conjugate Gradient (CG) etc. The first part of research proposes Optimization Techniques (OTs) aided MER detectors to overcome the shortfalls of the CG based MER detectors. Popular metaheuristic search algorithms like Adaptive Genetic Algorithm (AGA), Adaptive Differential Evolution Algorithm (ADEA) and Invasive Weed Optimization (IWO), which rely on an intelligent search of a large but finite solution space using statistical methods, have been applied for finding the optimal weight vectors for MER MUD. Further, it is observed in an overload SDMA–OFDM system that the channel output phasor constellation often becomes linearly non-separable. With increasing the number of users, the receiver weight optimization task turns out to be more difficult due to the exponentially increased number of dimensions of the weight matrix. As a result, MUD becomes a challenging multidimensional optimization problem. Therefore, signal classification requires a nonlinear solution. Considering this, the second part of research work suggests Artificial Neural Network (ANN) based MUDs on thestandard Multilayer Perceptron (MLP) and Radial Basis Function (RBF) frameworks fo

    Novel feedback and signalling mechanisms for interference management and efficient modulation

    Get PDF
    In order to meet the ever-growing demand for mobile data, a number of different technologies have been adopted by the fourth generation standardization bodies. These include multiple access schemes such as spatial division multiple access (SDMA), and efficient modulation techniques such as orthogonal frequency division multiplexing (OFDM)-based modulation. The specific objectives of this theses are to develop an effective feedback method for interference management in smart antenna SDMA systems and to design an efficient OFDM-based modulation technique, where an additional dimension is added to the conventional two-dimensional modulation techniques such as quadrature amplitude modulation (QAM). In SDMA time division duplex (TDD) systems, where channel reciprocity is maintained, uplink (UL) channel sounding method is considered as one of the most promising feedback methods due to its bandwidth and delay efficiency. Conventional channel sounding (CCS) only conveys the channel state information (CSI) of each active user to the base station (BS). Due to the limitation in system performance because of co-channel interference (CCI) from adjacent cells in interference-limited scenarios, CSI is only a suboptimal metric for multiuser spatial multiplexing optimization. The first major contribution of this theses is a novel interference feedback method proposed to provide the BS with implicit knowledge about the interference level received by each mobile station (MS). More specifically, it is proposed to weight the conventional channel sounding pilots by the level of the experienced interference at the user’s side. Interference-weighted channel sounding (IWCS) acts as a spectrally efficient feedback technique that provides the BS with implicit knowledge about CCI experienced by each MS, and significantly improves the downlink (DL) sum capacity for both greedy and fair scheduling policies. For the sake of completeness, a novel procedure is developed to make the IWCS pilots usable for UL optimization. It is proposed to divide the optimization metric obtained from the IWCS pilots by the interference experienced at the BS’s antennas. The resultant new metric, the channel gain divided by the multiplication of DL and UL interference, provides link-protection awareness and is used to optimize both UL and DL. Using maximum capacity scheduling criterion, the link-protection aware metric results in a gain in the median system sum capacity of 26.7% and 12.5% in DL and UL respectively compared to the case when conventional channel sounding techniques are used. Moreover, heuristic algorithm has been proposed in order to facilitate a practical optimization and to reduce the computational complexity. The second major contribution of this theses is an innovative transmission approach, referred to as subcarrier-index modulation (SIM), which is proposed to be integrated with OFDM. The key idea of SIM is to employ the subcarrier-index to convey information to the receiver. Furthermore, a closed-form analytical bit error ratio (BER) of SIM OFDM in Rayleigh channel is derived. Simulation results show BER performance gain of 4 dB over 4-QAM OFDM for both coded and uncoded data without power saving policy. Alternatively, power saving policy maintains an average gain of 1 dB while only using half OFDM symbol transmit power

    Optimal low-complexity detection for space division multiple access wireless systems

    Full text link
    corecore