

Exploiting geometric properties in combinatorial
optimization = Benutten van geomwetrische
eigenschappen in combinatiorische optimalisatie
Citation for published version (APA):

Usotskaya, N. (2011). Exploiting geometric properties in combinatorial optimization = Benutten van
geomwetrische eigenschappen in combinatiorische optimalisatie. Maastricht: Datawyse / Universitaire
Pers Maastricht.

Document status and date:
Published: 01/01/2011

Document Version:
Publisher's PDF, also known as Version of record

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can
be important differences between the submitted version and the official published version of record.
People interested in the research are advised to contact the author for the final version of the publication,
or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these
rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above,
please follow below link for the End User Agreement:

www.umlib.nl/taverne-license

Take down policy
If you believe that this document breaches copyright please contact us at:

repository@maastrichtuniversity.nl

providing details and we will investigate your claim.

Download date: 04 Dec. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Maastricht University Research Portal

https://core.ac.uk/display/231373081?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://cris.maastrichtuniversity.nl/portal/en/publications/exploiting-geometric-properties-in-combinatorial-optimization--benutten-van-geomwetrische-eigenschappen-in-combinatiorische-optimalisatie(206dce08-5c91-4d46-b350-ee1519a13401).html

Exploiting geometric properties
in combinatorial optimization

Natalya Usotskaya

This book was typeset by the author using LaTeX.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording or otherwise, without the prior permission in writing from the author.

Exploiting geometric properties in combinatorial optimization
c© Natalya Usotskaya, 2011

Cover photo by Shamil Gumirov
Cover design by Shamil Gumirov and Mariya Chaplina
Published by Universitaire Pers Maastricht
ISBN
Printed in the Netherlands by Datawyse

Exploiting geometric properties
in combinatorial optimization

Benutten van geometrische eigenschappen
in combinatorische optimalisatie

Proefschrift

ter verkrijging van de graad van doctor
aan de Universiteit Maastricht,
op gezag van Rector Magnificus,

Prof. mr. G.P.M.F. Mols,
volgens het besluit van het college van Decanen,

in het openbaar te verdedigen
op woensdag 14 december 2011 om 16.00 uur

door

Natalya Usotskaya

Promotor:
Prof. dr. ir. C.P.M. van Hoesel

Copromotor:
Dr. A. Grigoriev

Beoordelingscommissie:
Prof. dr. R. J. Müller (voorzitter)
Dr. J. Cardinal (Université Libre de Bruxelles)
Prof. dr. ir. R. Peeters

Dit onderzoek werd financieel mogelijk gemaakt door Maastricht Research School of
Economics of Technology and Organizations (METEOR).

Acknowledgements

This thesis would never appear without the endless support of some people. I am
glad to name them here. First of all, many thanks go to my enormously patient
supervisor, Alexander Grigoriev. He was always full of enthusiasm and new ideas
about any project.

Part of the research was made in close cooperation with André Berger and Bert
Marchal. I am very grateful for the knowledge, ideas and precision they brought into
the thesis. My special thanks go to Bert for his patience and for always being there
for me.

The unconditional support of my parents led me from the secondary school to this
doctoral thesis. Without their understanding and help I would never proceeded so far.
Thank you, mom and dad.

Special thanks to my beloved roommate Bas, for charts and the guidance through
the Dutch culture and humor. His regular jokes and shiny smiles made rainy days
much brighter. He was not the only one who lightened my life during these years.
Without mentioning their names I thank all the friends and colleagues from the uni-
versity, who made my life in Maastricht a very enjoyable and precious time.

A lot of thanks go to Karin and Haydeé for their help with all the paper work.
These pretty ladies make the atmosphere in the department pleasant and relaxing.

I thank Rudolf Müller, Jean Cardinal and Ralf Peeters for refereeing the thesis and
for all the useful comments they provided to make the text more clear and readable.

The research that forms the basis of this thesis was conducted from 2008 to 2011
at the Quantitative Economics department; it was funded by the department and
by Maastricht Research School of Economics of Technology and Organizations (ME-
TEOR). This support is gratefully acknowledged.

Natalya Usotskaya
Maastricht, October 2011

Contents

1 Introduction 11
1.1 Computational geometry and applications 11
1.2 Graph parameters and algorithms . 13
1.3 Publications underlying this thesis . 15

2 Preliminaries 17
2.1 Calculus of variations . 17
2.2 Computational algebraic geometry . 18
2.3 Graph terminology . 19
2.4 Planar graphs . 21
2.5 Graph minors . 21
2.6 Treewidth . 23

I Computational Geometry and Applications 27

3 Basic Helicopter Problem with Rectilinear Obstacles 29
3.1 Solution of the basic helicopter problem 31

3.1.1 Continuity of the time function . 35
3.2 Introduction of rectilinear obstacles . 36

3.2.1 Dynamic programming algorithm 37
3.3 Conclusions and open problems . 44

4 General Helicopter Problem without Obstacles 45
4.1 Problem definition . 46
4.2 Stationary points of the time function . 49
4.3 Boundary search . 53
4.4 Arbitrary position of the starting point . 54

Contents

4.5 Non-convexity of the time function . 56
4.5.1 Simple algorithm for the case of one breakpoint 57

4.6 Conclusions and open problems . 58

II Exploiting Geometry in Graph Parameter’s Determina-
tion 59

5 Grid Minors 61
5.1 Preliminaries . 62
5.2 X-grids . 64

5.2.1 Branchwidth of X-grids . 64
5.2.2 Treewidth of X-grids . 66
5.2.3 Largest square-grid minor of X-grids 68

5.3 Sandwich grids and pyramids . 71
5.3.1 Branchwidth of sandwich grids . 73
5.3.2 Treewidth of sandwich grids and pyramids 73
5.3.3 Square-grid minor of sandwich grids and pyramids 74

5.4 Conclusions and open questions . 74

6 Integer Linear Programming Formulations for Treewidth 77
6.1 Elimination Order formulation and flow metrics 78

6.1.1 Introduction to flow metrics . 79
6.1.2 Improvement of EOF using flow metrics 81

6.2 Tree drawing formulation . 83
6.2.1 Introduction to local branching . 85
6.2.2 Local branching technique for TDF 86

6.3 Comparison of formulations and methods 88
6.4 Conclusions and open questions . 89

III Treewidth and Applications 91

7 H-Subgraph Edge Deletion 93
7.1 Problem definition . 94
7.2 MSOL Formulations . 95

7.2.1 Formulation for single pattern . 95
7.2.2 Formulation for set of patterns . 97

7.3 Nice tree decompositions . 98
7.4 DP for text graphs with bounded degree 98

8

Contents

7.4.1 Constant parameters and notation 98
7.4.2 Dynamic program and results . 99

7.5 Dynamic program for clique patterns . 102
7.5.1 Dynamic program and results . 102

7.6 Baker’s approximation scheme . 104
7.6.1 Bounded outerplanarity index . 105
7.6.2 Approximation schemes . 106

7.7 Generalization to set H of patterns . 108
7.8 Conclusions and open questions . 109

8 Summary 111

Bibliography 115

Nederlandse Samenvatting 123

Curriculum Vitae 127

9

Chapter 1

Introduction

This thesis concerns several interesting combinatorial problems arising in computa-
tional geometry and algorithmic graph theory. The common motive in our approach to
the problems is to consider them from a “geometric” point of view. Namely, we search
for some structural geometric properties helping to attack a combinatorial problem
from a different unconventional angle.

1.1 Computational geometry and applications

The first part of the thesis deals with a problem from computational geometry. In
computational geometry there are a lot of problems asking to construct a trajectory
which is optimal with respect to some natural criteria, such as the distance, time,
cost, resource consumption and so on. We refer to the papers [2, 71, 88, 95] as good
examples of finding the shortest path in a complex terrain; and to [7, 35, 90] as ex-
amples of finding the fastest route. We refer to the shortest paths as length-optimal
trajectories and to the fastest routes as time-optimal trajectories. Trajectory opti-
mization problems usually assume a constant speed of the moving object, a mover,
within some domain. Moreover, many fundamental geometric problems assume that
a moving object is a single point in two- or three-dimensional space. Under these two
assumptions, length-optimal and time-optimal trajectories are the same. Therefore,
dealing with a time-optimization problem, we can apply, for instance, the shortest-
path algorithms; see [1, 2].

The situation is completely different when we assume that the speed of the mover
depends on its position in space. In this case, length-optimal and time-optimal tra-
jectories can significantly deviate from each other. One example of such a problem
is finding fastest paths in weighted subdivisions where the plane is divided into a
finite number of regions in each of which the speed is constant, see Daescu [35, 36].

Chapter 1. Introduction

In Part I we consider an even more complicated setting where the speed of the mover
changes continuously in one of the system coordinates.

Given a mover in three-dimensional Euclidean space, assume that the absolute
value of the mover’s speed decreases or increases in one of the space coordinates. This
is the real-life setting in any helicopter flight. The higher the altitude of the helicopter
is, the lower the atmospheric pressure becomes and, consequently, the lower the air
density is. In turn, the reduction in air density will reduce the power available, and
then, the maximum speed of the helicopter decreases with its altitude. Though the
decreasing concave function of the helicopter’s maximum velocity in altitude is quite
complex and hardly admits a closed analytical form, it is widely accepted to model
it by linear or piece-wise linear functions with a small number of breakpoints, see,
e.g. [8]. The complex form of the velocity function is the first difficulty of the helicopter
problem. The second difficulty comes from the introduction of obstacles in the terrain.
This type of problems is widely considered in computational geometry, see [1, 88,
95]. Usually obstacles are given by the continuous curves in three-dimensional space
representing some geographic landscape.

So we can formulate the problem as follows: given two points in three-dimensional
space and some continuous curve representing the set of obstacles, find a time-optimal
trajectory between them such that the trajectory does not hit an interior of any ob-
stacle. It is noticeable that the helicopter problem with obstacles is a generalization
of the classical three-dimensional Euclidean shortest-path problem: if the velocity of
the helicopter is constant with respect to its altitude, the problems are equivalent.
It is well known that the two-dimensional Euclidean shortest-path problem is poly-
nomially solvable, see Mitchell and Papadimitriou [70], while the three-dimensional
problem is NP-hard, see Canny and Reif [27], i.e. computationally intractable. The
good news is that we can approximate the optimal solution to any given precision and
this can be done in polynomial time, see Agarwal et al. [1].

In this thesis we start with some simplifications of the problem as the most gen-
eral setting of the helicopter problem is NP-hard and, furthermore, no constant fac-
tor approximation algorithm is known. First, we consider the linear velocity function
without obstacles, which provides us with so-called motion primitives which are the
basic optimal elements of the trajectory. The standard technique is to lift from motion
primitives to solutions of the general problem so that the trajectory which is optimal
in general case is a combination of motion primitives; a typical illustration can be
found, for example, in robotics, see, e.g. Chitsaz [29, 30]. So we proceed with the
generalizations of the problem in two different ways: one way is to consider the finite
set of rectilinear obstacles and solve the basic helicopter problem with linear velocity
function under the obstacle constraints. A second way is to generalize the type of the
velocity function by introducing a fixed number of breakpoints and solve the general

12

1.2. Graph parameters and algorithms

helicopter problem without obstacles. This generalization deals with a more compli-
cated non-uniform medium as in reality the helicopter speed drops more quickly with
altitude growth.

The helicopter problem is considered in Chapters 3 and 4. Chapter 3 deals with
the basic helicopter problem with rectilinear obstacles. In this chapter we derive the
motion primitives and solve the problem with rectilinear obstacles by a polynomial
time dynamic programming algorithm.

In Chapter 4 we investigate the general helicopter problem with a piece-wise lin-
ear concave velocity function. We reduce the problem to the set of fixed degree multi-
variable polynomial equations. If the number of breakpoints in the piece-wise linear
velocity function is a constant, the resulting system has a fixed number of variables
and it can be solved in constant time by algebraic elimination theory; some back-
ground is given in Chapter 2, see also Cox [33].

1.2 Graph parameters and algorithms

The second and third part of this thesis is devoted to problems on graphs. Graphs
are widely used to represent and to model various problems coming from the real
world, for example, telecommunication networks, facility location, project scheduling
and so on. For an extended review on applications we refer to [51, 53]. Notice, most
of the interesting and practically relevant problems on graphs are also NP -hard, i.e.
computationally intractable.

There are several ways to deal with the complexity of the problems. One way is
to construct an exact combinatorial algorithm or to use Integer Linear Programming
algorithm. Such techniques guarantee the absolute quality of obtained solutions; but
they are typically suitable only for small instances of the problem; since the running
time of such algorithms is exponential in the input size. Another way to tackle hard
problems is to “approximate” or to find some “good enough” solution and guarantee
the level of closeness to the optimum.

In this thesis we use the following approach: if the input graph has some struc-
tural properties then we explicitly use them to design more efficient algorithms. Many
practical problems implicitly satisfy some nice geometric properties; a good example
of such a practical problem is a Traveling Salesman Problem. The general problem is
NP -hard, see Karp [61]; it remains NP-hard even for the case when the cities are in
the plane with Euclidean distances, see Papadimitriou [73]. Nevertheless, Euclidian
Traveling Salesman Problem admits polynomial time approximation schemes, see,
e.g. Arora [5]. Another well-known problem with nice geometric properties is (Eu-
clidian) Steiner Tree Problem which is NP-complete, see Karp [61], so as Rectilinear

13

Chapter 1. Introduction

Steiner Tree Problem, see Garey and Johnson [48]. But the special case of Rectilinear
Steiner Tree Problem, so-called Single-Trunk Steiner Tree Problem is solved in linear
time by Chen et al. [28].

Another way to use this technique is to exploit the structural property of “tree-
likeness”. It is known that a lot of hard problems are easy on trees. Robertson
and Seymour [80, 82] introduced the notion of tree-decomposition which represents a
graph as some kind of a tree. Treewidth is a parameter of graphs; generally speaking,
the lower this parameter is, the more tree-like the graph is. Apparently, a lot of hard
problems which are easy on trees, are also easy on graphs of small treewidth, see, e.g.
[31, 32]. There are various algorithms and heuristics for computing the treewidth.
One of the well-known algorithms is a linear time algorithm by Bodlaender [14].
However, it is rarely used in practice because of the huge constant in the running
time. Recently, Feige et al. obtained a polynomial time O(

√
log tw)-approximation al-

gorithm [43]. The treewidth of planar graphs can be approximated within a factor 3
2

by Robertson and Seymour [83] and Seymour and Thomas [87].
In Part II we propose some methods to find and to approximate treewidth. First,

we consider the parameters of planar graphs, then we move to the treewidth of
general graphs. Planar graphs do not have bounded treewidth and the question
whether or not computing the treewidth of planar graphs is NP-hard is still open.
The treewidth of a planar graph is, however, related to some other parameters of pla-
nar graphs, namely its branchwidth and the side size of its largest square grid-minor.
The nature of these relationships which provides some intuition on the bounds for the
approximation of planar treewidth is examined more closely in Chapter 5.

In Chapter 6 we present another way to find the treewidth of a graph. We con-
sider two Integer Linear Programming formulations for the treewidth problem. The
first formulation is proposed by Koster and Bodlaender [65]. We improve this formu-
lation by merging it with the flow metric approach by Bornstein and Vempala [24].
The resulting new ILP cuts some feasible symmetric solutions in the linear relax-
ation of the ILP by Koster and Bodlaender by new inequalities. Furthermore, we
introduce a new ILP formulation for the treewidth problem based on the “geometry”
of tree-decompositions. This new formulation allows us to apply the local branching
technique by Fischetti and Lodi [46], a novel approach for branch-and-cut algorithms.

Finally, in Part III, Chapter 7, we investigate the problem of excluding a set of
graphs as subgraph of the input graph by deleting a minimum number of edges from
it. The problem is NP-hard on general graph instances. We show that the problem
is polynomially solvable on graphs of bounded treewidth. Moreover, we show that an
optimal solution of the problem can be approximated using treewidth-based technique
when the input graph is planar.

14

1.3. Publications underlying this thesis

1.3 Publications underlying this thesis
The following set of publications is based on the results of this thesis. The work is
done in close cooperation with the respective co-authors.

1. A. Berger, Grigoriev A. and Usotskaya N. On the Time-Optimal 2D-Trajectories
in Non-Uniform Mediums. METEOR Research Memorandum, RM/11/031, Maas-
tricht University, School of Business and Economics.

The content of this paper is based on Chapters 3 and 4.

2. A. Grigoriev, Ensinck H. and Usotskaya N. Integer Linear Programming Meth-
ods for Treewidth. METEOR Research Memorandum, RM/11/030, Maastricht
University, School of Business and Economics.

Chapter 6 is devoted to the ILP formulations for the treewidth.

3. A. Berger, Grigoriev A. and Usotskaya N. The Time-Optimal Helicopter Trajec-
tory is a Circle Segment. In Proc. of 26th European Workshop on Computational
Geometry (EuroCG 2010) (2010), pp. 89–92.

In this paper we presented the first result obtained for the helicopter problem.
It is based on Chapter 3.

4. A. Grigoriev, Marchal B. and Usotskaya N. Algorithms for the Minimum Edge
Cover of H-Subgraphs of a Graph. In Proc. of the 36th Conference on Current
Trends in Theory and Practice of Computer Science (SOFSEM 2010), Lecture
Notes in Computer Science, 5901, Springer (2010), pp.352–464.

Minimum Edge Cover problem is considered in Chapter 7.

5. A. Grigoriev, Marchal B. and Usotskaya N. On Planar Graphs with Large Tree-
width and Small Grid-Minors. Electronic Notes in Discrete Mathematics, 32
(2009), pp. 35–43.

The paper is based on the content of Chapter 5.

15

Chapter 2

Preliminaries

In this chapter we clarify the terminology used throughout the thesis. Some terms
that are utilized only occasionally will be introduced in the subsequent chapters, at
the point where they are needed. We commence with the main terminology and re-
sults of the calculus of variation and algebraic elimination theory which is widely
used in Part I of the thesis. We continue with some terminology and notions that
regard standard graph theory used in Parts II and III. Then, some terminology will
be introduced to deal with planar graphs and graph minors. Formal definitions of
treewidth, tree decomposition and some related notions are followed.

2.1 Calculus of variations

This section contains some well-known definitions of the calculus together with the
main definitions and results of the calculus of variations. We refer to [62, 63] and
[49, 50] for references.

The following Extreme Value Theorem states:

Theorem 2.1.1. [62] Let f : D −→ R be a continuous function in the compact domain
D, then f must attain its maximum and minimum value, each at least once on this
domain. That is, there exist points m and M in D such that: f(m) ≤ f(x) ≤ f(M) for
every x ∈ D.

Fermat’s Theorem gives the necessary condition which has to be satisfied at the
extremum point in the interior of the domain:

Theorem 2.1.2. [45] Let f : X −→ R be a function in the open domain X, a ∈ X is a
local extremum of f . If f is differentiable at a then f ′(a) = 0.

These points are called stationary points of the function.

Chapter 2. Preliminaries

As a corollary, global extrema of a function f in the closed domain D occur only
at boundaries, non-differentiable points and stationary points in the interior of the
domain.

A functional is traditionally a map from a vector space to the field underlying the
vector space which is usually the field of real numbers. Usually the vector space
is a space of functions, thus the functional takes a function as its input-argument.
This is the reason why it is sometimes considered as a function of a function. Its
use originates in the calculus of variations where one searches for a function which
minimizes a certain functional. Often the functionals are given as the integrals from
some function and the derivatives of this function, e.g.

I(f) =

∫

Ω

H(f(x), f ′(x), f ′′(x), . . .)µ(dx).

The following Euler-Lagrange Equation provides the necessary condition a func-
tion should satisfy to be the minimizer of a given functional:

Theorem 2.1.3. [49, 50] Let S(y) =
∫ b
a
F (t, y(t), y′(t))dt be a functional, where y :

[a, b] ⊂ R → X is differentiable and y(a) = ya, y(b) = yb, y′ is the continuous derivative
of y and F is a real-valued function with continuous first partial derivatives. If the
function y(t) is a stationary point of the functional S(y), then it satisfies the equation:

F ′y(t, y(t), y′(t))− d

dt
F ′y′(t, y(t), y′(t)) = 0. (2.1)

2.2 Computational algebraic geometry

One of the powerful tools to deal with the systems of multivariable polynomial equa-
tions is provided by computational algebraic geometry and commutative algebra, see
[33] for details. We briefly introduce main definitions and results of the theory about
polynomials of n variables f(x1, . . . , xn):

The set of all polynomials at x1, . . . , xn with coefficients in the field k is denoted
k[x1, . . . , xn].

A subset I ⊆ k[x1, . . . , xn] is an ideal if it satisfies the following three properties:

• 0 ∈ I,

• if f, g ∈ I then f + g ∈ I,

• if f ∈ I and h ∈ k[x1, . . . , xn] then hf ∈ I.

18

2.3. Graph terminology

If f1, . . . , fs ∈ k[x1, . . . , xn] then

〈f1, . . . , fs〉 =

{
s∑

i=1

hifi | h1, . . . , hs ∈ k[x1, . . . , xn]

}

is an ideal of k[x1, . . . , xn]. We can think of 〈f1, . . . , fs〉 as consisting of all “polynomial
consequences” of the equations f1 = . . . = fs = 0.

An ideal I is finitely generated if there exist f1, . . . , fs ∈ k[x1, . . . , xn] such that
I = 〈f1, . . . , fs, 〉. f1, . . . , fs are called a basis of I.

The lexicographical order lex for the given ordering of the variables x1 > x2 > . . . >

xn is determined as follows: xα1
1 . . . xαnn >lex x

β1
1 . . . xβnn if in the product xα1−β1

1 . . . xαn−βnn

the leftmost nonzero entry among αi − βi is positive. The product cxα1
1 . . . xαnn , c ∈ k, is

called a leading term of the polynomial if xα1
1 . . . xαnn is bigger than any other product

y1β1 . . . y
βn
n of the polynomial with respect to the lexicographical order.

The set {g1, . . . , gs} ⊂ I is called a Gröbner basis of I if and only if the leading term
of every element of I is divisible into the leading term of at least one gi. The Gröbner
basis of any nonempty ideal I ⊂ k[x1, . . . , xn] can be found in finite number of steps by
Buchberger’s algorithm, see [33] for details.

Given I = 〈f1, . . . , fs〉 ⊂ k[x1, . . . , xn], the l-th elimination ideal Il, l ≥ 1, is the ideal
of k[xl+1, . . . , xn] defined by Il = I ∩ k[xl+1, . . . , xn]. Thus, Il consists of all consequences
of f1 = . . . = fs = 0 which eliminate the variables x1, . . . , xl.

Theorem 2.2.1. [33] Let I ⊂ k[x1, . . . , xn] be an ideal and let G be a Gröbner basis of
I with respect to the lexicographical order x1 > x2 > . . . > xn. Then, for every 1 ≤ l ≤ n,
the set Gl = G ∩ k[xl+1, . . . , xn] is a Gröbner basis of the l-th elimination ideal Il.

Thus, the Elimination Theorem 2.2.1 guarantees that we can find a solution of a
set of polynomial multivariable equations in a finite number of steps when the highest
degree of all polynomials is fixed.

2.3 Graph terminology
A graph G is a pair (V (G), E(G)), where V (G) is a finite set of vertices and E(G) is a
set of edges.

If there is no ambiguity about which graph G we deal with, we will refer to V (G)

and E(G) simply as V and E. Following the convention in graph theory, we use n(G)

(or simply n) to denote the number of vertices in G and m(G) (or simply m) to denote
the number of edges in G, i.e., n = |V | and m = |E|. An edge e ∈ E is a two-element
(multi)-set of vertices from V , i.e., e ∈ V × V . If an edge e joins two vertices, then
these vertices are called the end vertices of e. If u and v are the end vertices of the

19

Chapter 2. Preliminaries

edge e, then e is formally denoted by {u, v}. For the sake of readability, we will refer
to the edge {u, v} simply as uv in this thesis. Two edges are disjoint if they have no
end vertex in common. An edge e and an end vertex of e are said to be incident to
one another. Two vertices that are joined by an edge are called adjacent vertices. The
neighborhood N(v) of a vertex v ∈ V in G is the set of vertices adjacent to v in G.

