5 research outputs found

    Performance Analysis of Energy-Detection-Based Massive SIMO

    Full text link
    Recently, communications systems that are both energy efficient and reliable are under investigation. In this paper, we concentrate on an energy-detection-based transmission scheme where a communication scenario between a transmitter with one antenna and a receiver with significantly many antennas is considered. We assume that the receiver initially calculates the average energy across all antennas, and then decodes the transmitted data by exploiting the average energy level. Then, we calculate the average symbol error probability by means of a maximum a-posteriori probability detector at the receiver. Following that, we provide the optimal decision regions. Furthermore, we develop an iterative algorithm that reaches the optimal constellation diagram under a given average transmit power constraint. Through numerical analysis, we explore the system performance

    Error Rate Analysis of Cognitive Radio Transmissions with Imperfect Channel Sensing

    Get PDF
    This paper studies the symbol error rate performance of cognitive radio transmissions in the presence of imperfect sensing decisions. Two different transmission schemes, namely sensing-based spectrum sharing (SSS) and opportunistic spectrum access (OSA), are considered. In both schemes, secondary users first perform channel sensing, albeit with possible errors. In SSS, depending on the sensing decisions, they adapt the transmission power level and coexist with primary users in the channel. On the other hand, in OSA, secondary users are allowed to transmit only when the primary user activity is not detected. Initially, for both transmission schemes, general formulations for the optimal decision rule and error probabilities are provided for arbitrary modulation schemes under the assumptions that the receiver is equipped with the sensing decision and perfect knowledge of the channel fading, and the primary user's received faded signals at the secondary receiver has a Gaussian mixture distribution. Subsequently, the general approach is specialized to rectangular quadrature amplitude modulation (QAM). More specifically, optimal decision rule is characterized for rectangular QAM, and closed-form expressions for the average symbol error probability attained with the optimal detector are derived under both transmit power and interference constraints. The effects of imperfect channel sensing decisions, interference from the primary user and its Gaussian mixture model, and the transmit power and interference constraints on the error rate performance of cognitive transmissions are analyzed

    Optimal channel switching in multiuser systems under average capacity constraints

    Get PDF
    In this paper, the optimal channel switching problem is studied for average capacity maximization in the presence of multiple receivers in the communication system. First, the optimal channel switching problem is proposed for average capacity maximization of the communication between the transmitter and the secondary receiver while fulfilling the minimum average capacity requirement of the primary receiver and considering the average and peak power constraints. Then, an alternative equivalent optimization problem is provided and it is shown that the solution of this optimization problem satisfies the constraints with equality. Based on the alternative optimization problem, it is obtained that the optimal channel switching strategy employs at most three communication links in the presence of multiple available channels in the system. In addition, the optimal strategies are specified in terms of the number of channels employed by the transmitter to communicate with the primary and secondary receivers. Finally, numerical examples are provided in order to verify the theoretical investigations. © 2017 Elsevier Inc

    Cognitive Radio Systems: Performance Analysis and Optimal Resource Allocation

    Get PDF
    Rapid growth in the use of wireless services coupled with inefficient utilization of scarce spectrum resources has led to the analysis and development of cognitive radio systems. Cognitive radio systems provide dynamic and more efficient utilization of the available spectrum by allowing unlicensed users (i.e., cognitive or secondary users) to access the frequency bands allocated to the licensed users (i.e., primary users) without causing harmful interference to the primary user transmissions. The central goal of this thesis is to conduct a performance analysis and obtain throughput- and energy-efficient optimal resource allocation strategies for cognitive radio systems. Cognitive radio systems, which employ spectrum sensing mechanisms to learn the channel occupancy by primary users, generally operate under sensing uncertainty arising due to false alarms and miss-detections. This thesis analyzes the performance of cognitive radio systems in a practical setting with imperfect spectrum sensing. In the first part of the thesis, optimal power adaptation schemes that maximize the achievable rates of cognitive users with arbitrary input distributions in underlay cognitive radio systems subject to transmit and interference power constraints are studied. Simpler approximations of optimal power control policies in the low-power regime are determined. Low-complexity optimal power control algorithms are proposed. Next, energy efficiency is considered as the performance metric and power allocation strategies that maximize the energy efficiency of cognitive users in the presence of time-slotted primary users are identified. The impact of different levels of channel knowledge regarding the transmission link between the secondary transmitter and secondary receiver, and the interference link between the secondary transmitter and primary receiver on the optimal power allocation is addressed. In practice, the primary user may change its status during the transmission phase of the secondary users. In such cases, the assumption of time-slotted primary user transmission no longer holds. With this motivation, the spectral and energy efficiency in cognitive radio systems with unslotted primary users are analyzed and the optimal frame duration and energy-efficient optimal power control schemes subject to a collision constraint are jointly determined. The second line of research in this thesis focuses on symbol error rate performance of cognitive radio transmissions in the presence of imperfect sensing decisions. General formulations for the optimal decision rule and error probabilities for arbitrary modulation schemes are provided. The optimal decision rule for rectangular quadrature amplitude modulation (QAM) is characterized, and closed-form expressions for the average symbol error probability attained with the optimal detector under both transmit power and interference constraints are derived. Furthermore, throughput of cognitive radio systems for both fixed-rate and variable-rate transmissions in the finite-blocklength regime is studied. The maximum constant arrival rates that the cognitive radio channel can support with finite blocklength codes while satisfying statistical quality of service (QoS) constraints imposed as limitations on the buffer violation probability are characterized. In the final part of the thesis, performance analysis in the presence of QoS requirements is extended to general wireless systems, and energy efficiency and throughput optimization with arbitrary input signaling are studied when statistical QoS constraints are imposed as limitations on the buffer violation probability. Effective capacity is chosen as the performance metric to characterize the maximum throughput subject to such buffer constraints by capturing the asymptotic decay-rate of buffer occupancy. Initially, constant-rate source is considered and subsequently random arrivals are taken into account
    corecore