4 research outputs found

    Contributions to the routing of traffic flows in multi-hop IEEE 802.11 wireless networks

    Get PDF
    The IEEE 802.11 standard was not initially designed to provide multi-hop capabilities. Therefore, providing a proper traffic performance in Multi-Hop IEEE 802.11 Wireless Networks (MIWNs) becomes a significant challenge. The approach followed in this thesis has been focused on the routing layer in order to obtain applicable solutions not dependent on a specific hardware or driver. Nevertheless, as is the case of most of the research on this field, a cross-layer design has been adopted. Therefore, one of the first tasks of this work was devoted to the study of the phenomena which affect the performance of the flows in MIWNs. Different estimation methodologies and models are presented and analyzed. The first main contribution of this thesis is related to route creation procedures. First, FB-AODV is introduced, which creates routes and forwards packets according to the flows on the contrary to basic AODV which is destination-based. This enhancement permits to balance the load through the network and gives a finer granularity in the control and monitoring of the flows. Results showed that it clearly benefits the performance of the flows. Secondly, a novel routing metric called Weighted Contention and Interference routing Metric (WCIM) is presented. In all analyzed scenarios, WCIM outperformed the other analyzed state-of-the-art routing metrics due to a proper leveraging of the number of hops, the link quality and the suffered contention and interference. The second main contribution of this thesis is focused on route maintenance. Generally, route recovery procedures are devoted to the detection of link breaks due to mobility or fading. However, other phenomena like the arrival of new flows can degrade the performance of active flows. DEMON, which is designed as an enhancement of FB-AODV, allows the preemptive recovery of degraded routes by passively monitoring the performance of active flows. Results showed that DEMON obtains similar or better results than other published solutions in mobile scenarios, while it clearly outperforms the performance of default AODV under congestion Finally, the last chapter of this thesis deals with channel assignment in multi-radio solutions. The main challenge of this research area relies on the circular relationship between channel assignment and routing; channel assignment determines the routes that can be created, while the created routes decide the real channel diversity of the network and the level of interference between the links. Therefore, proposals which join routing and channel assignment are generally complex, centralized and based on traffic patterns, limiting their practical implementation. On the contrary, the mechanisms presented in this thesis are distributed and readily applicable. First, the Interference-based Dynamic Channel Assignment (IDCA) algorithm is introduced. IDCA is a distributed and dynamic channel assignment based on the interference caused by active flows which uses a common channel in order to assure connectivity. In general, IDCA leads to an interesting trade-off between connectivity preservation and channel diversity. Secondly, MR-DEMON is introduced as way of joining channel assignment and route maintenance. As DEMON, MR-DEMON monitors the performance of the active flows traversing the links, but, instead of alerting the source when noticing degradation, it permits reallocating the flows to less interfered channels. Joining route recovery instead of route creation simplifies its application, since traffic patterns are not needed and channel reassignments can be locally decided. The evaluation of MR-DEMON proved that it clearly benefits the performance of IDCA. Also, it improves DEMON functionality by decreasing the number of route recoveries from the source, leading to a lower