The degree d(v) of a vertex v ∈ V is the number of edges incident to v in G. The
minimum degree over all vertices in G is denoted by δ(G), i.e., δ(G) = minv∈V d(v).
Similarly, ∆(G) denotes the maximum degree in G, i.e., ∆(G) = maxv∈V d(v). An edge
e ∈ E is called directed if the pair of vertices denoting the edge is ordered and e is
said to be undirected if it is represented by an unordered vertex pair. A graph G is
undirected if all of its edges are undirected. An edge is called a self-loop if its two end
vertices coincide. When E(G) is a set rather than a multi-set and does not contain
self-loops, G is said to be a simple graph. Through the thesis we consider only simple
and undirected graphs.

A path in a graph G is a sequence of vertices from V such that each vertex in
the sequence is adjacent to the next vertex in the sequence. For finite paths, the
first vertex is called the start vertex and the last vertex is called the end vertex. All
other vertices in a path are called internal vertices. A cycle is a path for which the
start vertex and the end vertex coincide. A path with no repeated vertices is called a
simple path, and a cycle with no repeated vertices or edges aside from the necessary
repetition of the start and end vertex is a simple cycle. A graph is acyclic if it does not
contain any cycle. The length of a path is the number of edges in the path, counting
multiple edges multiple times. Two paths in a graph are independent if they have no
internal vertices in common. The distance between two vertices in a graph G is the
length of the shortest path in G connecting the two vertices.

If V ′ ⊆ V and E ′ ⊆ E ∩ (V ′ × V ′), then G′ = (V ′, E ′) is a subgraph of G = (V,E),
written as G′ ⊆ G. If G′ is a subgraph of G, then G is a supergraph of G′. A subgraph
G′ of G is said to be induced by V ′ if E ′ contains all edges from E for which both end
vertices are in V ′. The subgraph of G = (V,E) that is induced by V ′ ⊆ V is denoted by
G[V ′]. For v ∈ V , we denote by G \ v the graph that is obtained from G by deleting v
and all edges incident to v, i.e., G \ v = G[V \ {v}]. For e ∈ E, by G \ e we denote the
graph that results from G when we delete edge e.

A clique in G is a subset of V for which all vertices are pairwise adjacent. A clique
S in G is called a maximal clique if no strict superset of S is a clique. A clique S in G

is called a maximum clique if there is no clique in G that has bigger size. The size of
a maximum clique in G is denoted by ω(G). A graph on n vertices that forms a clique
on n vertices is called a complete graph and is denoted by Kn. An independent set
in G is a subset of V in which the vertices are pairwise non-adjacent. Maximal and
maximum independent sets can be defined analogously to maximal and maximum

20

2.4. Planar graphs

cliques.
A graph is said to be connected if there is a path between each pair of distinct

vertices of the graph. A connected component S of G is a maximal subgraph of G that
is connected, i.e., each supergraph of S that is a subgraph of G is disconnected. Most
problems on graphs can be cracked by solving them separately on each connected
component of the graph. It is for this reason that we only consider input graphs in
this thesis that have exactly one connected component, i.e., we assume that our input
graphs are connected. Connected graphs that are acyclic are called trees.

2.4 Planar graphs
A graph G is called a planar graph if it can be drawn in the plane in such a way that
its edges intersect only at shared end vertices. A drawing of a planar graph G in the
plane is called a planar embedding of G. The regions, isomorphic to open discs, that
are bounded by the edges in a planar embedding of a planar graph are called faces.
If we embed a planar graph on the plane, there is always one face that is unbounded.
This is called the outer face. All other faces are called inner faces. The number of faces
in a planar embedding is denoted by the letter f . The next theorem (Euler’s formula)
implies that for a connected planar graph G, the parameter f does not depend on the
embedding of G.

Theorem 2.4.1. [79] Let G be a connected planar graph with n vertices and m edges.
Then for every planar embedding of G it holds that

n−m+ f = 2.

A graph G is called outerplanar (or 1-outerplanar) if there is a planar embedding
of G in which each vertex is incident to the outer face. For k > 1 a planar embedding
is k-outerplanar if removing the vertices incident to the outer face results in a (k− 1)-
outerplanar embedding. A graph G is k-outerplanar if there exists a k-outerplanar
embedding of G, see [6].

In [13], it is shown that the outerplanarity of an arbitrary planar graph can be
determined in polynomial time. Later, the following theorem was proven:

Theorem 2.4.2. [60] Given a planar graph G, the outerplanarity index k of G and a
k-outerplanar embedding of G can be found in O(n2) time.

2.5 Graph minors
We first explain the notion of an edge contraction in a graph. While doing so, we
follow the terminology from [39]. Subsequently, we give a formal definition of a graph

21

Chapter 2. Preliminaries

minor. Minors can be obtained from a graph by a series of vertex deletions, edge
deletions and edge contractions in any order. Minors play an important role in the
characterization of many families of graphs.

Informally, contraction of an edge e = uv replaces vertices u and v by a new vertex
that is adjacent to all neighbors of both u and v. In this thesis, we restrict ourselves
to simple graphs and hence we enforce that after contraction, the new vertex is con-
nected to its neighbors via a single edge and not via a multi-edge. This is illustrated
in Figure 2.1.

ve

w

v ue

w

contraction of edge e

Figure 2.1: Before contraction both u and v are adjacent to w. After contraction of e, the new
vertex ve is connected to w only via a single edge.

As is formalized in the next definition, we use G/e to denote the graph that is
obtained from G by contracting edge e.

Definition 2.5.1. Given graph G = (V,E) and an edge e = uv ∈ E. Then G/e is the
graph (V ′, E ′) that results fromG after contracting edge e, where V ′ = (V \{u, v}) ∪ {ve}
(with ve the new vertex) and

E ′ = { xy ∈ E | {u, v} ∩ {x, y} = ∅ }
⋃
{ vex | wx ∈ E \ {e}, w ∈ {u, v}} .

Two graphs G and H are said to be isomorphic if there exists a bijection f :=

V (G)→ V (H) such that any two vertices u and v are adjacent in G if and only if f(u)

and f(v) are adjacent in H.

Definition 2.5.2. A graph M is a minor of G, written as M � G, if M is isomorphic to
a graph that can be obtained from a subgraph of G applying edge contractions.

Figure 2.2 shows a graph G, a subgraph H of G and a minor M of G. M can be
obtained from H by contracting the dashed edges.

A family F of graphs is said to be closed under taking graph minors if for every
graph G in F , all minors of G are also element of F . Planar graphs and the family of
bounded treewidth graphs are examples of graph-minor-closed families.

22

2.6. Treewidth

G H M

Figure 2.2: graph G, subgraph H ⊆ G and minor M � G.

We say that we subdivide an edge e = uv in G if we add a new vertex w to G and
replace the edge uv by edges uw and vw. A subdivision of G can be obtained from G

by a series of subdivisions of the edges of G. If a graph M has a subdivision that is
isomorphic to a subgraph of G, then M is called a topological minor of G. Since in
Figure 2.2, graph H ⊆ G is a subdivision of M , M is a topological minor of G.

Kuratowski [66] provided a characterization of planar graphs in terms of two for-
bidden topological minors; the complete graph K5 and the complete bipartite graph
K3,3. Seven years later in [91], Wagner proved that a graph is planar if and only if it
does not have K5 or K3,3 as a regular minor. This led him to the conjecture that the
set of forbidden minimal minors of any infinite graph-minor-closed family of graphs is
finite. A proof of the theorem by Robertson and Seymour was completed in 2004 with
the publication of the last in a series of twenty papers (see, among others, [81, 82, 83])
running to over 500 pages and spanning almost 20 years.

2.6 Treewidth
In this section, we formally define treewidth and a few related terms. The notions
of treewidth and tree decomposition were introduced by Robertson and Seymour in
[81]. Apart from their definitions, we introduce some fundamental lemma’s regarding
treewidth that are essential for some lemma’s and theorems in later chapters of the
thesis.

Definition 2.6.1. [81] A tree decomposition of a graph G is a pair (T,X), where T
is a tree and X = (Xt : t ∈ V (T)) is a family of subsets of V (G), with the following
properties:

• ⋃t∈V (T) Xt = V (G).

• ∀uv ∈ E(G), ∃t ∈ V (T) such that {u, v} ⊆ Xt.

23

Chapter 2. Preliminaries

• For t, t′, t′′ ∈ V (T), if t′ is on the unique path in T between t and t′′ then Xt∩Xt′′ ⊆
Xt′ .

For t ∈ V (T), the set Xt is also referred to as a bag of the tree decomposition (T,X).

The width of the tree decomposition (T,X) is

max
t∈V (t)

(|Xt| − 1).

Definition 2.6.2. [81] The treewidth tw(G) of graph G is the minimum width over all
tree decompositions of G.

The following two lemmas are “folklore”.

Lemma 2.6.3. Let (T,X) be a tree decomposition of graph G. Then for any clique S in
G, there is a bag Xt in (T,X) for which S ⊆ Xt.

Lemma 2.6.4. If M � G, then tw(M) ≤ tw(G).

A lot of research has been dedicated to the fixed parameter case for treewidth, i.e.,
check whether the treewidth of a graph is at most some constant w and if so, return a
tree decomposition of width at most w. For an overview of this work we refer to [16].
Finally, the following result was obtained.

Theorem 2.6.5. [14] Given a graph of treewidth at most w, a tree decomposition of
width at most w can be obtained in linear time.

As we noticed above, from a practical viewpoint the algorithm is only useful for
very low values of w.

The following theorem relates the outerplanarity of a graph to its treewidth.

Theorem 2.6.6. [15] The treewidth of a k-outerplanar graph is at most 3k − 1.

An edge which joins two vertices of a cycle but is not itself an edge of the cycle is
called a chord of that cycle. A chordless cycle in G is an induced cycle in G, i.e., a cycle
that forms an induced subgraph of G. A graph is called chordal (or triangulated) if
it does not contain chordless cycles of length greater than 3, i.e., if all induced cycles
in the graph are 3-cycles (also called triangles). A graph can be transformed into a
chordal graph by adding edges to it up to the point where every cycle contains a chord.
Edges that are added to achieve chordality are called fill-in edges. We denote the set
of fill-in edges by F .

Definition 2.6.7. A graph H = (V,E ∪F) is called a chordalization (or triangulation)
of G = (V,E) if H is chordal.

24

2.6. Treewidth

The width of a chordal graph H is equal to ω(H) − 1, i.e., the size of the largest
clique in H minus one. Using the notion of chordalization, treewidth can be alterna-
tively defined in the following way.

Theorem 2.6.8. see, e.g. [16] The treewidth tw(G) of graph G is the minimum width
over all chordalizations of G.

The following result concerning chordal graphs holds

Lemma 2.6.9. [84] Given a chordal graph G, the size of a largest clique in G and
hence tw(G) can be determined in polynomial time.

An ordering of the vertex set V is a bijection α : {1, 2, . . . , n} ←→ V . If α is an
ordering on n vertices, then we will also refer to α as α(1)α(2) . . . α(n). A chordal-
ization of G = (V,E) can be obtained using vertex ordering α of V by application of
Algorithm 2.1. In words, we run through the vertex ordering and turn the higher

Algorithm 2.1: chordalization

Input: graph G = (V,E) and vertex ordering α
Output: chordalization of G

for i = 1 to n− 2 do
make Si = { v ∈ V | v ∈ N(α(i)) && α(v) > i) } a clique by adding fill-in edges
(if necessary);

ordered neighbors of the vertex at hand into a clique by adding fill-in edges to G. Note
that the added fill-in edges also define neighbor relations in subsequent steps of the
algorithm.

The process of turning the higher ordered neighbors of vertex α(i) into a clique is
often called the elimination of vertex α(i). In the context of chordalizations, vertex
orderings are therefore often referred to as elimination orderings. An elimination
ordering α on the vertices of G is called perfect if during Algorithm 2.1 no fill-in edges
are added to G, i.e., if for all vertices v ∈ V the set of higher ordered neighbors already
forms a clique in G.

A vertex v in a graph G is called simplicial if N(v) induces a clique in G. It was
shown in [67] that every non-empty chordal graph contains at least one simplicial ver-
tex. Another classical fact is that chordal graphs are recursively simplicial, i.e., they
contain a simplicial vertex and after removing this simplicial vertex, the subgraph is
still simplicial. A perfect elimination ordering α of a chordal graph G can therefore be
obtained by repeatedly selecting a simplicial vertex of G as the next vertex in α and
deleting it from G.

25

Part I

Computational Geometry and
Applications

Chapter 3

Basic Helicopter Problem with
Rectilinear Obstacles

The classical trajectory optimization problems in computational geometry belongs to
the following type: given a moving object, a mover, together with the velocity function
and some obstacles find the time-optimal trajectory from one point to another such
that this trajectory does not hit an interior of any obstacle. Furthermore, these prob-
lems usually assume that the speed of the mover is constant and that the mover is
a single point. Under these two assumptions, length-optimal and time-optimal tra-
jectories are the same. Therefore, dealing with a time-optimization problem, we can
apply, for instance, the shortest-paths algorithms; see, e.g., [1, 2].

The situation is totally different when we assume that the speed of the mover
depends on the position in the space. In this case, length-optimal and time-optimal
trajectories can deviate from each other significantly. One example for such a problem
is finding shortest paths in weighted regions [35, 36].

In two following chapters we investigate such fastest path problem where the
speed changes continuously in one of the space’s coordinates, namely we consider
the helicopter problem. The maximum velocity of any helicopter drops with altitude
growth. Though the concave function of the helicopter’s maximum velocity in altitude
is quite complex and hardly admits a closed analytical form, it is widely accepted to
approximate it by linear or piece-wise linear concave functions with just few break-
points, see, e.g. [8]. Therefore, we can formulate the basic helicopter problem as
follows: given is a source point A and a destination point B in three-dimensional Eu-
clidean space. No obstacles (also no ground level) are present. The absolute value of
the mover’s speed decreases linearly in altitude, i.e., v(y) = max{v0 − qy, 0}, where
v0 > 0 is some speed intercept (for instance, the helicopter’s maximum velocity at
a ground level) and q ≥ 0 is the velocity degradation rate. One has to find a time-
optimal trajectory to fly the mover (helicopter) from A to B. Notice that this three-

Chapter 3. Basic Helicopter Problem with Rectilinear Obstacles

dimensional problem can be easily reduced to the two-dimensional problem, as the
time-optimal trajectory clearly belongs to the plane orthogonal to the surface and
containing points A and B.

The helicopter problem with polyhedral obstacles is formulated as follows: given
points A and B in three-dimensional Euclidean space, along with a set of polyhedral
obstacles, find a time-optimal trajectory to fly the helicopter from A to B without hit-
ting an interior of any obstacle. The problem is NP -hard as a generalization of the
three-dimensional Euclidean shortest-path problem [27]: if all the velocity degrada-
tion rates are equal to zero, the problems are equivalent. It is well known that the
two-dimensional Euclidean shortest-path problem is polynomially solvable [70], the
three-dimensional problem is NP-hard [27], but admits polynomial time approxima-
tion schemes [1].

Notice that one can derive a polynomial-time approximation scheme to the three-
dimensional helicopter problem with obstacles by discretizing/scaling the space and
constructing a weighted complete graph, where the edge weight is the time to travel
between two vertices using the straight line trajectory. The presence of obstacles can
be taken into account setting the edge weight to positive infinity if the straight line
between two vertices hits interior of an obstacle. Now we can search for the shortest
path in the obtained weighted graph.

In the time-optimization setting, to tackle the problem with obstacles, one might
need a complete characterization of the set of optimal solutions to the basic prob-
lem without obstacles, the set of, so-called, motion primitives. Typical illustrations
of lifting from motion primitives to solutions to the general problem can be found,
for example, in robotics, see [29, 30]. In this chapter we derive motion primitives for
the basic helicopter problem. We show that the basic helicopter problem is reducible
to the l’Hôpital’s problem [9], one of the most studied problems in geometrical optics
and mechanics. We use Euler-Lagrange equations from calculus of variations as a
tool to tackle the problem. One can see this also as a variant of the Pontryagin Max-
imum (Minimum) Principle [76]. This type of techniques is quite common in optimal
control theory in general, and in robotics in particular; see, e.g., [10, 11]. We obtain
that the trajectory following a certain circle segment with endpoints A and B is the
time-optimal trajectory in a class of continuously differentiable functions. We gener-
alize results for the basic helicopter problem in the following way: we show that the
basic helicopter problem with rectilinear obstacles is solvable in polynomial time by
a dynamic programming algorithm. We assume a computational model with infinite
precision real arithmetic to avoid the comparison of lengths of two paths and so on;
this approach is quite common, see Mitchell and Sharir [71].

The chapter is organized as following: in Section 3.1 we derive the motion prim-
itives to the basic helicopter problem. In Section 3.2 we introduce the rectilinear

30

3.1. Solution of the basic helicopter problem

obstacles as a continuous curve in two-dimensional space and reduce the problem
with obstacles to a dynamic program. In particular, we construct a weighted graph
such that the shortest path in this graph corresponds to the time-optimal helicopter
trajectory with obstacles. The last section contains the results and open questions.

3.1 Solution of the basic helicopter problem
In this section we consider the basic helicopter problem; no obstacles and no ground
level are present. The velocity is given by the linear function v(y) = max{v0 − qy, 0},
where v0 > 0 is some speed intercept (normally we assume that it is the helicopter’s
maximum velocity at the ground level) and q ≥ 0 is the velocity degradation rate.
The problem is to find the time-optimal trajectory from one point to another in three-
dimensional space. As mentioned above, this problem is reducible to the problem in
two-dimensional space, thus we consider a starting point A = (x1, y1) and an end point
B = (x2, y2) of the trajectory.

First, we notice that if the points A = (x1, y1) and B = (x2, y2) lay on the same
vertical line (i.e., they share the same x−coordinate: x1 = x2), then the time-optimal
trajectory is just a piece of the straight line LAB = {x | x = x1} between A and B.
We omit the proof as it is straightforward. We also assume that q > 0; for otherwise
we are in the well-studied setting of the classical Euclidean shortest-path problem.
Thus, from now on we consider the case where x1 6= x2 and q > 0. We show that in this
case the circle segment is the unique time-optimal trajectory. The first observation is
about the convexity of any time-optimal trajectory.

Lemma 3.1.1. For any two points A and B in R2∩{(x, y) : vo−qy > 0}, a time-optimal
trajectory between A and B is a convex function of x.

A

B

T

Figure 3.1: Straight line LAB is quicker than any trajectory T above it

Proof. The proof is based on a comparison of the straight line segment between any
two points A and B and any trajectory above this line segment. We discretize the

31

Chapter 3. Basic Helicopter Problem with Rectilinear Obstacles

line and the path by the lines perpendicular to the straight line segment LAB, see
Figure 3.1 for details. The distance to travel along the straight line is smaller and
the velocity increases with the drop of altitude. Hence, the straight line trajectory is
better than any trajectory above it, so the time-optimal trajectory between A and B

must be a convex function of x.

T

A = (x1, y1)

B = (x2, y2)

C = (x0, y0)

R(α)

α
γ

β

D = (x, y)

E

d

L

Figure 3.2: Convex trajectory T in the polar system of coordinates

By Lemma 3.1.1, we can restrict our search for time-optimal trajectories to the
class of convex functions in x. Let T be an arbitrary continuously differentiable convex
trajectory between A and B. Let L be the line equidistant from A and B. Since T is
convex in x, it is possible to observe every point of T from any point C on L that
lies above the line segment AB. We consider the trajectory T in the polar system
of coordinates with observation point C = (x0, y0), where C ∈ L is chosen such that
the velocity in C is 0, i.e., y0 = v0

q
. For illustration see Figure 3.2. We refer to the

angle between CA and the x-axis as β and to the angle between CA and CB as γ.
Consider an arbitrary point D = (x, y) of the trajectory T . In the chosen polar system
of coordinates, the point D is completely determined by α and R(α), where α is the
angle between CA and CD, and R(α) is the length of the interval CD:

x = x0 −R(α) cos(α + β), (3.1)

y = y0 −R(α) sin(α + β). (3.2)

First, we write the integral which represents the time needed to travel along T .
For a sufficiently small piece of the trajectory, we may assume that the velocity v

remains constant within the piece. Let the length of the piece be denoted by ∆l,

32

3.1. Solution of the basic helicopter problem

then the time to travel along the piece is ∆t ≈ ∆l
v

. The velocity v is completely
determined by the altitude of D = (x, y). Therefore, by Equation (3.2), we have
v = v0 − qy = qR(α) sin(α + β), as v0 − qy0 = 0 by the choice of C. We know that
for continuously differentiable trajectories the length of the piece ∆l is determined by
∆l =

√
R′2(α) +R2(α)∆α, see, e.g. [63]. Therefore, the time needed to travel along T

is determined by the following integral:

tT =

∫ γ

0

√
R′2(α) +R2(α) dα

qR(α) sin(α + β)
=

∫ γ

0

√(
R′(α)

R(α)

)2

+ 1
dα

q sin(α + β)
. (3.3)

Equation (3.3) allows us to proof the following theorem about the unique time-
optimal trajectory between A and B.

Theorem 3.1.2. Let C be the intersection point of the line y = v0
q

and the line equidis-
tant from A and B. The segment TAB of the circle with center C and radius R = |CA| =
|CB| is a time-optimal trajectory between A and B. The time needed to travel along
TAB is

topt = tTAB =
1

q

∫ γ

0

dα

sin(α + β)
=

1

q
ln

∣∣∣∣∣
tan β

2
+ tan γ

2

tan β
2
− tan2 β

2
tan γ

2

∣∣∣∣∣ , (3.4)

where β is the angle between CA and the x-axis, and γ is the angle between CA and
CB.

Proof. Equation (3.3) gives the time needed to go alone the arbitrary convex trajectory
T . Notice, this integral is well defined as 0 < α + β < π for any α ∈ [0, γ] (β and γ

are two of the three angles of the triangle). Furthermore, for the trajectory T we have
that R(0) = R(γ) = R = |CA| = |CB|, as the point C is equidistant from A and B.

Now, we replace R(α) with the function f(α) = ln(R(α)). Since R(α) is continuously
differentiable, the function f(α) is continuously differentiable as well. Furthermore,
f ′(α) = R′(α)

R(α)
, and the following boundary conditions hold: f(0) = f(γ) = lnR, where

R = |CA| = |CB|. For the function f(α) the travel time is calculated as follows:

tT =
1

q

∫ γ

0

√
1 + f ′2(α)

dα

sin(α + β)
. (3.5)

Now, we have to find all minimizers of the functional (3.5).
Notice that the trajectory is a circle segment if and only if R(α) is constant, which

is possible if and only if the function f(α) = ln(R(α)) is also a constant. Therefore, we
can concentrate on Equation (3.5) proving that f(α) = const is the unique minimizer
of the functional.

1) We prove first that the circle segment with the center C and radius R = |CA| is
a time-optimal trajectory.

33

Chapter 3. Basic Helicopter Problem with Rectilinear Obstacles

Consider an arbitrary trajectory T . f ′2(α) ≥ 0 for any T , therefore, the following
lower bound exists:

tT ≥
1

q

∫ γ

0

dα

sin(α + β)
.

On the other hand, the last integral represents the time needed to travel along
the circle segment TAB with the center C and the constant radius R = |CA|.
Therefore, the derived circle segment is at least as good as any other trajectory.

2) Now, we show that TAB is the unique time-optimal trajectory in the class of
continuously differentiable functions. Consider the functional (3.5) with the in-

tegrand F (α, f, f ′) =

√
1+f ′2(α)

sin(α+β)
. Suppose f(α) is the minimizer of the functional.

Therefore, by Theorem 2.1.3, the Euler-Lagrange Equation (2.1) holds for f(α),
because it is a necessary condition for the stationary point of any functional.

