9 research outputs found

    On Time-optimal Trajectories for a Car-like Robot with One Trailer

    Full text link
    In addition to the theoretical value of challenging optimal control problmes, recent progress in autonomous vehicles mandates further research in optimal motion planning for wheeled vehicles. Since current numerical optimal control techniques suffer from either the curse of dimens ionality, e.g. the Hamilton-Jacobi-Bellman equation, or the curse of complexity, e.g. pseudospectral optimal control and max-plus methods, analytical characterization of geodesics for wheeled vehicles becomes important not only from a theoretical point of view but also from a prac tical one. Such an analytical characterization provides a fast motion planning algorithm that can be used in robust feedback loops. In this work, we use the Pontryagin Maximum Principle to characterize extremal trajectories, i.e. candidate geodesics, for a car-like robot with one trailer. We use time as the distance function. In spite of partial progress, this problem has remained open in the past two decades. Besides straight motion and turn with maximum allowed curvature, we identify planar elastica as the third piece of motion that occurs along our extr emals. We give a detailed characterization of such curves, a special case of which, called \emph{merging curve}, connects maximum curvature turns to straight line segments. The structure of extremals in our case is revealed through analytical integration of the system and adjoint equations

    Trajectory Tracking and Control of Differential Drive Robot for Predefined Regular Geometrical Path

    Get PDF
    AbstractTrajectories made by concatenating straight motion and in place turning primitive are one that can be easily followed by a differential drive robot. This paper presents trajectory tracking and control of differential drive robots along a predefined regular geometrical path made up of these primitives. A control algorithm was developed to control the robot along different trajectories. The algorithm takes user input from a user interface through which one can select the type of trajectory, dimensions of the trajectory and tracking velocity. Simulations were carried out to obtain the trajectory tracked by the robot using commercial available software MATLAB, Release 2010. Experiments were conducted for tracking regular trajectories such as Triangular, Rectangular and Square and these experimental results were found to be in good agreement with the simulation results

    Minimum Wheel-Rotation Paths for Differential Drive Mobile Robots Among Piecewise Smooth Obstacles

    No full text
    Abstract-Computing optimal paths for mobile robots is an interesting and important problem. This paper presents a method to compute the shortest path for a differential-drive mobile robot, which is a disc, among piecewise smooth and convex obstacles. To obtain a well-defined notion of shortest, the total amount of wheel rotation is optimized. We use recent characterization of minimum wheel-rotation paths for differential-drive mobile robots with no obstacles [4], [5]. We reduce the search for the shortest path to the search on a finite nonholonomic visibility graph. Edges of the graph are either minimum wheel-rotation trajectories inside the free space or trajectories on the boundary of obstacle region. Vertices of the graph are initial and goal configurations and points on the boundary of obstacle region. We call the search graph a nonholonomic visibility graph because the jump condition of the Pontryagin Maximum Principle gives a necessary condition which is reminiscent of bitangency in wellknown visibility graphs. To the best of our knowledge, this is the first progress on the problem

    Diseño e implementación de un algoritmo de generación de trayectorias para la evasión de un obstáculo para un robot móvil

    Get PDF
    La robótica móvil ha buscado desde sus inicios la autonomía móvil en su desplazamiento hacia sus objetivos. Conforme fue evolucionando esta área de la robótica se desarrollaron diversas metodologías para hacer más eficiente el movimiento autónomo de los robots. Gran cantidad de estas metodologías se desarrollaron para movilizar al robot en un entorno con obstáculos no estables. Se obtuvieron buenos resultados a costa de la alta complejidad de sus algoritmos, así como la gran cantidad de sensores implementados en el robot y entorno. La presente tesis busca reducir la complejidad de algoritmos para calcular las trayectorias más cortas hacia el objetivo de recorrido de un robot móvil en un entorno con obstáculos estables (entorno estructurado). Para la solución del problema se elige trabajar con un robot móvil de tracción diferencial. Se elaboró un programa en lenguaje C++/CLI con una interfaz gráfica de usuario (IGU) para poder, en esta, detallar información sobre el entorno y la posición final del robot y, también, para habilitar la comunicación usuario-robot. Posteriormente en el algoritmo principal del programa se hacen cálculos matemáticos para determinar la trayectoria que es más corta a recorrer con las condiciones especificadas previamente en la IGU. Con la trayectoria obtenida se generan las señales de control que son enviadas al robot móvil para que recorra dicha trayectoria. Se hacen pruebas de la generación de trayectorias y seguimiento de las mismas con obstáculo y sin obstáculo. En los resultados de las pruebas experimentales se presentaron errores de precisión y se mejoraron con un arreglo correctivo de velocidades de los motores del robot. Con este ajuste los resultados obtenidos fueron los esperados en relación con la correcta generación de la trayectoria así como el seguimiento de la misma. Se concluye que las velocidades a las que se desempeñan los motores deben ser corregidas para disminuir el error de precisión en las pruebas experimentales del sistema. Finalmente, la precisión del sistema depende de la longitud y forma de las trayectorias a seguir.Tesi

    Minimum Wheel-Rotation Paths for Differential Drive Mobile Robots Among Piecewise Smooth Obstacles

    No full text

    Diseño e implementación de un sistema de generación de trayectorias para un robot móvil utilizando control odométrico

    Get PDF
    La generación de trayectorias es uno de los aspectos básicos del desarrollo de robots móviles. Permite al móvil poder desplazarse de un lugar a otro de manera óptima y segura, a partir de un modelo de obstáculos que lo rodean y a un camino ya calculado. Los estudios en generación de trayectorias son importantes debido a que son la base del desplazamiento de un robot móvil. El movimiento debe de ser seguro, esquivando los obstáculos, y eficiente, que se traslade de un lugar a otro en el menor tiempo posible, o con el menor consumo de potencia. Para esto, en primer lugar, se debe de calcular una trayectoria. Ésta puede ser calculada por distintos métodos dependiendo del algoritmo utilizado. Una vez calculada la trayectoria, debe ser realizada por el robot real, lo que lleva a un problema de incertidumbre en su ejecución. Esto se debe a la inexactitud de la ejecución de las órdenes de velocidad y a la inexactitud en la localización del robot mediante los cálculos odométricos. Esta incertidumbre es acumulativa, es decir, mientras más larga sea la trayectoria, se generan errores mayores. La implementación de un sistema de generación de trayectorias servirá para que luego existan estudios sobre mejoras en la automatización de robots móviles, y que lleve a su vez a un impulso al desarrollo de la robótica en general. La presente investigación aplicada propone un sistema de generación de trayectorias que permitirá a un usuario aplicar parámetros iniciales a un algoritmo generador de trayectorias para luego ser enviado al robot móvil que recorrerá el camino planteado y llegar al lugar de destino. El objetivo es el diseño y construcción de un robot móvil para pruebas de generación de trayectorias óptimas, usando distintos algoritmos para este propósito, con la finalidad de poder realizar estudios posteriores sobre el tema.Tesi
    corecore