overhead.El est谩ndar IEEE 802.11 no fue dise帽ado inicialmente para soportar capacidades multi-salto. Debido a ello, proveer unas prestaciones adecuadas a los flujos de tr谩fico que atraviesan redes inal谩mbricas multi-salto IEEE 802.11 supone un reto significativo. La investigaci贸n desarrollada en esta tesis se ha centrado en la capa de encaminamiento con el objetivo de obtener soluciones aplicables y no dependientes de un hardware espec铆fico. Sin embargo, debido al gran impacto de fen贸menos y par谩metros relacionados con las capas f铆sicas y de acceso al medio sobre las prestaciones de los tr谩ficos de datos, se han adoptado soluciones de tipo cross-layer. Es por ello que las primeras tareas de la investigaci贸n, presentadas en los cap铆tulos iniciales, se dedicaron al estudio y caracterizaci贸n de estos fen贸menos. La primera contribuci贸n principal de esta tesis se centra en mecanismos relacionados con la creaci贸n de las rutas. Primero, se introduce una mejora del protocolo AODV, que permite crear rutas y encaminar paquetes en base a los flujos de datos, en lugar de en base a los destinos como se da en el caso b谩sico. Esto permite balacear la carga de la red y otorga un mayor control sobre los flujos activos y sus prestaciones, mejorando el rendimiento general de la red. Seguidamente, se presenta una m茅trica de encaminamiento sensible a la interferencia de la red y la calidad de los enlaces. Los resultados analizados, basados en la simulaci贸n de diferentes escenarios, demuestran que mejora significativamente las prestaciones de otras m茅tricas del estado del arte. La segunda contribuci贸n est谩 relacionada con el mantenimiento de las rutas activas. Generalmente, los mecanismos de mantenimiento se centran principalmente en la detecci贸n de enlaces rotos debido a la movilidad de los nodos o a la propagaci贸n inal谩mbrica. Sin embargo, otros fen贸menos como la interferencia y congesti贸n provocada por la llegada de nuevos flujos pueden degradar de forma significativa las prestaciones de los tr谩ficos activos. En base a ello, se dise帽a un mecanismo de mantenimiento preventivo de rutas, que monitoriza las prestaciones de los flujos activos y permite su reencaminamiento en caso de detectar rutas degradadas. La evaluaci贸n de esta soluci贸n muestra una mejora significativa sobre el mantenimiento de rutas b谩sico en escenarios congestionados, mientras que en escenarios con nodos m贸viles obtiene resultados similares o puntualmente mejores que otros mecanismos preventivos dise帽ados espec铆ficamente para casos con movilidad. Finalmente, el 煤ltimo cap铆tulo de la tesis se centra en la asignaci贸n de canales en entornos multi-canal y multi-radio con el objetivo de minimizar la interferencia entre flujos activos. El reto principal en este campo es la dependencia circular que se da entre la asignaci贸n de canales y la creaci贸n de rutas: la asignaci贸n de canales determina los enlaces existentes la red y por ello las rutas que se podr谩n crear, pero son finalmente las rutas y los tr谩ficos activos quienes determinan el nivel real de interferencia que se dar谩 en la red. Es por ello que las soluciones que proponen unificar la asignaci贸n de canales y el encaminamiento de tr谩ficos son generalmente complejas, centralizadas y basadas en patrones de tr谩fico, lo que limita su implementaci贸n en entornos reales. En cambio, en nuestro caso adoptamos una soluci贸n distribuida y con mayor aplicabilidad. Primero, se define un algoritmo de selecci贸n de canales din谩mico basado en la interferencia de los flujos activos, que utiliza un canal com煤n en todos los nodos para asegurar la conectividad de la red. A continuaci贸n, se introduce un mecanismo que unifica la asignaci贸n de canales con el mantenimiento preventivo de las rutas, permitiendo reasignar flujos degradados a otros canales disponibles en lugar de reencaminarlos completamente. Ambas soluciones demuestran ser beneficiosas en este tipo de entornos.Postprint (published version