We obtain the equation d
dα

(F ′f ′) = 0 as F ′f = 0. Hence,

F ′f ′ =
f ′(α)√

1 + f ′2(α) sin(α + β)
= const. (3.6)

Since
√

1 + f ′2(α) ≥ 1 and sin(α + β) > 0, (0 < α + β < π), the denominator in
Equation (3.6) is always positive. So the sign of f ′(α) depends only on the sign
of the constant. If const = 0 then f ′(α) = 0 and f(α) is a constant function, so
as R(α). This minimizer is the circle segment described above. If const > 0(< 0)

then f(α) is strictly increasing (decreasing), but this is the contradiction to the
boundary condition f(0) = f(γ) = ln R.

Hence, there are no other time-optimal trajectories but the circle segment TAB
with the center C and the radius R = |CA| = |CB|.

The time needed to travel along the circle segment TAB can be computed as the
value of the integral:

topt =
1

q

∫ γ

0

dα

sin(α + β)
=

1

q

∫ β+γ

β

dτ

sin τ
=

1

q

∫ tan β+γ
2

tan β
2

dt

t
=

=
1

q
ln

∣∣∣∣∣
tan β+γ

2

tan β
2

∣∣∣∣∣ =
1

q
ln

∣∣∣∣∣
tan β

2
+ tan γ

2

tan β
2
− tan2 β

2
tan γ

2

∣∣∣∣∣ .

Here, tan γ
2

and tan β
2

can be determined in terms of the coordinates A = (x1, y1)

and B = (x2, y2). C = (x0, y0) has an altitude y0 = v0
q

. Since C belongs to the line L

34

3.1. Solution of the basic helicopter problem

equidistant from A and B, we have the following set of values:

x0 = − y2 − y1

x2 − x1

y0 −
x2

1 + y2
1 − x2

2 − y2
2

2(x2 − x1)
, (3.7)

R = |CA| = |CB| =
√

(x0 − x1)2 + (y0 − y1)2, (3.8)

d = |CE| =
√(

x0 −
x1 + x2

2

)2

+

(
y0 −

y1 + y2

2

)2

. (3.9)

Now we determine the tangents of β and γ in the following way: tan γ
2

=
√
R2−d2
d

. Since
sin β = y0−y1

R
and cos β = x0−x1

R
, then tan β

2
= sinβ

1+cosβ
= y0−y1

R+x0−x1 .

To demonstrate the reducibility of the considered problem to the l’Hôpital’s prob-
lem, we present the time needed to travel along the trajectory T in the following way:

tT =

∫ y2

y1

√
1 + ẋ2(y)

v0 − qy
dy,

as we have to go from the altitude y1 to the altitude y2 along the trajectory x(y),
when speed depends linearly on altitude, so v(y) = v0 − qy, and the length of the
trajectory piece is ∆l =

√
1 + ẋ2(y), see [9]. This integral can be seen as a solution to

the l’Hôpital’s problem, see [9], Chapter 3.

3.1.1 Continuity of the time function

In this subsection we show the continuity of the time function topt. Without loss of
generality we consider the points A = (0, y1) and B = (x, y2). It is clear that the time
function topt(x) is continuous for all values of x not equal to zero as it is a composition
of continuous functions. So we only have to check the continuity at point x = 0. We
show below that if x goes to zero then the value of topt(x) goes to the time needed to
go along the vertical segment from the altitude y = y1 to the altitude y = y2, thus the
time function is continuous.

We rewrite the time function topt(x) in the following way:

topt(x) =
1

q
ln

∣∣∣∣∣
tan β(x)

2
+ tan γ(x)

2

tan β(x)
2
− tan2 β(x)

2
tan γ(x)

2

∣∣∣∣∣ =
1

q
ln

[
1 + f(x)

1− f(x)

]
,

where f(x) = x2+(y2−y1)2√
((y2−y1)(2y0−y1−y2)+x2)2+4x2(y0−y2)2

. If x goes to zero then f(x) behaves in

the following way

f(x) −→
x→0

(y2 − y1)2

√
((y2 − y1)(2y0 − y1 − y2))2

=
y2 − y1

2y0 − y1 − y2

.

35

Chapter 3. Basic Helicopter Problem with Rectilinear Obstacles

Thus,

1 + f(x)

1− f(x))
−→
x→0

2y0 − y1 − y2 + y2 − y1

2y0 − y1 − y2 − y2 + y1

=
2y0 − 2y1

2y0 − 2y2

=
v0 − qy1

v0 − qy2

.

We conclude that

topt(x) −→
x→0

1

q
ln

[
v0 − qy1

v0 − qy2

]
.

But this is exactly equal to the time needed to go along the vertical linear segment
from the altitude y = y1 to the altitude y = y2, because the time can be presented as a
following integral:

∫ y2

y1

dy

v0 − qy
=

1

q
ln

[
v0 − qy1

v0 − qy2

]
.

Hence, the time function topt(x) is continuous in the interval [0,+∞].

3.2 Introduction of rectilinear obstacles

In this section we consider the basic helicopter problem with rectilinear obstacles
in 2D. The obstacles are given as a sequence of points S = {(x1, y1), . . . , (xn, yn)}, so
that every pair of consecutive points have exactly one common coordinate (either xi
or yi) and these same coordinates alternate, see Figure 3.3. We assume that the
helicopter goes from the left to the right without any loops; furthermore, the start
point A = (x1, y1) and the end point B = (x2, y2) belong to the set S; otherwise without
loss of generality we “draw” an additional obstacle to the left of the terrain with the
cornerA and addA to S. Here and below we refer to the straight line segment between
any two points K and M as LKM and to the time-optimal circle segment between K

and M from Theorem 3.1.2 as TKM . The center and the radius of TKM are denoted by
CKM = (x0, y0) and RKM . The values of x0 and RKM are determined by Equations (3.7)
and (3.8) respectively; y0 = v0

q
.

A
B

Figure 3.3: Rectilinear obstacles: the shaded area represents the forbidden territory

36

3.2. Introduction of rectilinear obstacles

3.2.1 Dynamic programming algorithm

The idea for the algorithm computing a time-optimal two-dimensional helicopter tra-
jectory in presence of rectilinear obstacles is to find all potential breakpoints such
that the trajectory changes the motion primitives in these points. If the amount of
potential breakpoints is polynomial then a simple dynamic program can solve the
problem in polynomial time. Obviously, the points of the set S are already potential
breakpoints. Are there any other points? The answer is “yes” and it is given by the
following lemma. It considers the time-optimal trajectory with respect to the “one
step” obstacle, see Figure 3.4.

CDB = (xAB, y0)

A = (x1, y1) CD(xAB, y1)

M = (xAB, y
′)

CMB = (xAB + z, y0)

β(z)

µ(z)

γ(z)

z

D = (xAB, y1) E = (x2, y1)

B = (x2, y2)

Figure 3.4: The optimal trajectory for a “one step” obstacle; TAB hits LAE

Lemma 3.2.1. For three consecutive points A = (x1, y1), E = (x2, y1) and B = (x2, y2)

from S, such that y1 < y2, the time-optimal trajectory from A to B with obstacles is
defined in the following way:

a) if CAB is to the left of A then TAB is the time-optimal trajectory,

b) if CAB is to the right of A then the time-optimal trajectory is a combination of the
straight horizontal line segment LAD and the circle segment TDB, where D and
CDB determine a vertical line. In particular,

D = (x2 −
√

(y2 − y1)(2y0 − y1 − y2), y1). (3.10)

Proof. a) Follows directly from Theorem 3.1.2, as TAB does not hit the horizontal
and vertical obstacles LAE and LEB.

37

Chapter 3. Basic Helicopter Problem with Rectilinear Obstacles

b) TAB hits LAE as CAB is to the right of A. Let us find the first point D = (x, y1) to
the right of A such that TDB does not hit the obstacle LAE. The circle does not hit
LAE for the first time when LAE is the tangent line of TDB. So the x-coordinate of
the circle center CDB and D are the same. Hence, RDB = d(CDB, D) = d(CDB, B)

and CDB has coordinates (x, y0). We have the following equation:

(x− x)2 + (y0 − y1)2 = (x2 − x)2 + (y0 − y2)2, thus,

(x− x2)2 = (y2 − y1)(2y0 − y1 − y2) ≥ 0, as y0 ≥ y2 > y1,

x = x2 −
√

(y2 − y1)(2y0 − y1 − y2), as x ≤ x2.

Here and below we denote the found value of x for A and B as xAB. We show
now that the constructed trajectory LAD plus TDB is time-optimal with obstacles.
Suppose there exists another trajectory T such that tT < tLAD + tTDB . T has
to cross the line x = xAB at some altitude above y1 to avoid the obstacle LAE,
for example at point M = (xAB, y

′), y′ ∈ [y1, y0], see Figure 3.4. M splits the
trajectory T into two parts:

– AM such that tAM ≥ tLAD , the proof is the same as the proof of Lemma 3.1.1,

– MB which is unknown, but the best we can do is to go from M to B along
TMB. Let us show that tTMB

≥ tTDB .

The position of the point CMB is a one-to-one function of the position of the
point M . For the simplicity we consider z as a parameter, where CMB =

(xAB + z, y0). By Theorem 3.1.2 the time needed to go along TMB is given by
the following integral:

tTMB
(z) =

1

q

∫ γ(z)

0

dα

sin(α + β(z))
.

We show that the derivative of tTMB
(z) is positive and thus the function

tTMB
(z) is monotonically increasing:

q
dtTMB

(z)

dz
=

∫ γ(z)

0

− cos(α + β(z))β′(z)dα

sin2(α + β(z))
+

γ′(z)

sin(γ + β)(z)
=

= −β′(z)

∫ sin(β(z)+γ(z))

sin β(z)

dτ

τ 2
+

γ′(z)

sin(γ(z) + β(z))
=

=
β′(z) + γ′(z)

sin(γ(z) + β(z))
− β′(z)

sin β(z)
=

= −
[

β′(z)

sin β(z)
+

µ′(z)

sin µ(z)

]
,

38

3.2. Introduction of rectilinear obstacles

where µ(z) = π − γ(z)− β(z) is the angle between CMBB and the horizontal
axis. Moreover, R(z) =

√
(xAB + z − x2)2 + (y0 − y2)2, and then cos β(z) =

z
R(z)

, sin β(z) =

√
R2(z)−z2
R(z)

, cos µ(z) = x2−xAB−z
R(z)

, sin µ(z) = y0−y2
R(z)

. Hence we
obtain,

q
dtTMB

(z)

dz
= −

[
β′(z)

sin β(z)
+

µ′(z)

sin µ(z)

]
=

z(x2 − xAB)

R(z)(R2(z)− z2)
≥ 0,

as the denominator is positive and x2 > xAB, so the time increases with the
growth of z. d

dz
(qtTMB

(z)) = 0 if and only if z = 0, which means that CMB =

CDB. We can conclude that tTDB is smaller than tMB for any trajectory MB.

So, the constructed trajectory LAD plus TDB is the time-optimal for one step as

tLAD + tTDB ≤ tAM + tTMB
≤ tT .

We observe that by Lemma 3.2.1 for any pair of points A = (x1, y1), B = (x2, y2)

from S, it is sufficient to introduce at most one potential breakpoint D = (xAB, y1) on
the horizontal line y = y1, if it is impossible to go along TAB and it is possible to go
along LAD and TDB. If there are other obstacles between A and B and the new tra-
jectory hits some obstacle, then the time-optimal trajectory with rectilinear obstacles
from A to B passes some other potential breakpoint E between them. This fact is
stated in Lemma 3.2.5. Hence, all necessary potential breakpoints are determined by
Lemma 3.2.1.

The main ingredients to prove Lemma 3.2.5 are the following propositions:

Proposition 3.2.2. For any three points A = (x1, y1), B = (x2, y2) and M = (x3, y3)

such that x1 < x3 < x2 and y3 < y1, y3 < y2, TAB lies above TAM and TMB on the
interval [x1, x2].

Proof. Denote the x-coordinates of the centers of the circle segments TAM , TMB and
TAB as xAM0 , xMB

0 and xAB0 respectively. Then xMB
0 ≤ xAB0 ≤ xAM0 as xAB0 = λxMB

0 + (1−
λ)xAM0 for λ = x2−x3

x2−x1 ∈ [0, 1].
The circle segment TAB is given by the equation (x−xAB0)2 +(y−y0)2 = R2

AB, where
R2
AB = (xAB0 − x1)2 + (y0 − y1)2, so y = y0 −

√
R2
AB − (x− xAB0)2. Similarly, the circle

segment TAM is given by the equation y = y0 −
√
R2
AM − (x− xAM0)2, where R2

AM =

(xAM0 − x1)2 + (y0 − y1)2. The circle segment TAB is above the circle segment TAM if
y0 −

√
R2
AB − (x− xAB0)2 is bigger than y0 −

√
R2
AM − (x− xAM0)2 for any x ∈ [x1, x2]. To

verify this fact, it is enough to compare the expressions under the radical:

R2
AB − (x− xAB0)2 − (R2

AM − (x− xAM0)2) = 2(xAB0 − xAM0)(x− x1) ≤ 0.

39

Chapter 3. Basic Helicopter Problem with Rectilinear Obstacles

So
√
R2
AB − (x− xAB0)2 ≤

√
R2
AM − (x− xAM0)2 for any x ∈ [x1, x2], hence,

y0 −
√
R2
AB − (x− xAB0)2 ≥ y0 −

√
R2
AM − (x− xAM0)2.

Therefore, TAB is above TAM . The proof that TAB is above TMB is similar.

Proposition 3.2.3. For any three consecutive points A = (x1, y1), C = (x2, y1) and
B = (x2, y2) such that x1 < x2 and TAB hits LAC , the time-optimal trajectory lies above
TAB on the interval [x1, x2].

Proof. We consider x1 = 0 and D = (∆x, y1) without loss of generality, where ∆x

is determined by Equation (3.10) as in this case LAD plus TDB is the time-optimal
trajectory with one step obstacle. Furthermore, ∆x = xDB0 . Then, by Equation (3.7)

xAB0 =
−2(y2 − y1)y0 − y2

1 + x2
2 + y2

2

2x2

,

xDB0 = ∆x =
−2(y2 − y1)y0 − y2

1 + x2
2 + y2

2

2(x2 −∆x)
+

(∆x)2

2(∆x− x2)
.

We conclude that

2xDB0 (x2 −∆x) + (∆x)2 = 2x2x
AB
0 , hence,

xDB0 − xAB0 = ∆x− xAB0 =
(∆x)2

2x2

≥ 0.

Therefore, xDB0 ≥ xAB0 , so the circle segment TDB is above TAB for any x ∈ [x1, x2] (the
proof of this fact is similar to the proof of Proposition 3.2.2).

A

B

C D

A

B

C DK
L

KC D
L DC

Figure 3.5: The time-optimal trajectory for the unique horizontal obstacle between A and B

We conclude the set of propositions with the so-called “ground level case”, when
the unique obstacle between A and B is a horizontal line.

Proposition 3.2.4. Given four consecutive points A = (x1, y1), C = (x1, y2), D = (x2, y2)

and B = (x2, y3) from S such that x1 < x2, y2 < y1, y2 < y3 and TAB hits LCD, the
time-optimal trajectory with obstacles is the combination of the circle segment TAK ,
straight line LKL and circle segment TLB, where K and L are the points of intersection
of TAD and TCB with LCD respectively.

40

3.2. Introduction of rectilinear obstacles

Proof. We consider the triplets A, C, D and C, D, B as the input to Lemma 3.2.1
(see Figure 3.5). TAK does not intersect TLB by Proposition 3.2.2, as TAB hits LCD.

Finally, we present Lemma 3.2.5. The proof is the extensive case study for the
obstacle patterns between two points A and B.

Lemma 3.2.5. If the time-optimal trajectory TAB between any two potential break-
points A = (x1, y1), B = (x2, y2), x1 < x2, determined by Lemma 3.2.1 hits the obstacles,
then there exists a potential breakpoint C between A and B such that the time-optimal
trajectory with obstacles from A to B passes C.

Proof. Assume the statement is not correct, hence the trajectory hits some obstacle
and there exists a time-optimal trajectory T with obstacles from A to B such that it
does not hit any obstacle and does not pass any potential breakpoint.

We split the proof into five parts depending on the type of ”terrain” between A and
B.

1) The obstacles between A and B are monotonically increasing (or decreasing), see
Figure 3.6.

A

B

DC

M

T

a)

A

B

C
M

T

b)

K

C

AAAAAA

C D

Figure 3.6: Monotonic obstacle case

First we notice that T is convex, otherwise we can always locally shortcut it
with the straight line in such a way that it still does not pass any potential
breakpoint; but the straight line is always better than any trajectory above it by
Lemma 3.1.1, so T is not time-optimal.

We assume without loss of generality that y1 < y2. Let us consider the last
obstacle C = (x3, y3) on the way along T , T does not pass C by assumption. By
Lemma 3.2.1 the time-optimal trajectory from C to B has one of two shapes:

- it is the combination of the straight line LCD and the circle segment TDB,
see Figure 3.6a). The intersection of the line y = y3 and the trajectory T

41

Chapter 3. Basic Helicopter Problem with Rectilinear Obstacles

is point M . The time-optimal trajectory from M to B is the combination
of the straight line LMD and the circle segment TDB by Lemma 3.2.1b).
Then the following combined trajectory is better than T : T before the point
M , straight line LMD and circle segment TDB, and it passes the potential
breakpoint C, a contradiction.

- it is TCB, see Figure 3.6b). M is the point of intersection of T and TCB. If TMB

does not hit any obstacle before crossing T or it just crosses the obstacle in
the potential breakpointK then the trajectory T betweenA andM plus TMB

is better than T and it passes the potential breakpoint C, a contradiction.
If TMB hits the obstacle which is determined by the potential breakpoint K
then we consider TKB (or LKDK and TDKB) by Lemma 3.2.1a) (or b)) and so
on. The number of obstacles is finite so we can find the “last” obstacle L

such that the time-optimal trajectory from Lemma 3.2.1 does not hit this
obstacle. Any new circle segment or combination of the line and circle seg-
ment lies higher than the previous one by induction, so it does not hit any
obstacle to the right of the considered potential breakpoint. We use the
time-optimal trajectory which is determined by the potential breakpoint L
and B to shortcut T as in the previous case, a contradiction.

2) There is an obstacle between A and B which is higher than A and B, see Fig-
ure 3.7. By Lemma 3.1.1 we can always shortcut T with the line LKM which
passes 2 potential breakpoints, a contradiction.

A

B
T

K M

A

Figure 3.7: Concave obstacle case

3) The obstacles between A and B is a convex rectilinear function, see Figure 3.8.
Similar to case 1) the trajectory T is convex. Denote the lowest point of the
trajectory T as point M = (xM , yM). We consider two cases:

– All the obstacles which are hit by TAB are lower than M , see Figure 3.8a).
We introduce a new instance: the horizonal line y = y′ at the altitude of
the highest obstacle K = (x′, y′), hit by TAB. T is a valid trajectory for
the new instance. The time-optimal trajectory T ′ for the new instance by
Proposition 3.2.4 is the circle segment TAK1, line segment LK1K2 and circle
segment TK2B, where K1, K2 belong to the line y = y′. By Proposition 3.2.3

42

3.2. Introduction of rectilinear obstacles

this trajectory does not hit any obstacle of the original instance, so it is a
valid trajectory for the original instance. T ′ is time-optimal for the new
instance, hence it is better than T . So, T ′ is also better than T for the
original instance, a contradiction.

– There is at least one obstacle K = (x′, y′), which is hit by TAB, and it is higher
than M , see Figure 3.8b). We introduce a new instance: the horizontal line
y = yM . If either TAM or TMB hits the obstacles then we are in the settings
of the case 1) for one of the segments TAM or TMB, hence there is a trajectory
T ′ which is better than T , and it passes one of the potential breakpoints.
So we only consider the case when TAM and TMB does not hit any obstacle.
It means that T is just a combination of TAM and TMB. By Proposition 3.2.2
TAB is above T , so TAB also does not hit any obstacle, a contradiction.

A

B

TAB

T

M

K1 K2

a)

A

B

T

M

b)

TAB TAB

Figure 3.8: Convex obstacle case

4) There is an obstacle between A and B which is higher than A, lower than B

and it is the point of non-monotonicity, see Figure 3.9. If the trajectory T “goes
down” after this obstacle, see Figure 3.9a), we can shortcut it as in case 2), a
contradiction. If it stays higher, see Figure 3.9b), then we can introduce a new
equivalent monotonic instance where the non-monotonic part is replaced by a
horizontal dashed line. So we are in the settings of case 1).

A

B

A

B

T T

a) b)

Figure 3.9: Non-monotonic obstacle case, the obstacle is higher than A

5) The obstacles between A and B are not presented by a convex rectilinear function,
and all the obstacles are lower than A and B, see Figure 3.10. The obstacle curve

43

Chapter 3. Basic Helicopter Problem with Rectilinear Obstacles

is not convex, so there exists an obstacle which is concave. If T “goes down” on
both sides of this obstacle we can shortcut is as in case 2), see Figure 3.10a), a
contradiction. If T stays higher at least on one side, see Figure 3.10b), then we
can introduce a new equivalent convex instance with a dashed line as in case 4),
so we are in the settings of the case 3).

A

B

T

A

B

T

a) b)

Figure 3.10: Non-monotonic obstacle case, the obstacle is lower than A and B

Finally we conclude that if the time-optimal trajectory between two potential break-
points A and B hits an obstacle then there is a potential breakpoint C between A and
B such that the time-optimal trajectory from A to B passes C.

Now the problem is reduced to the problem of finding a shortest path in a weighted
graph. All the potential breakpoints are the vertices of the graph, the number of ver-
tices is at most n+ n2 =O(n2) (where n is the number of obstacles given by the set S).
There is an edge between two vertices if the time-optimal trajectory between corre-
sponding potential breakpoints, given by Lemma 3.2.1, does not hit any obstacle. The
time needed to go along this trajectory denotes the weight of the edge. Lemma 3.2.5
guarantees that the graph is connected and the time-optimal trajectory corresponds
to the shortest path in the weighted graph. This problem is solvable in time O(|V |2),
see, e.g. [74]. Hence, we have O(n4)-time algorithm for 2D basic helicopter problem
with rectilinear obstacles.

3.3 Conclusions and open problems
In this chapter we have addressed the problem of determining a time-optimal heli-
copter trajectory between two points in two-dimensional space, where the speed of
the helicopter depends linearly on the altitude. We have characterized the motion
primitives for the basic helicopter problem. We used these time-optimal trajectories
to solve the basic helicopter problem with rectilinear obstacles in the time polynomial
in the number of obstacles. It is still an open question whether it is possible to obtain
a polynomial time algorithm for an arbitrary continuous obstacle curve.

44

Chapter 4

General Helicopter Problem
without Obstacles

In this chapter we naturally generalize the problem considered in the previous chap-
ter to the problem with a piecewise linear concave velocity function with a finite num-
ber n of breakpoints, see [8] for motivation. We call this problem a general helicopter
problem. We derive a set of motion primitives for the general helicopter problem.
However, the considered setting does not allow “closed” and easy to use analytical
representation of the motion primitives as it was in Chapter 3. For this reason, we
assume throughout this chapter that no obstacles and no ground level are present.

We obtain a function of n variables which gives the time needed to travel from one
point to another along a potential time-optimal trajectory. The rest of the chapter is
devoted to a deep analysis of this function in order to determine the time-optimal tra-
jectory. The methodology is based on Fermat’s Theorem 2.1.2, see Chapter 2; namely
we use the claim that a continuous function on a compact domain reaches it’s min-
imum in one of the points: on the boundary of the domain or in the interior of the
domain where the derivative is not determined or equal to zero. Is is impossible to
use variety of convex optimization methods like Newton’s method as we show that
the function is not convex.

We reduce the general helicopter problem without obstacles to a system of fixed
degree multivariable polynomial equations. If a number of breakpoints in the piece-
wise linear velocity function is a constant, the resulting system has a fixed number
of variables and it can be solved in finite number of steps by algebraic elimination
theory; see, e.g., [33]. The advantage of this approach is that the heavy techniques
of elimination theory should be used only once in a symbolic form as a preprocess-
ing step. It provides us with a high degree polynomial equation at one variable with
the coefficients depend on a set of the problem’s parameters including all air char-
acteristics, a helicopter’s technical parameters and a starting and finishing point of

Chapter 4. General Helicopter Problem without Obstacles

a trajectory. Later on a set of parameters together with a desired level of precision
can be given and some quick method of solving an univariable equation is used, like
Jenkins-Traub algorithm, see [77]. It gives us a promising method of solving some
practical problems like autopilot flights, for example. We assume a computational
model with infinite precision real arithmetics to avoid the problem of comparison the
lengths of two paths, see, e.g., Mitchell and Sharir [71].

