927 research outputs found

    Revealing networks from dynamics: an introduction

    Full text link
    What can we learn from the collective dynamics of a complex network about its interaction topology? Taking the perspective from nonlinear dynamics, we briefly review recent progress on how to infer structural connectivity (direct interactions) from accessing the dynamics of the units. Potential applications range from interaction networks in physics, to chemical and metabolic reactions, protein and gene regulatory networks as well as neural circuits in biology and electric power grids or wireless sensor networks in engineering. Moreover, we briefly mention some standard ways of inferring effective or functional connectivity.Comment: Topical review, 48 pages, 7 figure

    On a free boundary problem and minimal surfaces

    Get PDF
    From minimal surfaces such as Simons' cone and catenoids, using refined Lyapunov-Schmidt reduction method, we construct new solutions for a free boundary problem whose free boundary has two components. In dimension 88, using variational arguments, we also obtain solutions which are global minimizers of the corresponding energy functional. This shows that Savin's theorem is optimal.Comment: 34 page

    Sparsity in Bayesian Signal Estimation

    Get PDF
    In this chapter, we describe different methods to estimate an unknown signal from its linear measurements. We focus on the underdetermined case where the number of measurements is less than the dimension of the unknown signal. We introduce the concept of signal sparsity and describe how it could be used as prior information for either regularized least squares or Bayesian signal estimation. We discuss compressed sensing and sparse signal representation as examples where these sparse signal estimation methods could be applied

    Methods for Optimal Model Fitting and Sensor Calibration

    Get PDF
    The problem of fitting models to measured data has been studied extensively, not least in the field of computer vision. A central problem in this field is the difficulty in reliably find corresponding structures and points in different images, resulting in outlier data. This thesis presents theoretical results improving the understanding of the connection between model parameter estimation and possible outlier-inlier partitions of data point sets. Using these results a multitude of applications can be analyzed in respects to optimal outlier inlier partitions, optimal norm fitting, and not least in truncated norm sense. Practical polynomial time optimal solvers are derived for several applications, including but not limited to multi-view triangulation and image registration. In this thesis the problem of sensor network self calibration is investigated. Sensor networks play an increasingly important role with the increased availability of mobile, antenna equipped, devices. The application areas can be extended with knowledge of the different sensors relative or absolute positions. We study this problem in the context of bipartite sensor networks. We identify requirements of solvability for several configurations, and present a framework for how such problems can be approached. Further we utilize this framework to derive several solvers, which we show in both synthetic and real examples functions as desired. In both these types of model estimation, as well as in the classical random samples based approaches minimal cases of polynomial systems play a central role. A majority of the problems tackled in this thesis will have solvers based on recent techniques pertaining to action matrix solvers. New application specific polynomial equation sets are constructed and elimination templates designed for them. In addition a general improvement to the method is suggested for a large class of polynomial systems. The method is shown to improve the computational speed by significant reductions in the size of elimination templates as well as in the size of the action matrices. In addition the methodology on average improves the numerical stability of the solvers
    • …
    corecore