    Content Replication and Placement Schemes for Wireless Mesh Networks

    No full text
    Recently, Wireless Mesh Networks (WMNs) have attracted much of interest from both academia and industry, due to their potential to provide an alternative broadband wireless Internet connectivity. However, due to different reasons such as multi-hop forwarding and the dynamic wireless link characteristics, the performance of current WMNs is rather low when clients are soliciting Web contents. Due to the evolution of advanced mobile computing devices; it is anticipated that the demand for bandwidth-onerous popular content (especially multimedia content) in WMNs will dramatically increase in the coming future. Content replication is a popular approach for outsourcing content on behalf of the origin content provider. This area has been well explored in the context of the wired Internet, but has received comparatively less attention from the research community when it comes to WMNs. There are a number of replica placement algorithms that are specifically designed for the Internet. But they do not consider the special features of wireless networks such as insufficient bandwidth, low server capacity, contention to access the wireless medium, etc. This thesis studies the technical challenges encountered when transforming the traditional model of multi-hop WMNs from an access network into a content network. We advance the thesis that support from packet relaying mesh routers to act as replica servers for popular content such as media streaming, results in significant performance improvement. Such support from infrastructure mesh routers benefits from knowledge of the underlying network topology (i.e., information about the physical connections between network nodes is available at mesh routers). The utilization of cross-layer information from lower layers opens the door to developing efficient replication schemes that account for the specific features of WMNs (e.g., contention between the nodes to access the wireless medium and traffic interference). Moreover, this can benefit from the underutilized resources (e.g., storage and bandwidth) at mesh routers. This utilization enables those infrastructure nodes to participate in content distribution and play the role of replica servers. In this thesis, our main contribution is the design of two lightweight, distributed, and scalable object replication schemes for WMNs. The first scheme follows a hierarchical approach, while the second scheme follows a flat one. The challenge is to replicate content as close as possible to the requesting clients and thus, reduce the access latency per object, while minimizing the number of replicas. The two schemes aim to address the questions of where and how many replicas should be placed in the WMN. In our schemes, we consider the underlying topology joint with link-quality metrics to improve the quality of experience. We show using simulation tests that the schemes significantly enhance the performance of a WMN in terms of reducing the access cost, bandwidth consumption and computation/communication cost

    Location-aware mechanism for efficient video delivery over wireless mesh networks

    Get PDF
    Due to their flexibility, ease of use, low-cost and fast deployment, wireless Mesh Networks have been widely accepted as an alternative to wired network for last-mile connectivity. When used in conjunction with Peer-to-Peer data transfer solutions, many innovative applications and services such as distributed storage, resource sharing, live TV broadcasting or Video on Demand can be supported without any centralized administration. However, in order to achieve a good quality of service in such variable, error-prone and resource-constrained wireless multi-hop environments, it is important that the associated Peer-to-Peer overlay is not only aware of the availability, but also of the location and available path link quality of its peers and services. This thesis proposes a wireless location-aware Chord-based overlay mechanism for Wireless Mesh Networks (WILCO) based on a novel geographical multi-level ID mapping and an improved finger table. The proposed scheme exploits the location information of mesh routers to decrease the number of hops the overlay messages traverse in the physical topology. Analytical and simulation results demonstrate that in comparison to the original Chord, WILCO has significant benefits: it reduces the number of lookup messages, has symmetric lookup on keys in both the forward and backward direction of the Chord ring and achieves a stretch factor of O(1). On top of this location-aware overlay, a WILCO-based novel video segment seeking algorithm is proposed to make use of the multi-level WILCO ID location-awareness to locate and retrieve requested video segments from the nearest peer in order to improve video quality. An enhanced version of WILCO segment seeking algorithm (WILCO+) is proposed to mitigate the sometimes suboptimal selection of the WILCO video segment seeking algorithm by extracting coordinates from WILCO ID to enable location-awareness. Analytical and simulation results illustrate that the proposed scheme outperforms the existing state-of-the-art solutions in terms of PSNR and packet loss with different background traffic loads. While hop count is frequently strongly correlated to Quality of Service, the link quality of the underlying network will also have a strong influence on content retrieval quality. As a result, a Cross-layer Wireless Link Quality-aware Overlay peer selection mechanism (WLO) is proposed. The proposed cross-layer mechanism uses a Multiplication Selector Metric (MSM) to select the best overlay peer. The proposed MSM overcomes the two issues facing the traditional summation-based metric, namely, the difficulty of bottleneck link identification and the influence of hop count on behavior. Simulation results show that WLO outperforms the existing state-of-the-art solutions in terms of video quality at different background loads and levels of topology incompleteness. Real life emulation-based tests and subjective video quality assessments are also performed to show that the simulation results are closely matched by the real-life emulation-based results and to illustrate the significant impact of overlay peer selection on the user perceived video quality
    corecore