The chapter is organized as following: Section 4.1 contains the formulation of the
problem; here, we introduce a set of variables in order to reduce the problem to the
basic helicopter problem without obstacles and to introduce the time function. Sec-
tion 4.2 is devoted to a search of the stationary points of the derived time function. In
Section 4.3 we study the boundary of the domain and search the local extreme points.
In all these sections we assume that the starting point is “close” to the ground level
and the end point is “close” to the maximum altitude. In the next section we gener-
alize the position of the starting and the end points of the trajectory. Section 4.5 con-
tains the motivation of the approach described above; namely it shows that the time
function is not convex. Hence, the standard techniques of the convex optimization
like Newton’s method are not applicable here. The last section contains conclusions
and some open problems.

4.1 Problem definition

In this section we consider the general helicopter problem where the velocity function
is a piece-wise linear concave function in altitude with finite number of breakpoints
y1, . . . , yn, see Figure 4.1. Let vi, i ∈ I = {0, . . . , n} denote the intercept of the velocity
function between the altitudes y = yi and y = yi+1. By concavity of the function we
have that q1 ≤ q2 ≤ . . . ≤ qn+1. This is a reasonable assumption as the helicopter
looses the speed quicker on high altitudes. Let us define the altitude layers Li, i ∈ I,
in the following natural way: Li = {y | yi ≤ y ≤ yi+1}, i ∈ I \ {0, n}, L0 = {y | y ≤ y1}
and Ln = {y | y ≥ yn}. Therefore, the velocity function is given as follows:

Consider the general helicopter problem where the helicopter must fly from A =

(xA, y0) to B = (xB, yn+1). We assume, that xA < xB and y0 ∈ L0, yn+1 ∈ Ln. Section 4.4
contains the adjustment to the arbitrary choice of the layer for the starting point.

Given setting yields several natural restrictions. First, we observe that the time-
optimal trajectory from A to B is the set of circle and linear segments, as within
one layer Li, i ∈ {0, . . . , n}, it is either the circle segment or the linear segment, see
Chapter 3, Section 3.1. Second, for any y ≥ y1 the time-optimal trajectory is the
monotonically increasing function. The reason is as follows. Assume that a non-
increasing trajectory TKB is determined as the time-optimal trajectory within the

46

4.1. Problem definition

v0

y1 y2 yn

q1
q2

qn+1

v1

y

v(y)

v(y) =

v0 − q1y : y ∈ L0,

v1 − q2y : y ∈ L1,

.

max{vn − qn+1y, 0} : y ∈ Ln.

v2

Figure 4.1: Piece-wise linear velocity function

layer L1, see Figure 4.2. Then the piece TKL of this trajectory, which belongs to the
layer L0, is not optimal anymore. It is better to follow TAL within the layer L0 and
then continue with TLB, a contradiction.

A

K L

B

q1

q2

y = y1

Figure 4.2: Monotonically increasing circle segments when y ≥ y1. The trajectory TAL plus
TLB is better than TAK plus TKB

As the time-optimal trajectory is the set of circle and line segments and the time
function is continuous (see Chapter 3) than the time needed to go along this trajectory
can be calculated as the sum of times to go along the circle segments in layers Li’s,
i ∈ I.

For every layer Li, i ∈ I we introduce the set of parameters, see Figure 4.3:

• yi+1
0 = vi

qi+1
is the altitude of the time-optimal circle segment center within this

layer,

• ai+1 =
√

(2yi+1
0 − yi+1 − yi)(yi+1 − yi), as is determined in Lemma 3.2.1. It is the

maximal horizontal distance between two points on lines y = yi and y = yi+1 such
that the time-optimal circle segment is a monotonically increasing function,

47

Chapter 4. General Helicopter Problem without Obstacles

A = (xA, y0)

t1

q1, a1

q2, a2

qn, an

qn+1, an+1

tn

tn−1

µn

βn

γn

(xn0 , y
n
0)

Rn

B = (xB, yn+1)

y = y1

y = y2

y = yn−1

y = yn

(xB − tn − tn−1, yn−1)

(xB − ∑n
i=1 ti, y1)

(xB − ∑n
i=2 ti, y2)

Figure 4.3: Time-optimal trajectory is the set of circle segments; xi0, βi, µi, γi and Ri are func-
tions at t1, . . . , tn

and a set of variables and functions:

• ti, such that for any i greater than zero ti is the horizontal distance between the
points of intersection the lines y = yi and y = yi+1 by the time-optimal trajectory
from A to B, so that the coordinates of intersection are (xB −

∑n
i=k ti, yk), k ∈

{1, . . . , n}. The values of ti’s are strictly positive, as otherwise we have a vertical
line segment, and ti ≤ ai+1, i > 0, as the circle segment should be a monotonically
increasing function for i > 0. We introduce the redundant variable t0 such that
xB −

∑n
i=0 ti = xA, where t0 is the horizontal distance between point A and the

point of intersection of the time-optimal trajectory from A to B with the line
y = y1. It is strictly positive, as otherwise we go further to the left than point
A, which is not optimal. It can be bigger than a1, as within the layer L0 the
time-optimal trajectory is not necessary the monotonically increasing function,

• xi+1
0 (t1, . . . , tn) is the x-coordinate of the time-optimal circle segment center within

this layer,

48

4.2. Stationary points of the time function

• Ri+1(t1, . . . , tn) is the radius of the time-optimal circle segment within this layer,

• βi+1(t1, . . . , tn) and γi+1(t1, . . . , tn) are the angles defined in Theorem 3.1.2; we also
introduce the angle µi+1(t1, . . . , tn) between CB and x-axis in terms of Figure 3.2,
in particular, µi+1 = π − γi+1 − βi+1.

Now, we can write down the time needed to go alone this trajectory as the sum of
the times to go alone the time-optimal trajectories within one layer Li, see Chapter 3:

t(t1, . . . , tn) =
n∑

k=0

1

qk+1

∫ γk+1(t1,...,tn)

0

dα

sin(α + βk+1(t1, . . . , tn))
,

where ti ∈ [0, ai+1], i ∈ {1, . . . , n}.

4.2 Stationary points of the time function

In this and the following sections we minimize the time function in the standard way.
The time function is continuous as a sum of continuous functions, thus by Extreme
Value Theorem 2.1.1 t(t1, . . . , tn) must attain its minimum value at the domain [0, a2]×
. . .× [0, an+1]. We introduce the notation t̄ = (t1, . . . , tn) for the simplicity.

To minimize t(t̄) we have to find the stationary points in the interior of the function
domain and the minimum value on the boundary of the domain. This section contains
the necessary conditions for the stationary points in (0, a2)× . . .× (0, an+1). In the next
section is devoted to the study of the boundary, where at least one of ti’s is equal to
zero or ai+1.

To find the stationary points we have to find the partial derivatives of t(t̄) with
respect to ti, i ∈ {1, . . . , n} and equate them with zero. Direct differentiation leads to
the following results, see Lemma 3.2.1 for details:

∂t(t̄)

∂ti
= −

n+1∑

k=1

1

qk

[
∂βk(t̄)

∂ti

1

sin βk(t̄)
+
∂µk(t̄)

∂ti

1

sin µk(t̄)

]
= 0.

We find βk(t̄) and µk(t̄), k ≥ 2, using the formulae from Chapter 3, as all the deriva-
tives in this case can be obtained in the similar way. The case k = 1 differs in
the number of variables and it is considered later. Within the layer Lk−1, k ≥ 2,
the time-optimal trajectory goes from the point (xB −

∑n
i=k−1 ti, yk−1) to the point

(xB −
∑n

i=k ti, yk), so from Equations (3.7)–(3.8) and some formulae for the trigono-

49

Chapter 4. General Helicopter Problem without Obstacles

metrical functions:

xk0(t̄) = − a2
k

2tk−1

+ xB −
n∑

i=k

ti −
tk−1

2
, then

Rk(t̄) =

√(
a2
k

2tk−1

+
tk−1

2

)2

+ (yk0 − yk)2 = Rk(tk−1), and

sin βk(t̄) =
yk0 − yk−1

Rk(tk−1)
,

cos βk(t̄) =
xk0(t1, . . . , tn)− (xB −

∑n
i=k−1 ti)

Rk(tk−1)
= − a2

k − t2k−1

2tk−1Rk(tk−1)
,

sin µk(t̄) =
yk0 − yk
Rk(tk−1)

,

cos µk(t̄) =
xB −

∑n
i=k ti − xk0(t1, . . . , tn)

Rk(tk−1)
=

a2
k + t2k−1

2tk−1Rk(tk−1)
.

Thus, we see that Rk, βk and µk are functions of only tk−1, so for any other i, i 6=
(k − 1), the partial derivatives of βk and µk with respect to ti are equal to zero. After
differentiation and some simplifications we conclude that

β′k(tk−1)

sin βk(tk−1)
+

µ′k(tk−1)

sin µk(tk−1)
= − 1

Rk(tk−1)
, k = 2, . . . , n+ 1.

We find β1(t̄) and µ1(t̄) in the similar way. The start point of the time-optimal
trajectory within the layer L0 is A = (xA, y0) and the end point is (xB −

∑n
k=1 ti, y1).

The only difference is that these functions depend on all n variables t1, . . . , tn.
We find by differentiation that:

∂µ1

∂ti

1

sin µ1(t̄)
+
∂β1

∂ti

1

sin β1(t̄)
=

1

R1(t̄)
, i = 1, . . . , n.

Hence, the stationary point of the function t(t̄) satisfies the following set of condi-
tions:

∂t(t̄)

∂tk
= −

(
1

q1R1(t̄)

)
−
(
− 1

qk+1Rk+1(tk)

)
= 0, k = 1, . . . , n, or equivalently

q1R1(t1, . . . , tn) = q2R2(t1) = . . . = qn+1Rn+1(tn), (4.1)

where ti ∈ (0, ai+1) and xB − xA −
∑n

i=1 ti = t0 > 0.
It is possible to simplify the set of Equations (4.1) further: consider every con-

secutive pair of expressions k and k + 1, k = 1, . . . , n, and use the fact that the point
(xB−

∑n
i=k ti, yk) belongs at the same time to the circles with radiiRk(tk−1) andRk+1(tk)

50

4.2. Stationary points of the time function

as the time-optimal trajectory has to be continuous. We use the redundant variable
t0 to write down the system in the uniform way:

qk+1(a2
k+1 − t2k)tk−1 = qk(a

2
k + t2k−1)tk, k = 1, . . . , n, (4.2)

n∑

i=0

ti = xB − xA, (4.3)

ti ∈ (0, ai+1), i > 0, t0 > 0. (4.4)

Let us show that at most one solution of the system of Equations (4.1) on the
domain Πn

i=1(0, ai+1) exists, hence the system (4.2)—(4.4) also has at most one solution.
Suppose there exists a solution (t∗1, . . . , t

∗
n) of the system (4.1) with the corresponding

trajectory T , see Figure 4.4. Assume that there is another solution (t′1, . . . , t
′
n) with

the corresponding trajectory T ′. The circle segments of both trajectories satisfy the
system of Equations (4.1), so

q1R1(t∗1, . . . , t
∗
n) = q2R2(t∗1) = . . . = qn+1Rn+1(t∗n), and

q1R1(t′1, . . . , t
′
n) = q2R2(t′1) = . . . = qn+1Rn+1(t′n).

We denote Ri(t
∗
1, . . . , t

∗
n) as R∗i and Ri(t

′
1, . . . , t

′
n) as R′i.

Assume that T ′ is completely above T and they intersect only in the end points A
and B. K∗ and L∗ are the points where T intersects y = y1 and y = yn respectively, K ′

and L′ are the points where T ′ intersects y = y1 and y = yn respectively. K ′ is to the
left of K∗ and the left end A of the trajectories T and T ′ is fixed, thus, R∗1 < R′1. L′ is to
the left of L∗ and the right end B of T and T ′ is fixed, thus, R∗n+1 > R′n+1. Both T and
T ′ represent the solution of the system (4.1) so

qn+1R
′
n+1 < qn+1R

∗
n+1 = . . . = q1R

∗
1 < q1R

′
1 = . . . = qn+1R

′
n+1,

a contradiction. All other cases, like T ′ is completely below T or they intersect in
some intermediate point M 6= B, are proven in the same way. Therefore, at most one
solution of the system (4.1) exists.

Furthermore, it is easy to check that if tk ∈ (0, ak+1) is known then there exists at
most one value of tk−1 ∈ (0, ak), because two possible values of tk−1 from Equation (4.2)
are:

t1,2k−1 =
qk+1(a2

k+1 − t2k)±
√
q2
k+1(a2

k+1 − t2k)2 − 4q2
ka

2
kt

2
k

2qktk
, (4.5)

if the discriminant q2
k+1(a2

k+1 − t2k)
2 − 4q2

ka
2
kt

2
k is nonnegative. tk−1 < ak, so only the

solution with minus reminds, as otherwise the condition is broken. Hence, if the
discriminant is nonnegative, there exists a unique solution tk−1 = tk−1(tk). So, given

51

Chapter 4. General Helicopter Problem without Obstacles

A = (xA, y0)

q1, a1

q2, a2

qn, an

qn+1, an+1

B = (xB, yn+1)

y = y1

y = y2

y = yn−1

y = yn

K ′

T ′

K∗

T

(xB − ∑n
i=2 t

∗
i , y2)(xB − ∑n

i=2 t
′
i, y2)

L′ L∗

(xB − ∑n
i=n−1 t

∗
i , yn−1)(xB − ∑n

i=n−1 t
′
i, yn−1)

R∗1

R′1

R′n+1
R∗n+1

Figure 4.4: Uniqueness of the solution

tn we can find tk, k = n − 1, . . . , 1, using the next equation from the set. Therefore,
either there exists a unique solution of the system or there is no solution, so the time-
optimal trajectory which crosses (xB − tn, yn) and which is the set of circle segments
does not exist.

Now, we have to solve the system of polynomial equations (4.2)—(4.4). We use the
tools of computational algebraic geometry and commutative algebra to solve it. The
brief introduction into the theory about polynomials of n variables x1, . . . , xn is given
in Chapter 2, see also Cox [33].

In particular, the Elimination Theorem 2.2.1 guaranties that we can find a poly-
nomial consequence of the system (4.2)—(4.4) in finitely many steps. It means that
we will obtain the following Equation:

m∑

i=0

tin ∗ Ci(y0, . . . , yn+1, xA, xB, v0, q1, . . . , qn+1) = 0, (4.6)

where Ci(y0, . . . , qn+1) is the coefficient of tin. These coefficients are constants as they
depend only on the parameters of the problem. The nice thing about this approach
is that the Elimination Theorem should be applied only once as a preprocessing step
in symbolic form for any n. We will obtain Equation (4.6) where the coefficients are
functions at parameters of the problem. Later on for every particular problem we just
have to substitute these parameters with their corresponding values. Afterwards we
solve the equation as it contains only tn as a variable. There are numerical methods
to find the roots of such an equation with high precision (for example, the Jenkins-
Traub algorithm, see [77]). If there exists a root t∗n ∈ (0, an+1) then we can find all

52

4.3. Boundary search

other values of t∗k, k = n − 1, . . . , 1 from Equation (4.5). Otherwise there is no time-
optimal trajectory which is a set of circle segments and we have to find the minimum
of the time-function on the boundary of its domain.

There are some practical problems with the method suggested above, see [68, 93].
Computing the roots of the univariate polynomial can be ill-conditioned for polynomi-
als of degree greater than 14, 15, while Gröbner basis can contain as a consequence
a polynomial (4.6) at one variable of high degree m. In fact, the polynomial conse-
quence (4.6) is a crucial one. As an example, if the velocity function has only one
breakpoint then the highest degree of the polynomial at tn is m = 3 (hence, it is solv-
able analytically); for two breakpoints the highest degree is m = 7. So, if the number
of breakpoints is small then the method is applicable.

Nevertheless, the proposed approach has some positive sights. First, the obtained
system has at most one root in the domain as it is proved above. Therefore, the desired
solution is separated from the rest which increases the stability of the search. Sec-
ond, the system includes all the parameters of the helicopter as the parameters of the
coefficients. Thus we have to apply elimination theory in the symbolic form only once,
for example as a preprocessing step. We obtain the polynomial consequence of the
system which depends only on one variable. Later on we substitute the coefficients
of this equations with the values specific for every helicopter, medium properties and
the flight starting and destination points. The solution of the particular problem is
derived by some quick methods of solving the equations at one variable like already
mentioned above Jenkins-Traub [77] algorithm with given level of precision. There-
fore, the approach can be useful in creating the autopilot system for the helicopter as
the most time-consuming operations are done beforehand.

4.3 Boundary search

In this section we briefly sketch the search of the potential time-optimal solution
which contains circle and line segments and belongs to the boundary of the function
domain. In fact, we reduce this case to the previous one, which contains only circle
segments. (t1, . . . , tn) belongs to the boundary of the domain if there exists ti = 0 or
ti = ai+1, so we have

n∑

i=1

(
n

i

)
× 2k ≤ (2 + 1)n = 3n

combinations of possible sets of tk’s. We assume that the number of breakpoints of the
velocity function n is constant, so 3n is a constant factor.

Assume that only one tk is equal to zero or ai+1, then the time needed to go alone

53

Chapter 4. General Helicopter Problem without Obstacles

the trajectory is:

t(t1, . . . , tk−1, tk+1, . . . tn) =
n∑

i=1,
i6=k+1

∫ γi(t̄)

0

dα

sin(α + βi(t̄))
+ tconst, (4.7)

where tconst is the time to go along the vertical line segment within the layer Lk
from the altitude y = yk to the altitude y = yk+1 if tk = 0 and tconst is the time to go
from the point (x, yk) to the point (x + ak+1, yk+1) if tk = ak+1. It is a constant with
respect to the variables t1, . . . , tk−1, tk+1, . . . , tn.

We find the stationary point conditions for Equation (4.7) in the similar way as
in Section 4.2. The partial derivative of the term tconst with respect to any ti, i 6=
k, is equal to zero, as it is a constant. The functions βi(t1, . . . , tk−1, tk+1, . . . , tn) and
µi(t1, . . . , tk−1, tk+1, . . . , tn), i 6= (k + 1), are still the functions at tk−1 only, as we do the
same steps, replacing tk with zero or ak+1. βk+1 and µk+1 are not determined any more.
So we end up with the similar system of equations:

q1R1(t1, . . . , tk−1, tk+1, . . . , tn) = qiRi(ti−1), i ∈ {1, . . . , n} \ {k + 1}. (4.8)

If more than one of the tk’s are equal to zero or ak+1, then Equation (4.7) contains
more constant factors, but the rest of the analysis remains the same. Finally, we
choose the best trajectory with respect to time (determined by Equation (4.7)) among
the trajectories generated by some set of tk’s which are equal to zero or ak+1. The case
of the stationary point in the interior of the domain will be included if we consider the
empty set of tk’s which are equal to zero or ak+1.

4.4 Arbitrary position of the starting point
In this section we assume that the point A = (xA, yA) belongs to the layer Lk+1, 0 ≤
k ≤ n. Without loss of generality we still assume that the end point B = (xB, yB)

belongs to the highest level Ln+1 as otherwise we restrict ourselves to the equivalent
setting of bottom layers. We modify the system of equations (4.2)—(4.4) to solve this
case. We consider the similar set of variables t0, . . . , tn, see Figure 4.5. The time-
optimal trajectory may not reach the layer L0, so we assume that the lowest point of
the trajectory belongs to the layer Lm, 0 ≤ m ≤ k + 1. We have to consider all of these
possible m’s, so we have k + 1 ≤ n + 1 different cases where the number of velocity
function breakpoints n is finite. We denote t̄ = (t0, tm, . . . , tn) similar to the previous
sections.

Notice that the time-optimal trajectory is symmetric within bottom (k + 1) lay-
ers. We introduce two new points whose positions are determined by the variables
t0, tm, . . . , tn, see Figure 4.5:

54

4.4. Arbitrary position of the starting point

A = (xA, yA)

tn

tn−1

B = (xB, yn+1)

tm

2t0

tm

tm+1 tm+1

tk tk
A′

C

Figure 4.5: Arbitrary position of the starting point

• A′ is the point where the line y = yk intersects the time-optimal trajectory for
the first time, A′ = (xB −

∑n
i=m ti − 2t0 −

∑k
i=m ti, yk),

• C is the lowest point of the time-optimal trajectory, C = (xB −
∑n

i=m ti − t0, ym0 −
Rm(t̄)).

Now we consider the time-optimal trajectory from the point C to the point B.
There are three types of equations that should be satisfied:

1) Equations (4.2) for k = m + 1, . . . , n, as this case is identical to the case of Sec-
tion 4.2.

2) Equation qmRm(t̄) = qm+1Rm+1(tm) with the same reasoning.

Rm(t̄) =
√
t20 + (ym0 − ym)2, thus

2qmtmt0 = qm+1(a2
m+1 + t2m).

3) (xk+1
0 (t̄)− xA)2 + (yk+1

0 − yA)2 = (xk+1
0 (t̄)− xA′)2 + (yk+1

0 − yk)2, where (xk+1
0 (t̄), yk+1

0)

is the center of the first circle segment within the layer Lk+1. The reason is that
both A and A′ belong to this circle segment. The x-coordinate of the center is

xk+1
0 (t̄) = − yk − yA

xA′ − xA
yk+1

0 − x2
A + y2

A − x2
A′ − y2

k

2(xA′ − xA)
.

55

Chapter 4. General Helicopter Problem without Obstacles

Denote a2 = (yA − yk)(2yk+1
0 − yA − yk) and b2 = (yk+1 − yA)(2yk+1

0 − yk+1 − yA), then
the set of equations characterizing the arbitrary choice of the starting point is given
in the following way:

qk+1(a2
k+1 − t2k)tk−1 = qk(a

2
k + t2k−1)tk, k = m+ 1, . . . , n, (4.9)

2qmtmt0 = qm+1(a2
m+1 + t2m), (4.10)

t2k((xA′ − xA)2 + a2)2 = (xA′ − xA)2((a2
k+1 + t2k)

2 − 4b2t2k), (4.11)

ti ∈ (0, ai+1), i ∈ {m, . . . , n}, t0 > 0, (4.12)

where xA′ = xB −
∑n

i=m ti −
∑k

i=m ti − 2t0.
Therefore, we can solve the general helicopter problem without obstacles for the

velocity function with n breakpoints and arbitrary position of the start and end points.

4.5 Non-convexity of the time function

In this section we show that the time function t(t1, . . . , tn) is not convex, thus, the
standard methods (for example, Newton’s method) are not applicable directly. It is
the case already for n = 1, for the velocity function with one breakpoint.

Consider the following function:

t(t1) =
1

q1

∫ γ1(t1)

0

dα

sin(α + β1(t1))
+

1

q2

∫ γ2(t1)

0

dα

sin(α + β2(t1))
.

The first derivative is equal to (see Lemma 3.2.1):

dt(t1)

dt1
=

1

q2R2(t1)
− 1

q1R1(t1)
,

hence, the second derivative is calculated in the following way:

d2t(t1)

dt21
=

1

q2

−dR2(t1)
dt1

R2
2(t1)

− 1

q1

−dR1(t1)
dt1

R2
1(t1)

=

=
q2R

2
2(t1)

a41−(xB−xA−t1)4

4(xB−xA−t1)3R1(t1)
+ q1R

2
1(t1)

a42−t41
4t31R2(t1)

q1q2R2
1(t1)R2

2(t1)
.

Let xA = 0 and xB = 2(a1 + a2) then the second order derivative is negative for
t1 = a2. The function d2t

dt21
(t1) is continuous so there exists the interval [a2 − ε, a2] such

that the second order derivative is negative within this interval for sufficiently small
ε. We conclude that the time function is non-convex.

56

4.5. Non-convexity of the time function

4.5.1 Simple algorithm for the case of one breakpoint

We demonstrated above that the time function is not convex, thus in general it is im-
possible to apply Newton-type methods directly. Nevertheless, the case of one break-
point admits a quick bijection algorithm, because the time function has one nice prop-
erty; in particular, there is a unique stationary point which is a local minimum. In
this subsection, first, we prove the existence, and second, we present the bijection
algorithm.

Assume there exists a stationary point of the time function. Any stationary point
should satisfy two following conditions:

• q1R1(t1) = q2R2(t1) by Equation (4.1),

• q2(a2
2 − t21)(xB − xA − t1) = q1(a2

1 + (xB − xA − t1)2)t1 by Equation (4.2), thus

q1(a2
1 + (xB − xA − t1)2) =

q2(a2
2 − t21)(xB − xA − t1)

t1
.

We multiply both fractions in the numerator of the second order derivative d2t(t1)

dt21
by

1, but presented in the way q21
q21

and q22
q22

respectively, thus we can rewrite the expression
using the first equation above in the following way:

d2t(t1)

dt21
=

q1R1(t1)

4(q1R1(t1))4

[
q2

1(a4
1 − (xB − xA − t1)4)

(xB − xA − t1)3
+
q2

2(a4
2 − t41)

t31

]
=

=
q2

1(a2
1 − (xB − xA − t1)2)(a2

1 + (xB − xA − t1)2)

4(q1R1(t1))3(xB − xA − t1)3
+

+
1

4(q1R1(t1))3

q2
2(a2

2 − t21)(a2
2 + t21)

t31
.

Now we apply the second equation:

d2t(t1)

dt21
=

q1(a2
1 − (xB − xA − t1)2)q2(a2

2 − t21)(xB − xA − t1)

4(q1R1(t1))3t1(xB − xA − t1)3
+

+
1

4(q1R1(t1))3

q2
2(a2

2 − t21)(a2
2 + t21)

t31
=

=
q2(a2

2 − t21)

4(q1R1(t1))3t1

[
q1(a2

1 − (xB − xA − t1)2)

(xB − xA − t1)2
+
q2(a2

2 + t21)

t21

]
=

=
q2(a2

2 − t21)

4(q1R1(t1))3t1

[
q1a

2
1

(xB − xA − t1)2
− q1 +

q2a
2
2

t21
+ q2

]
.

So, d2t(t1)

dt21
≥ 0 as t1 < a2 and q2 > q1. We conclude that all stationary points are the

points of local minimum in case of one breakpoint.

57

Chapter 4. General Helicopter Problem without Obstacles

The time function is continuous, therefore if there is a stationary point then it is
unique (and it is local minimum), as otherwise we will have a point of local maximum
between two points of local minimum. Therefore, the time function monotonically
decreases before this point and monotonically increases after this point. We can apply
a simple bijection algorithm to find this point with any chosen level of precision. First
we take the middle point x of the interval [0, a2] and two points in its ε

2
-neighborhood.

Depending on the values of the time function in these three points we choose the
interval to the left or to the right of x to proceed; the second interval is excluded
from the further consideration as it does not contain the point of local minimum.
Therefore, in time O(log(1

ε
)) we will find the value of x which is in ε-neighborhood of

the local minimum.

4.6 Conclusions and open problems
In this chapter we have addressed the general problem of determining a time-optimal
helicopter trajectory between two points in two-dimensional space, where the speed
of the helicopter is a piece-wise linear concave function on the altitude. We used
the motions primitives from the previous chapter to reduce the problem to the set of
multivariate polynomial equations. If the number of velocity function breakpoints is
constant then it enables us to solve the general helicopter problem in polynomial time
using the algebraic elimination theory.

There are several interesting research directions that can be followed. First, it
is an open question whether the general helicopter problem with polygonal obstacles
in 2D admits a polynomial time algorithm. Second, are there efficient polynomial
time approximation schemes for the general helicopter problem with obstacles in 3D?
Notice, the three-dimensional problem with obstacles is NP-hard as it generalizes the
Euclidean shortest-path problem with obstacles in 3D.

58

Part II

Exploiting Geometry in Graph
Parameter’s Determination

Chapter 5

Grid Minors

This chapter of the thesis is dedicated to treewidth in the class of planar graphs.
More specifically, we examine the relation between treewidth and two other graph
parameters, namely branchwidth and the side size of a largest square-grid minor in
some special classes of planar graphs.

The complexity of finding the treewidth in planar graphs is not known, but it is
widely believed that the problem is NP-hard. Approximating the treewidth of planar
graphs is therefore an interesting research direction. To the best of our knowledge,
the most successful approximations to the treewidth in planar graphs are based on
two well known lower bounds, the branchwidth and the side size of the largest square-
grid minor.

Branchwidth is a notion that is very closely related to treewidth and, just as for
treewidth, it is an important algorithmic concept that is widely used in discrete math-
ematics and theoretical computer science; see, e.g., Bodlaender [16] and Hicks [59].
Gu and Tamaki [55] constructed a O(n3) algorithm to compute optimal branch de-
compositions for planar graphs. For more work on planar branch decompositions, we
refer to [12, 57, 58]. As for the relation between treewidth (tw) and branchwidth (bw),
Robertson and Seymour show in [83] that for any graph G with bw(G) > 1 it holds
that bw(G) ≤ tw(G) + 1 ≤ b3

2
bw(G)c. Seymour and Thomas developed an O(n3) time

algorithm in [87] finding the minimum branchwidth of a given planar graph on n ver-
tices. Therefore we can approximate treewidth efficiently in planar graphs to a factor
3
2

from optimal.
Concerning the relation between treewidth and grid minors in planar graphs, in-

dependently in [52] and [89] it was shown that the treewidth of a planar graph is at
most 5 times the side size of a largest square-grid minor in the graph. This upper
bound on the treewidth was improved in [56] to 4.5 times the side size of a largest
square-grid minor. The problem of finding the largest square-grid minor in a planar
graph is interesting in itself. Although it is not known whether the problem can be

Chapter 5. Grid Minors

solved in polynomial time, there is a O(n2 log n) time algorithm for finding a square-
grid minor with side size at least one fourth of the side size of the largest square-grid
minor, see [18].

The definition of branchwidth (see Section 5.1) straightforwardly implies that the
side size of the largest square-grid minor (gm) is bounded from above by the branch-
width in any graph. In [40], a short proof can be found for the fact that graphs with
high branchwidth contain large grid minors. In this chapter we further analyze rela-
tionships between treewidth, branchwidth and the side size of the largest square-grid
minor in planar graphs. We present a class of planar graphs for which tw ≈ 3gm

2
− 1

and bw = gm. We experienced that this seemingly trivial task is quite challenging
because there are no simple techniques to accurately estimate treewidth in planar
graphs. For the presented graph family, the branchwidth is easily verifiable, while
arguing why the treewidth in the presented graph class is large is quite technical and
requires methods from graph minor theory.

We present two different ways to determine the parameter gm in our graph class.
We see the contribution of this research therefore not only in the construction of lower
bounds for the treewidth approximation, but also in the proof methodology for deter-
mining the parameter gm in a planar graph.

Furthermore we introduce two classes of planar graphs for which we conjecture
that both branchwidth and treewidth are roughly equal to 2gm. We do believe that
these classes are worst cases for branchwidth and treewidth approximation in terms
of gm in planar graphs.

The chapter is organized as follows. In Section 5.1, some new notions and defini-
tions will be put forward. Subsequently in Section 5.2 we introduce a class of planar
graphs for which we were able to determine bw, tw and gm. Two more classes of pla-
nar graphs are introduced in Section 5.3 for which several upper and lower bounds
on bw, tw and gm are presented. Finally, we summarize the results from this chapter
in Section 5.4 in which we also pose some open questions.

5.1 Preliminaries

For n,m ≥ 2, the (n × m)-grid graph (see [83]) is the simple graph with vertices
vij (1 ≤ i ≤ n, 1 ≤ j ≤ m) where vij and vi′j′ are adjacent if |i− i′|+ |j − j′| = 1. In this
thesis, we are interested only in square grids. For simplicity of notation, we refer to
the square (n×n)-grid graph simply as the n-grid. In an n-grid, n is referred to as the
side size of the n-grid.

We recall that H is a minor of a graph G if H is obtainable from a subgraph of G
by edge contractions. A minor of graph G that forms a square grid graph is called a

62

5.1. Preliminaries

square-grid minor of G. The side size of the largest square-grid minor of G will be
denoted by gm(G).

We continue with definitions of branchwidth and branch decompositions. Both
notions were introduced in [83].

Definition 5.1.1. A branch decomposition of a graph G = (V,E) is a pair (T, τ), where
T is a ternary tree (every vertex has degree 1 or 3) and τ is a bijection from the set of
leaves of T to E(G).

The order of an edge e of tree T in a branch decomposition is the number of vertices
v from V (G) such that there are leaves t1, t2 of T in different components of T \ e for
which τ(t1), τ(t2) are both incident to v. The width of branch decomposition (T, τ) is
the maximum order over all edges of T .

Definition 5.1.2. The branchwidth bw(G) of graph G is the minimum width over all
branch decompositions of G (or 0 if |E(G)| ≤ 1, when G has no branch decompositions).

Two subsets V ′, V ′′ ⊆ V in G = (V,E) are said to touch each other if either they
have a vertex in common or E contains an edge uv with u ∈ V ′ and v ∈ V ′′. Given a
graphG = (V,E), we say that V ′ ⊆ V is connected ifG[V ′] is connected, see Section 2.3.

Definition 5.1.3. A set B of mutually touching, connected subsets of V is called a
bramble of G. A subset of V intersecting with every element of B is called a hitting set
for bramble B.

The order of a bramble B is the minimum size over all hitting sets for B.

Definition 5.1.4. The bramble number of a graph G is the maximum order over all
brambles B of G.

Brambles are a useful tool in bounding treewidth from below as can be concluded
from the following theorem that is due to Seymour and Thomas [86] and its corollary.

Theorem 5.1.5. Let k be a non-negative integer. A graph has treewidth k if and only
if it has bramble number k + 1.

Corollary 5.1.6. Given graph G and a bramble B of order k, tw(G) ≥ k − 1.

Given a planar graph G together with its planar embedding, two faces f ′ and f ′′

in the embedding are said to be adjacent if there is a vertex in V (G) incident to both
f ′ and f ′′. We call a sequence f1, . . . , fn of faces an f1fn-facepath if each of the faces
in the sequence is adjacent to the previous face and to the next face in the sequence.
The length of a facepath is equal to the number of faces in the facepath minus one.

63

Chapter 5. Grid Minors

Given an embedding of a graph G, we denote the collection of faces that are inci-
dent to vertex v by Fv. The face distance between faces f ′ and f ′′ in the embedding,
denoted by dG(f ′, f ′′) in this thesis, is equal to the length of the shortest f ′f ′′-facepath.
The distance between vertex v and face f ′, denoted by dG(v, f ′), is equal to the length
of a shortest f ′f ′′-facepath, over all faces f ′′ ∈ Fv. It can be shown that for the con-
sidered planar graph families both distances are independent of the embedding of G,
since they are almost 3-connected; see [23].

For two graphs G and H, the cartesian product G×H is a graph with

V (G×H) = V (G)× V (H),

E(G×H) = {{(u, v1), (u, v2)} | u ∈ V (G), {v1, v2} ∈ E(H)}
⋃

⋃
{{(u1, v), (u2, v)} | {u1, u2} ∈ E(G), v ∈ V (H)}.

5.2 X-grids
In this section we start by introducing a family Xi of planar graphs, which we will
call X-grids. Graph Xn from this family can be constructed by taking an n-grid, two
(n× dn/2e)-grids and two (dn/2e × n)-grids. The four rectangular grids are connected
via their long sides to the four sides of the square grid, as is illustrated in Figure 5.1.

Figure 5.1: construction of X-grids X3 and X4

5.2.1 Branchwidth of X-grids

In this section, we study the branchwidth of X-grids. Our findings are encapsulated
in the following theorem.

Theorem 5.2.1. For the X-grid Xn, bw(Xn) = n.

Proof. It is well known that the branchwidth of an n-grid is equal to n. Furthermore,
for any minor H of graph G, bw(H) ≤ bw(G). Since the n-grid is a minor of Xn we
conclude from the two foregoing observations that bw(Xn) ≥ n.

64

5.2. X-grids

To show that bw(Xn) ≤ n, we construct a branch decomposition of Xn of width n.
To do so, we split the edge set E of Xn up in four symmetrical parts E1, . . . , E4, as is
done in Figure 5.2 for X4. Note that for both even and odd values of n, it is easy to
make a partition of E in Xn consisting of 4 symmetrical parts.

Ternary tree T of the branch-decomposition consists of one middle edge and four
symmetrical subtrees Ti that contain the leaves of T corresponding to edges from set
Ei, for i = 1 . . . 4. The middle edge of T has order equal to n, the edges of T that are
incident to a leaf have order 2 and all other edges in T have order at most n. The
width of the branch decomposition for Xn is therefore equal to n.

Figure 5.3 illustrates how to construct such an optimal branch decomposition of
X4. Each edge of X4 in Figure 5.2 is denoted by a number. In Figure 5.3, the bijection
τ between the leaves of T and E is displayed by simply putting these numbers in the
leaves of T . The labels on edges e of T denote the set of vertices v of X4 for which there
are leaves t1, t2 of T in different components of T \e, with τ(t1), τ(t2) both incident to v.
Following the same idea as is illustrated in Figures 5.2 and 5.3, it is easy to construct
a branch decomposition of width n for Xn for any value of n ≥ 2.

E1

E4

E3

E2

1

4 5 6

11 12 13

2 3

7 8 9 10

a b c d

e f g h

i j

k l

m n

Figure 5.2: partition of E into sets E1, . . . , E4 in planar graph X4

65

Chapter 5. Grid Minors

123456

7

8 9 10 11 12

13

{h,j,k,m}

{e,h,i,j}
{e,f,h,j}{e,f,g,h}

{a,b,g,h} {a,b,c,h} {a,b,c,d} {b,c,d}
{a,f,g,h}

{h,j,l,n}

{k,l,m,n}{e,i,k,m}

{e,h,i,j}{e,f,g,h}{e,f,g,h}{e,f,g,h}

{c,d}

E1 E2

E3E4

Figure 5.3: an optimal branch decomposition for the graph from Figure 5.2

5.2.2 Treewidth of X-grids

In this section, we take a closer look at the treewidth of X-grids. The results of this
study is condensed in the following theorem.

Theorem 5.2.2. For X-grid Xn, d3n
2
e − 2 ≤ tw(Xn) ≤ b3n

2
c − 1.

Proof. It is easy to construct a tree decomposition for Xn of width b3n
2
c − 1. Another

way to prove that tw(Xn) ≤ b3n
2
c − 1 is to combine the result from Theorem 5.2.1 with

the fact that tw ≤ b3bw
2
c − 1.

To prove that tw(Xn) ≥ d3n
2
e − 2, we construct a bramble B of Xn of order d3n

2
e − 1.

From this bramble it follows that the bramble number of Xn is at least d3n
2
e−1. Then,

we straightforwardly apply Theorem 5.1.5.
For an illustration of the bramble construction, we refer to Figure 5.4(a-b). We

split the rows of Xn into sets R1, R2 and R3 and the columns into sets C1, C2 and C3.
The bramble B now consists of all subsets that are of one of the following four types.

1. The vertices from one row and from one column intersecting this row.

2. The vertices from one column from C1, one column from C3 and a path between
these two columns;

3. The vertices from one row in R3, one column in C1 and a path between this row
and column;

4. The vertices from one row in R3, one column in C3 and a path between this row
and column.

66

5.2. X-grids

One subset of B of type 1 and one subset of type 2 are depicted in Figure 5.4(a) with
respectively fat solid lines and fat dashed lines. Subsets of B of type 3 and 4 are
depicted respectively by the fat solid lines and the fat dashed lines in Figure 5.4(b).
It can be easily verified that the subsets of B are connected and mutually touching.

C1 C2 C3

R1

R2

R3

C1 C2 C3

R1

R2

R3

C1 C2 C3

R1

R2

R3

(a) (b)

(c)ri

cj ck

C1 C2 C3

R1

R2

R3 (d)

1

2 3
4

Figure 5.4: Examples of the four types of subsets of B in (a,b), a collection of b3n
2 c vertex

disjoint paths in (c) and a hitting set for B of size d3n
2 e − 1 in (d).

We will now show that the order of B is equal to d3n
2
e − 1 which will thus imply that

tw(Xn) ≥ d3n
2
e − 2.

First we prove that the order of B is at least d3n
2
e − 1 by showing that for every

vertex set V ′ such that |V ′| < d3n
2
e − 1, there is a subset of B that is not hit by V ′.

Consider such a set V ′. Note that R2 and R3 together have d3n
2
e − 1 rows and C1, C2

and C3 have more than d3n
2
e−1 columns together. Thus, if every row in R2 is hit by V ′,

67

Chapter 5. Grid Minors

then there is a row in R3 that is not hit by V ′. Similarly, if every column in C2 is hit by
V ′, then there is a column in C1 and a column in C3 that are not hit by V ′. Therefore,
for any V ′ with |V ′| < d3n

2
e − 1, at least one of the following 4 situations occurs:

S1. Row ri from R2 and column cj from C2 are not hit by V ′.

S2. Row ri from R2 and column cj from C1 are not hit by V ′.

S3. Row ri from R3 and column cj from C2 are not hit by V ′.

S4. Row ri from R3, column cj from C1 and column ck from C3 are not hit by V ′.

We show that in each of these 4 situations, there is a subset of B that is not hit by V ′.
In situation S1, S2 and S3, ri and cj define a subset of B of type 1. Situation S4 needs
somewhat more attention. First we point out that any vertex set in Xn that separates
ri from cj and from ck and simultaneously separates cj from ck contains at least b3n

2
c

vertices. See Figure 5.4(c), where b3n
2
c vertex disjoint paths between ri, cj and ck are

depicted. Since V ′ contains strictly less than d3n
2
e − 1 vertices and thus strictly less

than b3n
2
c vertices, in situation S4 there exists thus a path P either between cj and ck

or between ri and cj or between ri and ck such that P is not hit by V ′. In the first case,
{cj, P, ck} forms a subset of B of type 2 that is not hit by V ′. In the second case {ri, P, cj}
forms a subset of type 3 of B that is not hit by V ′ and in the last case {ri, P, ck} forms
a subset of B of type 4 that is not hit by V ′. This shows that any set V ′ of size strictly
smaller than d3n

2
e − 1 can not be a hitting set of bramble B. Hence the order of B is at

least d3n
2
e − 1.

To show that the order of B is equal to d3n
2
e − 1, we note that the vertex set S as

depicted in Figure 5.4(d) forms a hitting set of B of size d3n
2
e − 1. It is easy to verify

that all four types of subsets in B are indeed hit by this hitting set.

5.2.3 Largest square-grid minor of X-grids

By construction, Xn contains an n-grid minor as an induced subgraph. Intuitively, it
might seem clear that the side size of the largest square-grid minor in Xn is equal to
n. Next, we present two proofs that support this intuition. The first proof is an easy
one and is based on results concerning branch decompositions. Without the use of
branch decompositions however, finding a proof turned out to be less trivial than we
thought. In our second proof, we do not resort to branch decompositions. Instead, we
use arguments related to face distances in the graph.

Theorem 5.2.3. Given X-grid Xn, gm(Xn) = n.

68

5.2. X-grids

Proof. When we combine the result of Theorem 5.2.1 with the fact that for any graph
G it holds that gm(G) ≤ bw(G), we find that gm(Xn) ≤ n. By construction, Xn contains
an n-grid as an induced subgraph, from which we conclude that gm(Xn) ≥ n. The two
foregoing observations yield that gm(Xn) = n.

Surprisingly enough, without the use of branchwidth it is rather difficult to prove
Theorem 5.2.3. In the alternative proof that will be presented next, we use arguments
in terms of face distances as they are defined in Section 5.1. This proof will provide a
methodological technique in contrast to the branchwidth based proof.

Before we start with the alternative proof, we need several propositions. The
propositions concern a mapping of the face set of a planar embedding of a graph G to
the face set of a planar embedding of a minor M of G. We recall that a minor M can be
obtained from G by a series of vertex deletions, edge deletions and edge contractions.
Basically, if such operation does not change the number of faces in the embedding,
then a face is mapped to the face in the embedding of the minor that naturally corre-
sponds to it. If, by a vertex deletion or edge deletion, some faces are joined together to
one face, then all these faces are mapped to the joined face. If, by an edge contraction,
some face f disappears, then f is mapped to a face in the embedding of the minor that
naturally corresponds to a neighbor face of f . We say that face f ′ in an embedding of
minor M of G corresponds to face f in an embedding of G if f can be mapped to f ′. We
now introduce three propositions, for which correctness can be easily verified.

Proposition 5.2.4. Using the mapping described above, each face in an embedding
of G can be mapped to a face in an embedding of a minor M of G. Moreover, for any
number i of different faces in the embedding of M , there are at least i different faces in
the embedding of G that can respectively be mapped to them.

Proposition 5.2.5. Let f ′ and f ′′ be two faces in the embedding of G and let f ′M and
f ′′M be respectively the two faces corresponding to f ′ and f ′′ in the embedding of a minor
M of G. Then, dM(f ′M , f

′′
M) ≤ dG(f ′, f ′′).

Proposition 5.2.6. Let f ′ be a face and v be a vertex in G and let M be a minor of G in
which v is not deleted nor contracted to another vertex. Furthermore, let f ′M be a face
in M corresponding to f ′. Then, dM(v, f ′M) ≤ dG(v, f ′).

Using these propositions, we are now ready to present an alternative proof of The-
orem 5.2.3.

Proof. Again by construction of Xn, it is easy to see that Xn contains an n-grid as a
minor. To show that gm(Xn) = n, we show that Xn has no (n + 1)-grid minor. We will
show that the outer face in an embedding of Xn cannot be mapped to any face in an

69

Chapter 5. Grid Minors

embedding of the (n+1)-grid. Then by Proposition 5.2.4 we derive that the (n+1)-grid
cannot be a minor of Xn. The proof is divided into three cases. For all three cases, we
present arguments only for even values of n. For odd values of n the proof is similar.
We consider the natural embedding of Xn and of the (n + 1)-grid and from here on,
we just talk about a face of Xn ((n + 1)-grid) instead of about a face in the natural
embedding of Xn ((n+ 1)-grid).
Case 1. The outer face of Xn cannot be mapped to the outer face of the (n + 1)-grid.
Because n is even, there is a vertex v in the (n + 1)-grid that has distance n

2
to the

outer face f ′, see the leftmost picture in Figure 5.5. If the outer face of Xn could be
mapped to the outer face of the (n + 1)-grid, then by Proposition 5.2.6 there should
also be a vertex in Xn with distance at least n

2
to the outer face of Xn. However, there

are no such vertices in Xn, see the rightmost picture in Figure 5.5.

n
2
− 1

0

n
2

1

v

f ’

n
2
− 1

1

0

Figure 5.5: Distances of vertices to the outer face in the (n+ 1)-grid and in Xn

Case 2. We now show that the outer face of Xn cannot be mapped to any of the 4 mid-
dle faces of the (n+ 1)-grid. There are 2n faces in the (n+ 1)-grid having face distance
n
2

to a middle face f ′, see Figure 5.6, leftmost picture. Suppose that the outer face of
Xn can be mapped to any of the 4 middle faces of the (n+1)-grid. By Propositions 5.2.4
and 5.2.5 then there must be 2n different faces in Xn at face distance at least n

2
to the

outer face. However, there are only 2n− 3 such faces in Xn, see the rightmost picture
in Figure 5.6.
Case 3. Finally, let us show that the outer face of Xn cannot be mapped to any of the
other inner faces of the (n+ 1)-grid. For each such inner face of the (n+ 1)-grid there
is a vertex at distance n

2
, see Figure 5.7. Suppose that the outer face of Xn can be

mapped to one of the other inner faces of the (n + 1)-grid. Then, by Proposition 5.2.6

70

5.3. Sandwich grids and pyramids

f ′

1

n

2

n+1 2n-1 2n

f ′

1

2
n 2n-3

n-1

n
2

n
2

n
2

n
2

n
2

n
2

n
2

n
2

n
2

Figure 5.6: There are 2n faces at face distance n
2 to f ′ in the (n + 1)-grid and 2n − 3 faces at

face distance n
2 to the outer face in Xn

there must be a vertex in Xn that has distance at least n
2

to the outer face. Again,
there is no such vertex in Xn, see the rightmost picture in Figure 5.5.

3

2

1
vv

2

f ’

Figure 5.7: Vertex v at distance n
2 to a non-middle inner face f ′ in the (n+ 1)-grid

5.3 Sandwich grids and pyramids
In this section, we introduce two more classes of planar graphs, which we call pyra-
mids and sandwich grids. The graphs in the pyramid family will be referred to as

71

Chapter 5. Grid Minors

Λn, whereas Sn will be used to denote a sandwich grid. The pyramid Λn is a graph
on 2n2 − 2n + 1 vertices and 6n2 − 10n + 4 edges. It can be constructed by building a
pyramid with the side size of the base level equal to n, as shown in the leftmost pic-
ture in Figure 5.8. The sandwich-grid Sn is a graph on 2n2 vertices and 4n2 − 4 edges
and can be constructed by taking two n-grids and connecting the vertices on the outer
face of one n-grid to the corresponding vertices on the outer face of the second n-grid,
as is shown in the rightmost picture in Figure 5.8. Planar embeddings of the graphs
Λ3 and S4 are given in Figure 5.9.

Figure 5.8: pyramid Λ3 and sandwich grid S4

Figure 5.9: planar embeddings for pyramid Λ3 and sandwich grid S4

In the following we will determine the treewidth and branchwidth of sandwich
grids. We will also present a lower bound on the side size of the largest square-
grid minor for both families and an upper bound on the treewidth of pyramids. We
conjecture that these bounds are tight.

72

5.3. Sandwich grids and pyramids

5.3.1 Branchwidth of sandwich grids

The branchwidth of sandwich grids can be determined, but indirectly, using the result
by Gu and Tamaki [56] which followed the publication based on this chapter. They
introduced the family of graphs called cylinders.

Definition 5.3.1. (see [56]) Let k ≥ 3 and h ≥ 1 be integers. A k × h cylinder, denoted
by Ck,h, is the Cartesian product of a cycle on k vertices and a path on h vertices: it has
a vertex (u, v) for each vertex u of the cycle and each vertex v of the path and (u, v) is
adjacent with (u′, v′) if and only if u = u′ and v is adjacent with v′ on the path or v = v′

and u is adjacent with u′ on the cycle.

Gu and Tamaki proved that bw(C2n,n) = 2n. In fact, cylinder C2n,n is a subgraph of
sandwich grid Sn. Thus, we can use bw(C2n,n) as a lower bound of bw(Sn).

Theorem 5.3.2. For a sandwich grid Sn, 2n ≤ bw(Sn) ≤ 2n+ 1.

Proof. To show that bw(Sn) ≤ 2n + 1, we use the result from the next section that
tw(Sn) ≤ 2n. When we combine this with the fact that for any graph G it holds that
bw(G) ≤ tw(G) + 1, we obtain the desired result.

To show that bw(Sn) ≥ 2n, we use a result on cylinder graphs. Since the branch-
width of a subgraph of Sn is smaller than or equal to bw(Sn), we conclude that bw(Sn) ≥
bw(C2n,n) = 2n.

The question to determine the branchwidth of the pyramid class Λn still remains
open. Later we will show that tw(Λn) ≤ 2n−1. Using this result, we can bound bw(Λn)

from above by 2n.

5.3.2 Treewidth of sandwich grids and pyramids

The treewidth of sandwich grids can be approximated as follows.

Theorem 5.3.3. For sandwich grid Sn, 2n− 1 ≤ tw(Sn) ≤ 2n.

Proof. To prove that tw(Sn) ≤ 2n, we show how to construct a tree decomposition
(actually, a path decomposition) of Sn of width 2n. One can start with a bag that
contains 2n vertices from the first column of Sn (using the embedding of Figure 5.9)
plus the top vertex of the second column. In the next bag, we eliminate the top vertex
from the first column and introduce the second vertex from the second column, etc.
The last bag contains the bottom vertex of the one-to-last column and the 2n vertices
from the last column in Sn.

To show that tw(Sn) ≥ 2n − 1, we use a result from [56]. A result from this study
is that for subgraph C2n,n of Sn it holds that bw(C2n,n) = 2n. Therefore bw(Sn) ≥ 2n.
Combined with the fact that bw(Sn) ≤ tw(Sn) + 1 this implies that tw(Sn) ≥ 2n− 1.

73

Chapter 5. Grid Minors

For the pyramid Λn, we construct a tree decomposition showing that tw(Λn) ≤
2n−1. Consider one of the main diagonals in Λn (using the embedding from Figure 5.9)
and all other paths in Λn that are parallel to this diagonal. Let the middle bag of the
tree decomposition contain all vertices from the main diagonal. In both directions we
add a bag containing the vertices from the main diagonal plus the top vertex from the
next path. After that, we simply eliminate the vertices one by one. This will give a
path decomposition of Λn of width 2n−1, hence tw(Λn) ≤ 2n−1. The question to prove
tightness of this upper bound is still open at the moment of writing this thesis.

5.3.3 Square-grid minor of sandwich grids and pyramids

It is easy to see that gm(Sn) ≥ n since Sn contains the n-grid as an induced subgraph.
To show that gm(Λn) ≥ n, we refer to Figure 5.10, which illustrates how to obtain an
n-grid minor in Λn for odd and even values of n. We do believe that both families Sn
and Λn do not contain (n + 1)-grid minors, but we are still looking for techniques to
prove this.

odd n even n

Figure 5.10: To obtain n-grid minors in Λn, delete dotted edges and vertices that are incident
only to dotted edges and contract the dashed edges.

5.4 Conclusions and open questions

The results from this study are summarized in Table 5.1.
Furthermore, we compute the parameters for graphs Xn for small values of n, see

Table 5.2. These computations provide some evidence that ω(Xn) = b3n
2
c − 1 for even

74

5.4. Conclusions and open questions

graph family gm bw tw

X-grid (Xn) n n ≈ 3n
2 − 1

pyramid (Λn) ≥ n ≥ n ≥ n
≤ 2n ≤ 2n ≤ 2n− 1

sandwich grid (Sn) ≥ n ≈ 2n ≈ 2n− 1

≤ 2n

Table 5.1: summary of results

values of n.

Table 5.2: Values of the parameters of Xn for small n
Graph θ(G) β(G) ω(G)

X2 2 2 2

X3 3 3 3

X4 4 4 5

X5 5 5 6

As a direction for further research, we recommend the interested reader to con-
sider the following questions.

1. Can we find a technique to prove that gm(Λn), gm(Sn) ≤ n?

2. Can we find a bramble for Λn of order 2n, i.e., can we show that tw(Λn) = 2n− 1?

3. Can we find a family of planar graphs satisfying c1gm < bw < c2tw, where c1 > 1

and c2 < 1 are some constants? Notice, that in Xn there is a constant-ratio gap
between gm(Xn) and bw(Xn), while in C2n,n there is a gap between gm(C2n,n) and
tw(C2n,n).

We end this chapter with the conjecture that the sandwich grid, the pyramid and the
cylinder(see [56]) are worst cases for branchwidth and treewidth approximation in
terms of the side size of the largest square-grid minor.

Conjecture 5.4.1. For any planar graphG, both bw(G) and tw(G) are at most 2gm(G)+

o(gm(G)).

75

Chapter 6

Integer Linear Programming
Formulations for Treewidth

There are various algorithms and heuristics for the problem of finding the treewidth
of a graph. One of the most known exact algorithms is Bodlaender’s algorithm run-
ning in O(2tw

2
n)-time, where tw is the treewidth of a graph, see [14]. Unfortunately

it can not be used in practice because of the big constant hidden in O()-notation. The
best known exponential-time algorithm is the dynamic programm by Fomin et al. [47]
with the running time O(1.8899n).

For a long time the best known approximation algorithm for the treewidth had
a factor O(log n), see [17], and O(log tw), see [3]. Recently, Feige et al. developed a
polynomial-time O(

√
log tw)-approximation algorithm, see [43]. It is still an intriguing

open question whether the treewidth can be approximated within a constant factor
for an arbitrary graph.

So far only limited attempts were made to attack the treewidth problem using
Integer Linear Programming techniques. In this chapter we present an overview of
these attempts and develop further LP-based techniques for the problem. Integer Lin-
ear programming is widely used to obtain good exact and approximation algorithms
for different problems, see i.e. [24, 44, 72, 75, 78]. The advantage of this approach
is that it is very generic and, therefore, we can apply many different well-developed
LP-techniques to obtain better quality solutions or to speed-up the algorithm.

We present two different ILP formulations for the treewidth. The first ILP, the
Elimination Order formulation, is proposed by Koster and Bodlaender [65]. It is
based on the vertex elimination order and the connection between the treewidth and
the chordalization of the graph, see Chapter 2, Theorem 2.6.8 for the details. In
this thesis we briefly show that the integrality gap of this formulation is at least
Ω(
√
n). We improve this formulation by merging it with the flow metric approach by

Bornstein and Vempala [24]. The second ILP, the Tree Drawing formulation, is the

Chapter 6. Integer Linear Programming Formulations for Treewidth

outcome of this thesis. This formulation has nice geometric properties; we use them
to apply a local branching technique proposed by Fischetti and Lodi [46].

The chapter is organized as follows: Section 6.1 is devoted to the Elimination Or-
der formulations and its improvement using flow metric techniques by Bornstein and
Vempala. Section 6.2 contains new Tree Drawing formulation and the application of
the local branching technique by Fischetti and Lodi to the proposed ILP. In Section 6.3
we compare two formulations and speculate on their applicability for different types
of graphs. The last section contains the results and open questions.

6.1 Elimination Order formulation and flow metrics

The Elimination Order formulation for the treewidth is introduced by Bodlaender
and Koster [65]. The formulation is based on the relationship between treewidth
and chordalizations of graphs, see Chapter 2 for the details. Theorem 2.6.8 states
that finding the treewidth of a graph G is equivalent to finding a triangulation of the
graph G with minimum clique size. A graph is triangulated if and only if it has a
perfect elimination scheme. The idea is to determine the best elimination order of the
vertices. The maximum outdegree among the vertices in an elimination scheme is
equal to the width of the tree decomposition of G associated with the triangulation.
Modeling perfect elimination orders let the decision variables of ILP be defined as
follows:

xij =

{
1, if i is ordered before j in the perfect elimination scheme,
0, otherwise.

yij =

1, if i is ordered before j in the perfect elimination scheme
and if ij is an edge of the triangulation,

0, otherwise.

We assume that i 6= j for all xij and yij.

Now, the elimination order based formulation (EOF) reads (see [65]):

minw (6.1)

78

6.1. Elimination Order formulation and flow metrics

subject to

w ≥
∑

j∈V
yij, ∀i ∈ V, (6.2)

xij + xji = 1, ∀{i, j} ⊆ V, (6.3)

xij + xjk − xik ≤ 1, ∀{i, j, k} ⊆ V, (6.4)

yij ≤ xij, ∀{i, j} ⊆ V, (6.5)

yij = xij, ∀ij ∈ E, (6.6)

xjk + yij + yik − yjk ≤ 2, ∀{i, j, k} ⊆ V, (6.7)

xij ∈ {0, 1}, yij ∈ {0, 1}, ∀i, j ∈ V. (6.8)

Constraints (6.3), (6.4) and (6.8) guarantee that variables x determine a linear
order. Constraints (6.5) force the yij variable to be zero as soon as i is not ordered
before j. Constraints (6.6) impose that edges of G are counted in the triangulation.
Constraints (6.7) imply that if edges ij and ik are in the triangulation with i ordered
before j and i ordered before k, then there must exist an edge jk in the triangulation.

First, let us estimate the integrality gap of EOF. Consider m×m-grid graph which
is a Cartesian product of two simple paths, Pm × Pm (Cartesian product is the direct
product of two sets, see, e.g. [92]). The number of vertices in this graph is n = m2 and
tw = m =

√
n. It is easy to check that the symmetric solution

xij =
1

2
, ∀{i, j} ⊆ V,

yij =

{
1
2
, if ij ∈ E,

0, otherwise.

is feasible for the LP-relaxation where Constraints (6.8) are substituted just by non-
negativity requirement. Given this solution w is maximal on the internal vertices of
the grid which have degree 4, thus LP ≤ 4 ∗ 1

2
= 2 where LP is the optimal solution

of the linear relaxation of EOF. Let OPT denotes the treewidth of the given graph.
Then, the integrality gap of EOF is at least OPT

LP
≥ m

2
=
√
n

2
.

6.1.1 Introduction to flow metrics

In this subsection we give a brief introduction to the flow metric technique introduced
by Bornstein and Vempala [24] where the notion flow metric refers to the relaxation of
the path metric (i.e. linear ordering). A lot of problems in combinatorial optimization
can be formulated as finding an assignment of pairwise distances of a specified type
which minimizes a special cost function on the distances. The problems modeled in
this way are often NP-hard and one approach to solve them is to consider relaxations

79

Chapter 6. Integer Linear Programming Formulations for Treewidth

of the associated metric. The proposed method uses the same relaxation and essen-
tially the same rounding procedure to solve the problem; only the objective function
is varied.

Consider a path on n vertices numbered 1, 2, . . . , n. The distance between u and v

in the corresponding path metric is |u− v|.
Now imagine that we send a flow of one unit from a vertex u to a vertex v to the

right of u for all pairs of vertices u and v such that v > u. These flows satisfy the
following properties:

• For each pair of vertices u and v, the value of the flow from u to v plus the value
of the flow from v to u is equal to one.

• For every triplet u, v, w, the flow between u and v that goes through w, the flow
between u and w that goes through v and the flow between v and w that goes
through u sum to one.

Any metric that satisfies the above properties is called a flow metric. To define
this formally, let the variables fu,vij represent the value of the flow from u to v on the
edge ij. These variables satisfy flow conservation at every vertex except the source
and the sink. We pay attention that the variables fu,vij are determined only for edges
ij ∈ E. Define a set of auxiliary variables

gu,vw =
∑

i: iw∈E
fu,viw .

In other words, gu,vw represents the flow from u to v that goes through the vertex w.

Definition 6.1.1. [24] A flow metric is a solution to the following linear program (FP),
where f and g are flow variables as defined above.

gi,jj + gj,ii = 1, ∀{i, j} ⊆ V, (6.9)

(gi,jk + gj,ik) + (gj,ki + gk,ji) + (gi,kj + gk,ij) = 1, ∀{i, j, k} ⊆ V, (6.10)

df (i, j) =
∑

k∈V
gi,jk , ∀i, j ∈ V, (6.11)

df (i, j) + df (j, k) ≥ df (i, k), ∀i, j, k ∈ V. (6.12)

Constraints (6.11) define a set of directed distances that form the “metric” and
Constraints (6.12) impose the triangle inequality on these distances.

An important property of a flow metric is that it satisfies the one-dimensional
spreading constraints as stated in the following theorem:

Theorem 6.1.2. [24] For any subset S ⊆ V of vertices,

∑

u,v∈S
df (u, v) ≥

(
| S |

3

)
.

80

6.1. Elimination Order formulation and flow metrics

Roughly speaking, for a spreading metric the average distance in any subset of k
vertices is about k, as in the case of a path. This property can be modeled using a
set of linear constraints above. Although the number of constraints is exponential in
the size of the input graph, they admit an efficient separation oracle [54] and so the
resulting relaxations can be solved in polynomial time.

6.1.2 Improvement of EOF using flow metrics

Flow metric technique is a powerful tool of polishing the ordering polytope in the
neighborhood of the optimal solution. We use its power to improve the Elimination
Order formulation for treewidth. The way to merge ILP and flow metric technique
is based on the comparison of the variables and identification of some of them. Con-
sider two relaxations of linear ordering polytopes (6.3)–(6.4) and (6.9)–(6.10) we can
straightforwardly combine these constraints into one single polytope in the following
way:

Proposition 6.1.3.

xij = gi,jj .

Proof. We remind that xij and gi,jj are defined as follows:

xij =

{
1, if i is ordered before j in the perfect elimination scheme,
0, otherwise.

gi,jj =
∑

k: kj∈E
f i,jkj =

{
1, if there is a flow from i to j,
0, otherwise.

=

=

{
1, if i is before j in the vertex linear ordering,
0, otherwise.

We conclude that xij and gi,jj are equal in the integral solution.

In fact, by Proposition 6.1.3 we notice that Equation (6.3) and Equation (6.9) are
identical. We formulate the merged ILP as follows:

minw (6.13)

81

Chapter 6. Integer Linear Programming Formulations for Treewidth

subject to

w ≥
∑

j∈V
yij, ∀i ∈ V, (6.14)

gi,jk =
∑

m∈V : mk∈E
f i,jmk, ∀ i, j, k ∈ V, (6.15)

gi,jj + gj,ii = 1, ∀{i, j} ⊆ V, (6.16)

gi,jj + gj,kk − gi,kk ≤ 1, ∀{i, j, k} ⊆ V, (6.17)

yij ≤ gi,jj , ∀{i, j} ⊆ V, (6.18)

yij = gi,jj , ∀ij ∈ E, (6.19)

gj,kk + yij + yik − yjk ≤ 2, ∀{i, j, k} ⊆ V, (6.20)

(gi,jk + gj,ik) + (gi,kj + gk,ij) + (gj,ki + gk,ji) = 1, ∀{i, j, k} ⊆ V, (6.21)

df (i, j) =
∑

k∈V
gi,jk , ∀i, j ∈ V, (6.22)

df (i, j) + df (j, k) ≥ df (i, k), ∀i, j, k ∈ V, (6.23)

gi,jk ∈ {0, 1}, yij ∈ {0, 1}. (6.24)

We make the following conjecture about the presented ILP:

Conjecture 6.1.4. Applying rounding algorithm by Bornstein and Vempala [24] to
the linear relaxation of ILP (6.13)–(6.24), one derives an O(log n)-approximate solution
to the treewidth problem in polynomial time.

1

2

Figure 6.1: The construction is symmetric with respect to the root. We choose the longest
path from the root to the bottom and merge it into one bag 1 of the path-decomposition. Bag
2 is connected to bag 1, and so on.

To show that the proposed method is promising and the conjecture is plausible,
we present a following O(log3 n)-approximation for the treewidth. Consider the path-
width problem, where condition on the tree T in Definition 2.6.1 is strengthened to
the condition that T is a simple path. The pathwidth problem is formulated as an
ILP on the polytope contained in (6.14)–(6.24), see Bornstein and Vempala [24]. They
proposed the rounding algorithm which provides a solution to the pathwidth of value

82

6.2. Tree drawing formulation

APXpw ≤ pw × O(log2 n). Clearly, tw ≤ pw. It is well known that pw ≤ tw × O(log n).
The argument is as follows: without loss of generality we consider the binary tree-
decomposition on n vertices. The depth of this tree is at most O(log n). The way
to pack the tree-decomposition into the path-decomposition is demonstrated on Fig-
ure 6.1. Every new bag of the path-decomposition is at most tw ×O(log n).

Therefore, if we simply take the derived value of pathwidth as a feasible approxi-
mate solution to the treewidth we have than

tw ≤ pw ≤ APXpw = APXtw ≤ pw ×O(log2 n) ≤ tw ×O(log3 n).

Thus, already the direct usage of the rounding algorithm for the pathwidth guar-
antees the polylogarithmic approximation for the treewidth. Conjecture 6.1.4 stays
open as a question for further research. Notice, this polylogarithmic approximation
immediately implies that we improved upon (6.1)–(6.8) by adding the flow metric
constraints. This is because the symmetric solution enforces the integrality gap be at
least Ω(

√
n) are not longer feasible as the new linear relaxation values are different

from the optimum by at most a polylogarithmic factor.

6.2 Tree drawing formulation
In this section we introduce a brand-new ILP formulation for the treewidth problem
purely based on geometry of tree-decomposition. The problem is formulated as a
network design problem on a grid and the underlying integer linear programming
formulation describes the geometric properties of the optimal tree decomposition.

It is known that for any graph G = (V,E) on n vertices there is a binary tree
on O(n) vertices representing the optimal tree decomposition of G. Without loss of
generality, assume that such a binary optimal tree decomposition of G on n vertices is
given. By Crescenzi et al. [34] any binary tree on n vertices can be properly embedded
in the n × (log n + 1) grid in the right-down fashion, thus the optimal binary tree
decomposition also has such drawing. Hence, we make all further drawings on the
n × (log n + 1) grid (N,A) with the node set N and the edge set A. We assume that
the horizontal grid layers are numbered {0, . . . , n − 1} in the top-to-bottom manner
and the vertical layers are numbered {0, . . . , log n} in the left-to-right manner. Let
y = (i, j) be the grid node lying on the horizontal layer i and vertical layer j. We
denote yr, yu, y` and yb the right, upper, left and bottom neighbors of y respectively.

Definition 6.2.1. For a pair of grid nodes y = (i, j) and y′ = (i′, j′), we write y � y′ if
i ≤ i′ and j ≤ j′. Consistently, we write y ≺ y′ if y � y′ and y 6= y′.

For every vertex v ∈ V we construct a connected tree Tv which is a subtree of
the optimal tree decomposition where every node contains vertex v. Tv is embedded

83

Chapter 6. Integer Linear Programming Formulations for Treewidth

on the edges of the grid such that there is no node in the tree which is adjacent
simultaneously to its upper and left neighbors. We call such a tree drawing the proper
right-down drawing. Notice that in any tree drawn in proper right-down way, there
is always a unique left upper node of the tree.

By constraints of the integer linear program below we guarantee that the com-
bined drawing of all vertex subtrees does not contain any cycles, i.e. it is a tree, and
for any two adjacent vertices in G the corresponding vertex subtrees are overlapping,
i.e. there is a bag of the optimal tree decomposition which contains both vertices.

To model the proper right-down drawing of the vertex subtrees, for every v ∈ V ,
e ∈ A and y ∈ N we introduce the following binary variables:

svy =

{
1, if y is the unique left upper corner of Tv,
0, otherwise.

xve =

{
1, if e ∈ E(Tv),
0, otherwise.

uvy =

{
1, if y ∈ V (Tv),
0, otherwise.

Constraints which model the problem are the following. Existence of a unique left
upper corner of the subtree can be straightforwardly described by the equation

∑

y∈N
svy = 1, ∀v ∈ V. (6.25)

Next constraints ensure that in the drawing there is no node y simultaneously adja-
cent to its left and upper neighbors:

xv(y`,y) + xu(y,yu) ≤ 1, ∀v, u ∈ V, y ∈ N. (6.26)

Connectivity of the subtrees we guarantee by the constraints

uvy = svy + xv(y`,y) + xv(y,yu), ∀v ∈ V, y ∈ N, (6.27)

xv(y,yr) ≤ uvy, ∀v ∈ V, y ∈ N, (6.28)

xv(yb,y) ≤ uvy, ∀v ∈ V, y ∈ N. (6.29)

Now, when the subtrees are modeled, we set up the inequalities which ensure that
for any two adjacent vertices in G the corresponding two subtrees are overlapping. To
do this, we notice that in any proper right-down drawing two subtrees are overlapping
if and only if the upper-left corner of one of the subtrees belongs to another subtree.

84

6.2. Tree drawing formulation

Thus, we complete the construction of the treewidth polytope by setting the following
inequalities:

suy +
∑

y′�y
svy′ ≤ 1 + uvy, ∀(v, u) ∈ E, y ∈ N, (6.30)

suy +
∑

y′∈N :y′�y,y�y′
svy′ ≤ 1, ∀(v, u) ∈ E, y ∈ N. (6.31)

The integrality constraints are:

svy, xve, uvy ∈ {0, 1}. (6.32)

To put the problem in an optimization framework, we add one more variable w for
the treewidth of G and require

w + 1 ≥
∑

v∈V
uvy, ∀y ∈ N. (6.33)

The objective function is given straightforwardly:

minw. (6.34)

We refer to the tree drawing ILP formulation as TDF. There is the following rela-
tion between the solution of TDF and the treewidth defining vertex elimination order.
We find the partial order of vertices using the following proposition and linearize the
partial order to obtain an elimination scheme:

Proposition 6.2.2. Let π be the partial order of vertices in G such that π(v) ≤ π(u)

if y ≺ y′ for svy = 1 and suy′ = 1 in the optimal solution to (6.25)–(6.34). Then π is a
treewidth defining vertex elimination order for graph G.

6.2.1 Introduction to local branching

In this subsection we give an overview of the local branching technique introduced
by Fischetti and Lodi [46]. The procedure is in the spirit of well-known local search
metaheuristics, but the neighborhoods are obtained through the introduction into the
Mixed Integer Programming (MIP) model the set of completely general linear inequal-
ities, called local branching cuts. This allows the use of a general-purpose MIP solver
as a black-box “tactical” tool to explore effectively suitable solution subspaces defined
and controlled at a “strategic” level by a simple external branching framework.

We consider a generic MIP of the form:

min cTx (6.35)

85

Chapter 6. Integer Linear Programming Formulations for Treewidth

subject to

Ax ≥ b, (6.36)

xj ∈ {0, 1}, ∀j ∈ B 6= ∅, (6.37)

xj ≥ 0, xj ∈ Z, ∀j ∈ G, (6.38)

xj ≥ 0, ∀j ∈ C. (6.39)

Here, the variable index setN is partitioned into (B,G, C), where B 6= ∅ is the index
set of the binary variables, while the possibly empty sets G and C index the general
integer and the continuous variables, respectively. Given a feasible reference solution
x̄ of the problem, let S̄ = {j ∈ B | x̄j = 1} denote the binary support of x̄. For a given
positive integer parameter k, we define the k-OPT neighborhood N(x̄, k) of x̄ as the
set of the feasible solutions satisfying the additional local branching constraint, see
[46]:

∆(x, x̄) =
∑

j∈S̄
(1− xj) +

∑

j∈B\S̄
xj ≤ k, (6.40)

where the two terms in left-hand side count the number of binary variables flipping
their value (with respect to x̄) either from 1 to 0 or from 0 to 1, respectively.

The local branching constraint can be used as a branching criterion within an
enumerative scheme for MIP: given a solution x̄, the solution space associated with
the current branching node can be partitioned by means of the disjunction, see [46]:

∆(x, x̄) ≤ k left branch or ∆(x, x̄) ≥ k + 1 right branch. (6.41)

The idea is that the neighborhood N(x̄, k) corresponding to the left branch must
be “sufficiently small” to be optimized within short computing time, but still “large
enough” to likely contain better solutions than x̄. According to the computational
results [46], the choice of k in range [10, 20] was effective in most cases.

6.2.2 Local branching technique for TDF

In this subsection we apply the local branching technique [46] to TDF for the treewidth.
The intuition for the local branching method applied to the treewidth is as follows.

We start with some (not optimal) tree decomposition T0 which is a combination of
the vertex subtrees Tv in the grid. We define the neighborhood of T0 as the set of
tree decompositions where at most k vertex subtrees Tv might have the left-upper
corners different from their locations in T0. By a MIP solver or by any other suitable
method, we find in the constructed neighborhood a tree decomposition T1 having the
minimal treewidth. Making clear the connection to the vertex elimination orders

86

6.2. Tree drawing formulation

announced in Proposition 6.2.2, this step of the local branching corresponds to finding
the (locally) optimal tree decomposition obtained by shifting at most k vertices in a
given vertex elimination order. Now, given T1, we define its neighborhood by the set
of tree decompositions where at least k+ 1 subtrees are different from the subtrees in
T0 and at most k subtrees are different from the subtrees in T1. This can be done by
adding two inequalities to the integer linear program. To the extended ILP, we again
find a tree decomposition T2 having the minimal treewidth. We recurse on the integer
linear programs, i.e. at step i we obtain a local optimum Ti adding to the current ILP:

• inequalities determining a small neighborhood of Ti−1,

• inequalities cutting off the neighborhood of Ti−2.

We stop the process when the extended ILP does not have any solution. Since the
algorithm starts with the whole set of feasible solutions and proceeds till the empty
set, the best found solution is a provable global optimum. Below we give a detailed
description of the algorithm.

Algorithm 6.1: LocalBranching
Generate any feasible (s∗0, x

∗
0, u
∗
0, w

∗
0).

Generate (s∗1, x
∗
1, u
∗
1, w

∗
1) by adding the constraint ∆(s, s∗0) ≤ k to (6.14)–(6.24) and

solving the resulting ILP by a MIP-solver.

Let i := 2.

While The set of feasible solutions of the current ILP is not empty Do
In the current ILP, replace ∆(s, s∗i−2) ≤ k by ∆(s, s∗i−2) ≥ k + 1

and add ∆(s, s∗i−1) ≤ k.
Solve the ILP by MIP to generate (s∗i , x

∗
i , u
∗
i , w

∗
i).

Set i := i+ 1.
End While

Output the solution (s∗, x∗, u∗, w∗) found during the previous steps with the
minimum value w∗.

Given a feasible integer reference solution(s∗, x∗, u∗, w∗) to (6.25)–(6.34), let S∗ :=

{(v, y) : s∗vy = 1} denote the binary support of the solution. For a given positive integer
parameter k, we define the k-optimal neighborhood N (s∗, x∗, u∗, w∗, k) of (s∗, x∗, u∗, w∗)

as the set of feasible solutions to the integer program (6.25)–(6.34) satisfying the

87

Chapter 6. Integer Linear Programming Formulations for Treewidth

additional local branching constraint

∆(s, s∗) :=
∑

(v,y)∈S∗
(1− svy) +

∑

(v,y)/∈S∗
svy ≤ k, (6.42)

where the two terms in the left-hand side count the number of binary variables s

flipping their value with respect to s∗.
To prune the algorithm, preprocessing rules reducing the size of the graph and

constructing safe separators must be applied, see [19, 20]. Clearly, we can easily
improve the stop-criteria of the algorithm: if at some step of the algorithm the optimal
solution of the linear relaxation to the current ILP is greater than the width of the
best found tree decomposition then we can stop since further adding inequalities will
only increase the width of the decompositions.

6.3 Comparison of formulations and methods
We start the comparison of the ILP formulations EOF and TDF with the program
sizes. Given graph G on n vertices TDF has O(n2 log n) variables, while EOF needs
O(n4) variables. The situation is opposite with respect to the number of constraints:
TDF contains O(n3 log n) constraints, EOF has O(n3) constraints. Hence, size-wise
TDF is slightly more compact than EOF.

It is noticeable that despite its generality, the local branching technique of Fis-
chetti and Lodi [46] is hardly applicable to linear ordering polytopes in general and
to EOF in particular. This is due to the fact that all variables in the linear ordering
polytopes are related to each other, e.g. shift of one element in the linear order im-
plies changes in n/2 variables on average. Moreover, the choice on which variable to
branch is also very difficult. This was one of the basic reasons to introduce TDF with
variables allowing more freedom for local changes and which are more suitable for
the local branching procedure. In the local branching, if k is not very large and only
deviations of k elements in the current integer solution are allowed, the spread of the
fractional values is not very high and the local optimum can be found quickly.

On the other hand, EOF can be nicely placed within the flow metric framework as
it already assumes some “path-like” structure which is the basis of the flow approach.
The “flow metric” constraints polish the linear ordering polytope in the neighborhood
of the optimal solution which provides better approximation guarantees and speeds
up the search. At the same time it is difficult to find a straightforward way to inte-
grate the flow metric approach into TDF as it is based on geometrical and structural
properties of the tree-decomposition more than on ordering properties.

It is known that linear ordering formulations, like EOF, work quite well on dense
graphs as finding a clique leads to a good progress of the objective function bounds;

88

6.4. Conclusions and open questions

but are typically bad on sparse graphs. The situation is somewhat opposite for TDF.
It can get stuck in some node of the branching tree if input graph is a clique. Further-
more, the arbitrary spread of k trees Tv which are allowed to be changed is very bad
for the input clique graph as the optimal tree-decomposition is just one bag. But this
is also the reason for the more effective search on the sparse graphs as we allow the
big “jumps” and changes in one step of the algorithm.

6.4 Conclusions and open questions
We considered two Integer Linear Programming formulations for treewidth. The first
one is based on the vertex elimination order. It is merged with the flow metric ap-
proach by Bornstein and Vempala [24] to obtain better approximation bounds. We
show that using this formulation one can obtain straightforwardly a polylogarithmic
approximation for the treewidth. The second ILP is structural and it is based on
the drawing of the optimal tree decomposition on the grid. This representation leads
to some nice geometric properties which we exploit in a local branching procedure
proposed by Fischetti and Lodi [46] to obtain an exact algorithm for the Minimum
Treewidth problem. The computational experiments on different graph classes can
bring more insights about the weaknesses and strengths of the proposed formula-
tions. This is left for further research.

89

Part III

Treewidth and Applications

Chapter 7

H-Subgraph Edge Deletion

In this chapter of the thesis, we shift our focus to an application of treewidth and
tree decompositions. We demonstrate how an otherwise intractable graph theoretical
problem can be solved in linear time on graphs that have bounded treewidth, if a tree
decomposition of the graph is available.

In the field of combinatorial graph theory, lately there has been an increased in-
terest in algorithms for graphs not containing some specified subgraph or induced
subgraph. An apparent reason for this interest is that many combinatorial prob-
lems on graphs have useful structural and/or algorithmic properties when restricted
to graphs that exclude certain subgraphs. Just to give a few insightful examples: a
famous result by Erdös, Kleitman and Rothschild [42] says that almost every triangle-
free graph has chromatic number 2; Minty [69] and Sbihi [85] show that the maxi-
mum independent set problem is polynomially solvable on claw-free graphs; Dunbar
and Frick [41] show that the path-partition conjecture is true for claw-free graphs;
Borodin et al. [25] prove that planar graphs with no cycles of length from 4 to 7 are 3-
colorable. There are, of course, many other structural and algorithmic results related
to graphs without (a) specific subgraph(s). Motivated by this increased attention in
the literature, we present algorithms in this chapter to turn a graph into a graph that
excludes certain subgraphs by deleting a minimum number of edges from it.

The chapter is organized as follows. In Section 7.1 we introduce the problem that
will be the subject of study in this chapter and we give some references to related
studies. We continue by showing in Section 7.2 that by a general result of Courcelle
[31, 32], the decision version of the considered problem is theoretically solvable in
linear time on graphs of bounded treewidth. We then introduce a dynamic program
in Section 7.4 for the case where the input graph has bounded maximum degree that
solves the problem in linear time on graphs of bounded treewidth. In Section 7.4
the subgraph that is excluded from the graph can be any fixed, connected graph.
Subsequently in Section 7.5, we consider the case where the fixed subgraph forms a

Chapter 7. H-Subgraph Edge Deletion

clique and we present a dynamic program that solves the problem in linear time on
graphs of bounded treewidth. In Section 7.6, we present Baker’s style approximation
schemes for the problems from Sections 7.4 and 7.5 on planar graphs. Finally, in
Section 7.7, we show how our algorithms can be adopted to deal with the situation
where more than one type of subgraph needs to be excluded from the input graph.

7.1 Problem definition

We consider the graph theoretical problem of turning a graph into a graph that ex-
cludes certain subgraphs. The transformation is executed by removing edges from
the input graph. Given an input graph G and a finite set of graphs H = {H1, . . . , Ht},
we call a subgraph of G an H-subgraph of G if it is isomorphic to one of the graphs in
the set H. In this context, a graph G is usually referred to as the text and H as the set
of patterns. A graph G is called H-free if there are no H-subgraphs in G. For ease of
notation, we use notions of H-subgraphs and H-free graphs instead of H-subgraphs
and H-free graphs.

We restrict ourselves to the case in which the subgraphs that have to be excluded
are fixed graphs that are connected. From here on, we will therefore assume that H
forms a finite set of fixed, connected patterns Hi. The optimization problem that we
consider in this chapter is the following.

PROBLEM: MINIMUM H -SUBGRAPH EDGE DELETION

Input: Text graph G and finite set of patterns H = {H1, . . . , Ht}
Question: What is the minimum number of edges that must be

deleted from G to make it H-free?

We refer to the decision version of this problem as H -SUBGRAPH EDGE DELETION;
i.e., given integer k, is it possible to make the input graph H-free by deleting at most
k edges?

Related work. It is well-known that the TRIANGLE EDGE DELETION problem, a spe-
cial case of H -SUBGRAPH EDGE DELETION with H = {K3}, is NP-complete, see Yan-
nakakis [94]. Therefore the problem H -SUBGRAPH EDGE DELETION is NP-complete
as well. Recently, Brügmann et al. [26] proved that the problem TRIANGLE EDGE

DELETION remains NP-complete even if the graph is planar and has maximum de-
gree of 7. On the positive side, they construct polynomial time reduction rules to
obtain linear problem kernels.

94

7.2. MSOL Formulations

Closely related problems are considered extensively in the extremal graph theory;
see, e.g., Bollobás [22] and Bohman [21]. There, the general question is: Given a
graph H and a number n, what is the maximum number of edges in a graph G on
n vertices that does not contain a subgraph isomorphic to H? In the context of this
paper, the bounds obtained in the extremal graph theory can be seen as the source of
generic lower bounds on the number of edges to be removed to make a given graph
H-free.

To construct PTASs for MINIMUM H -SUBGRAPH EDGE DELETION on planar graphs,
we employ the layerwise decomposition approach introduced by Baker [6]. A general-
ization of this approach that can be applied also to problems with a non-local structure
has recently been developed by Demaine and Hajiaghayi and is an extension of the
bidimensionality theory. For a literature overview on bidimensionality and its con-
nections to approximation schemes for planar graph problems, we refer to [37] and
[38].

Our results. In this chapter, we first implicitly present a linear time algorithm for
H -SUBGRAPH EDGE DELETION on graphs of bounded treewidth, based on a frame-
work by Courcelle [31, 32]. We then introduce constructive linear time algorithms for
MINIMUM H -SUBGRAPH EDGE DELETION for the two cases for which respectively G
has bounded maximum vertex degree and H is a clique. Both these algorithms are
dynamic programs that assume as input a tree decomposition of the input graph. Fi-
nally, for the same cases we design PTASs for MINIMUM H -SUBGRAPH EDGE DELE-
TION on planar graphs.

7.2 MSOL Formulations

Bounded treewidth and Monadic Second Order Logic (MSOL) have proven to be key
concepts in establishing fixed-parameter tractability results. The general results of
Courcelle [31, 32] and Arnborg et al [4] provide a host of powerful algorithmic tools
for many combinatorial problems on graphs of bounded treewidth. In particular, they
show that any property on graph G that can be expressed in MSOL, can be decided in
linear time if G has bounded treewidth.

7.2.1 Formulation for single pattern

Consider the H -SUBGRAPH EDGE DELETION problem where H consists of a single
pattern H. By encoding this problem in MSOL, we implicitly construct a linear time
algorithm solving H -SUBGRAPH EDGE DELETION on graphs of bounded treewidth.

95

Chapter 7. H-Subgraph Edge Deletion

We end the section by generalizing the results to allow for a finite set H of patterns
instead of just a single pattern.

Consider the following relational structure:

G = {V (G), E(G), V (H), E(H), R2
G, R

2
H , Eq

2, f 1},

where

• RG(x, e) and RH(x, e) are the vertex-edge incidence relation in G and H respec-
tively;

• Eq(x, y) is the equality predicate;

• f : S → V (H) is a function with domain S ⊆ V (G) and image V (H).

We now describe a formula Φ(k,G,H) such that G |= Φ(k,G,H) if and only if there
exists a set of edges F ⊆ E(G) of cardinality at most k covering all H-subgraphs of
the graph G.

Let G′ be a subgraph of G. First, we define the formula Ψ(f,G′) to express that f
is an isomorphism between G′ and H. The following properties should be satisfied:

• Function f is injective:

Inj(f,G′) = ∀ u, v ∈ V (G′), Eq(f(u), f(v))⇒ Eq(u, v);

• Function f is surjective:

Surj(f,G′) = ∀ v ∈ V (H) ∃ u ∈ V (G′), Eq(f(u), v);

• Function f preserves the edge relations from G′ in H:

−−−→
Edge(f,G′) = ∀ u, v ∈ V (G′), e ∈ E(G′), RG(u, e) & RG(v, e)⇒

∃ e′ ∈ E(H), RH(f(u), e′) & RH(f(v), e′);

• Function f preserves the edge relation from H in G′:

←−−−
Edge(f,G′) = ∀ u, v ∈ V (H), e ∈ E(H), RH(u, e) & RH(v, e)⇒

∃ u′, v′ ∈ V (G′), e′ ∈ E(G′),

RG(u′, e′) & RG(v′, e′) & Eq(f(u′), u) & Eq(f(v′), v).

96

7.2. MSOL Formulations

Let

Ψ(f,G′) = Inj(f,G′) & Surj(f,G′) &
−−−→
Edge(f,G′) &

←−−−
Edge(f,G′),

and consequently

Φ(k,G,H) = ∃F ⊆ E(G), |F | ≤ k &

(∀V ′ ⊆ V (G), E ′ ⊆ E(G), Ψ(f, (V ′, E ′))⇒ |F ∩ E ′| ≥ 1).

Hence, we expressed the problem H -SUBGRAPH EDGE DELETION in MSOL, which in
combination with Courcelle’s Theorem proves the following theorem.

Theorem 7.2.1. Problem H -SUBGRAPH EDGE DELETION with H consisting of a sin-
gle fixed, connected pattern H can be solved in O(n · g(w, h)) time for some function g,
where w is the treewidth of G and h is the size (number of vertices) of H.

Using the result of Theorem 7.2.1 in combination with binary search, the corre-
sponding optimization version of the problem can be solved in O(n log(m) · g(w, h))

time, where m denotes the number of edges in G.

7.2.2 Formulation for set of patterns

To generalize Theorem 7.2.1 to a finite set of patterns H = {H1, . . . , Ht}, we simply
need a wider relational structure G:

G = {V (G), E(G), RG, Eq} ∪ti=1 {V (Hi), E(Hi), Ri, fi},

where in addition to the definitions above we have to specify

• Ri(x, e), i = 1 . . . t, are the vertex-edge incidence relations in Hi;

• fi : S ⊆ V (G) → V (Hi), i = 1 . . . t, are functions with domain S ⊆ V (G) and
images V (Hi).

Then, we can write down the general formula Φ(k,G,H) in the following way:

Φ(k,G,H) = ∃F ⊆ E(G), |F | ≤ k &(∀V ′ ⊆ V (G), E ′ ⊆ E(G),

∃i ∈ {1, . . . t}, Ψ(fi, (V
′, E ′))⇒ |F ∩ E ′| ≥ 1).

This MSOL formulation, in combination with the Courcelle’s Theorem, proves the
following theorem.

Theorem 7.2.2. Problem H -SUBGRAPH EDGE DELETION with a finite set of fixed,
connected patterns H = {H1, . . . , Ht} can be solved in O(n · g(w, h)) time for some func-
tion g, where w is the treewidth of G and h is the size of the largest pattern in H.

To solve the corresponding optimization version of the problem, one can combine
Theorem 7.2.2 with binary search, which adds a factor log(m) to the complexity.

97

Chapter 7. H-Subgraph Edge Deletion

7.3 Nice tree decompositions
A tree decomposition (T,X) is called a nice tree decomposition if the following condi-
tions are satisfied: Every node of the tree T has at most two children; if a node i has
two children j and k, then Xi = Xj = Xk; and if a node i has one child j, then either
|Xi| = |Xj|+ 1 and Xj ⊂ Xi or |Xi| = |Xj| − 1 and Xi ⊂ Xj. The following result is from
[64]:

Lemma 7.3.1. A tree decomposition (T,X) of a graph G can be transformed without
increasing its width into a nice tree decomposition of G in time polynomial in |X| and
the size of G. The size of the resulting nice tree decomposition is O(w|X|), where w is
the width of the tree decomposition.

We point out that any tree decomposition of G can be transformed into a tree
decomposition of the same width having at most n bags by simply removing all bags
that are subset of another bag. Hence using Fact 7.3.1 we assume from here on
that our algorithms run on nice tree decompositions with O(wn) bags, rooted in some
arbitrary bag Xr.

7.4 DP for text graphs with bounded degree
In this section, we consider problem MINIMUM H -SUBGRAPH EDGE DELETION in
the setting where text graph G has bounded degree and bounded treewidth and H
consists of a single fixed, connected pattern H. We construct a dynamic programming
algorithm for this setting that solves MINIMUM H -SUBGRAPH EDGE DELETION in
time that is exponential only in the maximum degree of G, in the width of a tree
decomposition of G and in some fixed parameters of H. A generalization of this result
to the setting where H is a finite set of fixed, connected patterns will be introduced in
Section 7.7.

7.4.1 Constant parameters and notation

By w, we denote the width of (T,X). The maximum degree in G will be denoted by
∆(G). The diameter of a graph G = (V,E) is the maximum over all vertex pairs
{u, v} ⊆ V of the length of a shortest path between u and v in G. By h and d we denote
respectively the size |H| and the diameter of pattern H. Since G has bounded degree
and bounded treewidth and H is a fixed connected pattern, the values ∆(G), w, h and
d are all constants in the dynamic program.

Given a bag X in a nice tree decomposition (T,X), we let TX be a subtree of T that
is rooted in X and we let G[TX] be the subgraph of G that is induced by all vertices

98

7.4. DP for text graphs with bounded degree

from the bags in TX . By EX we denote the set of all edges of G for which both end
points are present in bag X and by EX , we denote a subset of EX , i.e., EX ∈ 2EX . For a
bag X, by VX we denote the set of vertices of G that are in bag X. For a subtree TX , by
VTX we denote the set of vertices of G that are present in some bag of TX . Finally for a
vertex set S, by HS we denote the set of different H-subgraphs in G that are incident
to some vertex in S and by HS, we denote a subset of HS.

Lemma 7.4.1. Consider a graph G and a tree decomposition (T,X) of G of width w.
Let Q = h!

(
∆(G)d+1

h

)
, then

• for vertex v, |H{v}| is bounded from above by Q, and

• for bag X in (T,X), the value |HVX | is bounded from above by (w + 1)Q.

Proof. Given that v corresponds to some vertex of an H-subgraph in G it is clear that
all h vertices in this H-subgraph have distance at most d to v in this H-subgraph
and thus also in G. Since the maximum degree in G is ∆(G) > 1, there are at most∑d

i=0 ∆(G)i = ∆(G)d+1−1
∆(G)−1

≤ ∆(G)d+1 vertices in G that have distance at most d to v.

Since
(

∆(G)d+1

h

)
different sets of h vertices can be chosen among ∆(G)d+1 vertices and

each such set can contain at most h! different H-subgraphs, the result follows. The
second statement is a straightforward corollary of the first one, since |X| ≤ w+ 1.

7.4.2 Dynamic program and results

First we note that by deleting a set of edges from G that covers all H-subgraphs of G,
G becomes H-free. Given a subtree TX of T , we define:

• F (EX , TX , HVX) is the minimum cardinality of a set S of edges from G[TX] cover-
ing all H-subgraphs from (HVTX

\ HVX) ∪HVX in G, given that S ∩ EX = EX

• F (EX , TX , HVX) =∞ if H-subgraphs from (HVTX
\ HVX) ∪HVX can not be covered

by EX plus some set of edges from E(G[TX]) \ EX .

For each bag X in (T,X), we compute a table of such F−values for subtrees rooted in
X, one value for each combination of a subset from EX and a subset from HVX . One
such table thus contains 2|EX |+|HVX | values. To be more specific, we compute tables for
the following three types of subtrees:

1. For each bag X in T , except for root bag Xr, we compute the table for the subtree
consisting of the parent X+ of X, X and all descendants of X in T . The root bag
of this subtree is X+. Such subtree will be denoted by TX+.

99

Chapter 7. H-Subgraph Edge Deletion

2. For each bag X with two children we compute a table for the subtree TX , con-
sisting of bag X and all descendants of X.

3. For each leaf bag X we compute a table for the subtree TX .

Note that for a leaf bag X, subtree TX equals bag X. Therefore the tables for the
subtrees of type 3 are easy to compute.

Lemma 7.4.2. A value in the table of the subtree TX rooted in a leaf bag can be com-
puted in constant time.

Proof. To compute one value F (EX , TX , HVX) for the table of the subtree TX that is
rooted in leaf bag X, one just needs to check whether edge set EX covers all H-
subgraphs ofHVX . If this is the case, then F (EX , TX , HVX) = |EX |, else F (EX , TX , HVX) =

∞. Using the observation that |EX | ≤ w2, Lemma 7.4.1 and the fact that both w and
Q are constants, the result follows.

The following lemmas give recursive formulas that show how to compute the ta-
bles for subtrees that are rooted in a non-leaf bag of tree decomposition (T,X). First
we show how to update the table when we combine two subtrees that are rooted in
the same bag and have only this bag in common.

Lemma 7.4.3. Let T ′X and T ′′X be two subtrees rooted in X that only share bag X. Let
TX be the subtree that is obtained by combining T ′X and T ′′X and letHVX , IVX , JVX ∈ 2HVX .
Then

F (EX , TX , HVX) = min
IVX

,JVX
:

HVX
⊆IVX∪JVX

F (EX , T
′
X , IVX) + F (EX , T

′′
X , JVX)− |EX |.

The next two lemmas show how to update the values for a subtree when we extend
it by the parent bag of its root.

Lemma 7.4.4. Let TY be a subtree rooted in Y and let X = Y ∪ {v} be the parent bag
of Y . Furthermore let TX = TY + and let EY = EX ∩ EY . Then:

F (EX , TX , HVX) = min
HVY

: EX\EY covers

HVX
\HVY in G

F (EY , TY , HVY) + |EX \ EY |

and F (EX , TX , HVX) =∞ if there is no such HVY .

Lemma 7.4.5. Let TY be a subtree rooted in Y and let X = Y \ {v} be the parent bag
of Y . Furthermore, let TX = TY +. Then:

F (EX , TX , HVX) = min
EY ,HVY

: HVX
∪(H{v}\HVX)⊆HVY ,

EY ∩EX=EX

F (EY , TY , HVY).

100

7.4. DP for text graphs with bounded degree

Obviously, when bag Y and parent bag X of Y have the same vertex set, then
the update of the table after an extension by the parent bag can be accomplished by
simply copying the values. The following lemma gives an upper bound on the time to
compute one F -value.

Lemma 7.4.6. The time needed to determine an F -value by one of the Lemmas 7.4.3,
7.4.4 or 7.4.5 is bounded from above by
O(2w

2+2(w+1)Qw4Q2).

Proof. To determine a value using Lemma 7.4.3 takes O(4|HVX ||HVX |2) time. Using
Lemma 7.4.1, this time is bounded from above by the value O(4(w+1)Qw2Q2). To de-
termine a value using Lemma 7.4.4, for all subsets HVY we have to check whether
all elements from HVX \ HVY contain an edge from EX \ EY . This takes less than
2|HVY ||HVX ||EX | time and by using Lemma 7.4.1 and the observation that |EX | ≤ w2,
this is bounded from above by O(2(w+1)Qw3Q). To determine a value using Lemma 7.4.5,
for all combinations of EY and HVY we have to check whether HVX ⊆ HVY , whether
H{v} \ HVX ⊆ HVY and whether EY ∩ EX = EX . This takes less than 2|EY |+|HVY |(|HVX |+
|HVX |2 + |EX |2) time and as shown before this can be bounded by O(2w

2+(w+1)Qw4Q2).
Clearly, all these running times are smaller than O(2w

2+2(w+1)Qw4Q2).

Using Lemmas 7.4.2, 7.4.3, 7.4.4 and 7.4.5, we can compute all necessary tables.
For all bags in the tree, in post order, we construct the tables for the subtree(s) rooted
in this bag. The proof of Lemma 7.4.2 shows how to construct the table for a sub-
tree rooted in leaf bag X. If X is not a leaf bag, suppose X has 1 child Y , then we
may assume that earlier already we computed the table for subtree TY . By using
Lemma 7.4.4 or 7.4.5 we then can compute the table for subtree TX = TY + from the
table of TY . If X is not a leaf bag and it has 2 children X and Y , then by definition of
a nice tree decomposition X = Y = Z and we may assume that we already computed
the tables for subtrees TY and TZ . By simply copying the values we can construct the
tables for subtrees TY + and TZ+ from the tables of TY respectively TZ . Then we use
Lemma 7.4.3 to compute the table for subtree TX from the tables for subtrees TY + and
TZ+. The answer to MINIMUM H -SUBGRAPH EDGE DELETION can be found in the
table of TXr . To be more precise, the solution is

min
EXr

F (EXr , TXr ,HVXr
).

Using the optimal setEXr , one can perform a backward search in the tree to determine
a minimum set of edges that must be deleted from G to make it H-free. To estimate
the running time of the dynamic program, in the following lemma we determine an
upper bound on the number of individual F -values that must be computed:

101

Chapter 7. H-Subgraph Edge Deletion

Lemma 7.4.7. In the dynamic program, at most O(n2w
2+(w+1)Qw) F -values need to be

determined.

Proof. A bag in the rooted tree T has at most 2 children. Thus for any bag X, we
compute a table for at most 3 subtrees rooted in bag X, namely TX and TY + , TZ+ for
possible children Y, Z of X. We recall that the number of bags in T is bounded by
O(wn). Therefore the total number of tables to construct is bounded by O(wn). Since
the width of (T,X) is w, there are at most w+ 1 vertices in bag X and therefore |EX | is
bounded from above by w2+w

2
≤ w2 for w ≥ 1. Furthermore, by Lemma 7.4.1, |HVX | is

bounded from above by (w + 1)Q. The latter two observations imply that the number
of values in one table is bounded from above by 2w

2+(w+1)Q, from which the result
follows.

The main result of this section is described in the following theorem:

Theorem 7.4.8. Given a graphG of bounded maximum degree ∆(G), a fixed connected
pattern H and a nice tree decomposition (T,X) of G of bounded width w. The problem
MINIMUM H -SUBGRAPH EDGE DELETION on G with H = {H} can be solved in time
O(n22w2+3(w+1)Qw5Q2), where Q = h!

(
∆(G)d+1

h

)
.

Proof. By Lemma 7.4.7, we need to compute at most O(n2w
2+(w+1)Qw) F -values in

the dynamic program that solves the problem and by Lemma 7.4.6, it takes at most
O(2w

2+2(w+1)Qw4Q2) time to compute one such value. Combining these results, we
conclude that the dynamic program runs in O(n22w2

w5
(
w
h−1

)
h2) time.

7.5 Dynamic program for clique patterns

In this section, we consider MINIMUM H -SUBGRAPH EDGE DELETION for the special
case where H is a clique and G has bounded treewidth. Compared to Section 7.5 we
thus drop the constraint that G should have bounded vertex degree. We exploit the
fact that every tree decomposition contains a bag with all vertices from the clique (see
Lemma 2.6.3) and we find a polynomial time algorithm that again acts on a nice tree
decomposition of the text graph G. It is important to state here that in this section
we consider H-subgraphs of G that are induced by the vertex set of G[TX], not by the
vertex set of G.

7.5.1 Dynamic program and results

For subtree TX of T rooted in bag X, we define:

102

7.5. Dynamic program for clique patterns

• F (EX , TX) is the minimum cardinality of a set S of edges from G[TX] that covers
all H-subgraphs of G[TX], given that S ∩ EX = EX .

• F (EX , TX) =∞, if not all H-subgraphs of G[TX] can be covered by EX plus some
set of edges from E(G[TX]) \ EX .

We compute tables for the same subtrees as in the previous section. Note that one
table for a subtree rooted in bag X now consists of 2|EX | F -values. Using similar
arguments as those used in the previous section, it is easy to prove the following:

Lemma 7.5.1. During a run of the dynamic program, at most O(n2w
2
w) individual

F -values have to be determined.

As in the previous section, a value for the table of a subtree that is rooted in a leaf
bag can be computed in constant time. The following lemmas give recursive formulas
that show how to compute the tables for subtrees that are rooted in a non-leaf bag of
T . The first lemma shows how we can combine subtrees that are rooted in the same
bag and have only this bag in common.

Lemma 7.5.2. Let TX be obtained by taking the union of subtrees T ′X and T ′′X such that
the root X of T ′X and T ′′X is the only bag that belongs to both subtrees. Then

F (EX , TX) = F (EX , T
′
X) + F (EX , T

′′
X)− |EX |.

The next two lemmas show how to update the values for a subtree when we extend
it by the parent bag of its root.

Lemma 7.5.3. Let TY be a subtree of T rooted in bag Y , let X = Y ∪ {v} be the parent
bag of Y in T . Furthermore let TX = TY + and let EY = EX ∩ EY . Then:

F (EX , TX) =

F (EY , TY) + |EX \ EY |, if EX covers all H-subgraphs
of G[TX] that are incident to
the vertex v.

∞, otherwise.

Indeed, since X is the only bag containing v in TX , it also contains all neighbors of
v in G[TX]. Therefore, all edges of an H-subgraph of G[TX] that are incident to v are
part of EX and thus if such an H-subgraph is not covered by EX then it is not covered
at all.

Lemma 7.5.4. Let TY be a subtree of T rooted in bag Y , let X = Y \ {v} be the parent
bag of Y in T and let TX = TY +. Then

F (EX , TX) = min
EY : EY ∩EX=EX

F (EY , TY).

103

Chapter 7. H-Subgraph Edge Deletion

Again, when bag Y and parent bag X of Y have the same vertex set, then the
update of the table after an extension by the parent bag can be accomplished by
simply copying the values. In the previous section, it is explained how Lemmas 7.5.2,
7.5.3 and 7.5.4 can be used to determine the tables for all necessary subtrees. The
minimum value in the table of subtree TXr is the solution to MINIMUM H -SUBGRAPH

EDGE DELETION.

Lemma 7.5.5. The time needed to determine an F -value in the algorithm is bounded
from above by O(2w

2
w4
(
w
h−1

)
h2).

Proof. Determining the value for a subtree rooted in a leaf bag or by using Lemma 7.5.2
takes constant time. When using Lemma 7.5.3, we check whether EX covers all H-
subgraphs of G[TX] that are incident to v. Vertex v has at most w neighbors in G[TX],
so we have to check for each of the at most

(
w
h−1

)
different combinations of (h− 1) such

neighbors whether they form an h-clique with v inG[TX] for which all h2−h
2

edges are in
EX \ EX . Since |EX | is bounded by O(w2), this takes at most O(w2

(
w
h−1

)
h2) time. When

using Lemma 7.5.4 to determine an F -value, for all EY we have to check whether
EY ∩EX = EX , which can be done in time O(2w

2
w4). Clearly, all these algorithmic time

complexities are bounded from above by O(2w
2
w4
(
w
h−1

)
h2).

The main result of this section is described in the following theorem:

Theorem 7.5.6. Given an arbitrary text graph G, clique pattern H of size h and a
nice tree decomposition (T,X) of G of bounded width w with N bags. Then MINI-
MUM H -SUBGRAPH EDGE DELETION on graph G with H = {H} can be solved in
O(n22w2

w5
(
w
h−1

)
h2) time.

Proof. By Lemma 7.5.1, we need to compute at most O(n2w
2
w) F -values in the dy-

namic program that solves the problem and by Lemma 7.5.5, the computation of one
such value takes at most O(2w

2
w4
(
w
h−1

)
h2) time. Combining these results, we conclude

that the dynamic program runs in O(n22w2
w5
(
w
h−1

)
h2) time.

7.6 Baker’s approximation scheme

In this section, we consider the problem MINIMUM H -SUBGRAPH EDGE DELETION

for planar text graphs and patterns. We combine the dynamic programs from Sec-
tions 7.4 and 7.4 with a technique invented by Brenda Baker to construct PTASs
for the two cases where respectively G has bounded vertex degree and where H is a
3-clique or 4-clique.

104

7.6. Baker’s approximation scheme

7.6.1 Bounded outerplanarity index

The following two lemmas form the analogues to respectively Theorem 7.4.8 and The-
orem 7.5.6. The only difference is that they assume planar input graphs with bounded
outerplanarity index instead of regular input graphs with bounded treewidth.

Lemma 7.6.1. Given a planar text graph G of bounded maximum degree ∆(G) and
bounded outerplanarity index l and a fixed connected patternH, an optimal solution to
MINIMUM H -SUBGRAPH EDGE DELETION can be obtained in time O(n218l2+9lQl5Q2),
where Q = h!

(
∆(G)d+1

h

)
.

Proof. By Theorem 2.4.2, the outerplanarity index l of G can be determined in O(n2)

time. By Theorem 2.6.6, tw(G) ≤ 3l − 1 and by Theorem 2.6.5, a tree decomposi-
tion of G of width w ≤ 3l − 1 can be obtained in linear time that can be turned into
a nice tree decomposition in linear time. By Theorem 7.4.8 we can use this nice
tree decomposition to solve MINIMUM H -SUBGRAPH EDGE DELETION on G in time
O(n22w2+3(w+1)Qw5Q2). Since w ≤ 3l − 1, the result follows.

A similar result can be obtained for MINIMUM H -SUBGRAPH EDGE DELETION on
planar graphs when H is a 3-clique or 4-clique. Note that to cover all K2-subgraphs of
a graph by edges, one simply has to select as an Edge Cover the complete set of edges.
Moreover, note that a planar graph G does not have Kk as a subgraph for k ≥ 5. This
is why we only consider K3 and K4 as subgraphs in this section that deals with planar
graphs.

Lemma 7.6.2. Given a planar text graph G of bounded outerplanarity index l and
pattern H that is either a K3 or K4, an optimal solution to MINIMUM H -SUBGRAPH

EDGE DELETION on G can be obtained in time O(n218l2l5
(

3l−1
h−1

)
h2).

Proof. Similar to the proof of Lemma 7.6.1. By Theorem 7.5.6, MINIMUM H -SUBGRAPH

EDGE DELETION on G can be solved in time
O(n22w2

w5
(
w
h−1

)
h2). Since w ≤ 3l − 1, the result follows.

The problem MINIMUM H -SUBGRAPH EDGE DELETION on planar graphs of bound-
ed degree with fixed, connected pattern is thus fixed parameter tractable, since it is
tractable when parameterized by outerplanarity index l of G. The same holds for
MINIMUM H -SUBGRAPH EDGE DELETION on planar graphs with clique pattern. We
will use these properties to construct a Baker’s approximation scheme in the next
section that can be applied to both problems.

105

Chapter 7. H-Subgraph Edge Deletion

7.6.2 Approximation schemes

Given a planar embedding of a planar graph G = (V,E), we say that a vertex v is of
level 1 if it is on the exterior face of the embedding. Let Vi be the set of all vertices
of level i or lower than i, then vertex w is in level i + 1 if it is on the exterior face of
the embedding induced by G[V \ Vi]. We say that edge e = (v, w) ∈ E is in level i of
the embedding if both vertices v and w are in level i. We assume in this section that
a planar embedding is represented by an appropriate data structure such that levels
of vertices can be computed in linear time.

In the following two theorems and their proof, we denote by Eopt a minimum set
of edges from G covering all H-subgraphs of G and by OPT we denote the size of
Eopt. First we present an approximation scheme for MINIMUM H -SUBGRAPH EDGE

DELETION on a planar graph G with bounded degree and arbitrary fixed, connected
pattern H. A generalization of the results to finite sets of fixed, connected patterns
will be introduced in Section 7.7.

Theorem 7.6.3. For a planar text graph G of bounded degree, a fixed connected pat-
tern H and any s > 0, there is a O(n2218l2+9lQl5Q2)-time algorithm for MINIMUM H -
SUBGRAPH EDGE DELETION that finds a solution of size at most (s+1

s
)OPT , where l

is a constant depending on s and the outerplanarity index of H.

Proof. First, we use Theorem 2.4.2 to determine G’s outerplanarity index k and a k-
outerplanar embedding of G in O(n2) time. I.e, each vertex of G belongs to one of the
k levels. Similarly, we determine H ’s outerplanarity index k′ in O(h2) time. Since H
is a fixed subgraph, k′ is a constant. If k was a constant, the problem could be solved
in polynomial time by complete enumeration. Therefore it is reasonable to assume
that k > (s + 2)k′. Now for some fixed 2k′ ≤ l ≤ k and for each i ∈ I = {mk′ + 1 | 0 ≤
m ≤ b l

k′
− 2c} we construct a set Gi of induced subgraphs of G, consisting of the

l-outerplanar subgraphs of G:

• induced by levels 1 to i+ k′ − 1.

• induced by levels j(l − k′) + i to j(l − k′) + i+ l − 1, 0 ≤ j ≤ bk−i−l+1
l−k′ c.

• induced by levels bk−i−l+1
l−k′ c(l − k′) + i+ l − k′ to k.

See Figure 7.1 for an illustration. Note that i+k′−1 ≤ b l
k′
−2ck′+1+k′−1 ≤ l−k′ < l

and also that k − (bk−i−l+1
l−k′ c(l − k′) + i + l − k′) + 1 ≤ k − (k − i − 2l + 1 + k′ + i + l −

k′) + 1 = l, so both the subgraph induced by the first bullet and the one induced
by the third bullet are l-outerplanar. Clearly, also the subgraphs under the second

106

7.6. Baker’s approximation scheme

outerplanarity levels 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

set G1

set G4

of text G

Figure 7.1: Suppose text G has 15 outerplanarity levels and pattern H is 3-outerplanar. For
l = 9, we construct two sets (G1 and G4) of 9-outerplanar subgraphs of G. For example, the
first graph in G1 is induced by all vertices in G’s first three levels.

bullet are l-outerplanar. Since |I| = b l
k′
− 1c and for each i we construct bk−i−l+1

l−k′ + 3c
subgraphs, in total we construct less than (l−k

′

k′
)(k+2l+1

l−k′) = k+2l+1
k′

≤ 3k ≤ 3n =O(n)

induced subgraphs of G for fixed value of l.

Observation 7.6.4. For every i ∈ I, the vertices in the following set of levels are the
only vertices that are part of more than one graph from Gi:

• levels j(l − k′) + i, . . . , j(l − k′) + i+ k′ − 1, 0 ≤ j ≤ bk−i−l+1
l−k′ c and

• levels bk−i−l+1
l−k′ c(l − k′) + i+ l − k′ to bk−i−l+1

l−k′ c(l − k′) + i+ l − 1.

Observation 7.6.5. For at least one i ∈ I the set of levels from Observation 7.6.4
contains at most k′

l−2k′
OPT edges from Eopt.

Proof. For any two different values of i from I, the two sets of levels from Observa-
tion 7.6.4 are disjoint. Thus if for all i ∈ I, the sets of levels would contain strictly
more than k′

l−2k′
OPT edges from Eopt, then all these levels would contain strictly more

than

b l
k′−2c∑

m=0

k′

l − 2k′
OPT = b l

k′
− 1c k′

l − 2k′
OPT ≥ (

l − k′
k′
− 1)

k′

l − 2k′
OPT = OPT

edges from Eopt, a contradiction.

Now for each i ∈ I, we use Lemma 7.6.1 to compute optimal solutions to MINI-
MUM H -SUBGRAPH EDGE DELETION for all l-outerplanar subgraphs. Since for all
values of i together, the number of l-outerplanar subgraphs is bounded by O(n), this
can be done in O(n2218l2+9lQl5Q2) time. We observe that for each i, any H-subgraph
of G is present in at least one of the subgraphs of G induced by this i. Therefore, for
each i, the union of the optimal solutions for its induced subgraphs is a set of edges
that covers all H-subgraphs in G. The algorithm picks the best of these unions as
an approximation to the optimal solution. To see that this approximation is at most

107

Chapter 7. H-Subgraph Edge Deletion

(s+1
s

)OPT , consider again an optimal solution Eopt for G. We pick the value i that
by Observations 7.6.4 and 7.6.5 has not more than k′

l−2k′
OPT edges from Eopt in in-

tersecting levels of graphs from Gi. For each element S ∈ Gi we let ES be the set of
edges in Eopt in subgraph S. Furthermore, we let E ′S be the edges in an optimal solu-
tion of MINIMUM H -SUBGRAPH EDGE DELETION for S. For this choice of i, we thus
have a solution of MINIMUM H -SUBGRAPH EDGE DELETION for G of size no larger
than the sum of the |E ′S|’s. Clearly for each S it holds that |E ′S| ≤ |ES|. Moreover,
since at most k′

l−2k′
OPT edges are counted twice while summing the |ES|’s, we con-

clude that
∑

S∈Gi |E ′S| ≤
∑

S∈Gi |ES| ≤ k′

l−2k′
OPT +OPT = l−k′

l−2k′
OPT . Thus in total time

O(n2)+O(h2)+O(n2218l2+9lQl5Q2) we constructed a solution of size at most l−k′
l−2k′

OPT . By
choosing l = (s + 2)k′, we obtain the (s+1

s
)-approximation to OPT . Since s is strictly

positive and we assume that k > (s+ 2)k′, we ensure that 2k′ ≤ l ≤ k.

Next, we present an approximation scheme for MINIMUM H -SUBGRAPH EDGE

DELETION on planar graph G and pattern H that is either a K3 or a K4.

Theorem 7.6.6. For planar text graph G, pattern H that is either a K3 or K4 and any
s > 0, there is a O(n2218l2l5

(
3l−1
h−1

)
h2)-time algorithm for MINIMUM H -SUBGRAPH EDGE

DELETION on G that finds a solution of size at most (s+1
s

)OPT , where l is a constant
depending on s and the outerplanarity index of H.

Proof. Same as proof of Theorem 7.6.3, with the only difference that Lemma 7.6.2 is
used instead of Lemma 7.6.1.

7.7 Generalization to set H of patterns
In this final section of the chapter we generalize the results from the previous sec-
tions. We show how the algorithms can be adopted to deal with a finite set H =

{H1, . . . , Ht}, t > 1 of fixed, connected patterns instead of with a single fixed, con-
nected pattern H. Consider such a set of patterns H = {H1, . . . , Ht}, t > 1. First we
note that if Hi ∈ H is a subgraph of Hj ∈ H, j 6= i, then Hj is redundant. Indeed, a set
of edges that covers all occurrences of Hi as a subgraph of G will also cover all occur-
rences of Hj as a subgraph of G. Therefore any graph G that is Hi-free is also Hj-free.
For the set of cliques this means that only the smallest clique is significant and hence
there is no need to generalize the result from Section 7.5. We thus generalize the
results from Section 7.4. To that end, we consider text graph G of bounded maximum
degree and a finite set H of fixed connected patterns such that for each 1 ≤ i 6= j ≤ t,
Hi is not isomorphic to a subgraph of Hj. By hi, di and ki we denote respectively the
size, the diameter and the outerplanarity index of pattern Hi. The following theorem
then generalizes Theorem 7.4.8.

108

7.8. Conclusions and open questions

Theorem 7.7.1. Given a text graph G of bounded maximum degree ∆(G), a finite set
of fixed, connected patterns H and a nice tree decomposition (T,X) of G of bounded
width w, the problem MINIMUM H -SUBGRAPH EDGE DELETION on G can be solved
in O(n22w2+3(w+1)Qw5Q2) time, where Q =

∑t
i=1 hi!

(
∆(G)di+1

hi

)
.

Proof. We repeat the proof of Theorem 7.4.8, taking the given value Q as a new upper
bound on the number of considered subgraphs of G.

Similarly, we generalize Theorem 7.6.3.

Theorem 7.7.2. For a planar text graph G of bounded degree, finite set of fixed, con-
nected patterns H and any s > 0 , there is a O(n2218l2+9lQl5Q2)-time algorithm for MIN-
IMUM H -SUBGRAPH EDGE DELETION that finds a solution of size at most (s+1

s
)OPT ,

where Q =
∑t

i=1 hi!
(

∆(G)di+1

hi

)
and l is a constant depending on s and the largest outer-

planarity index over all elements from H.

Proof. The proof is similar to the proof of Theorem 7.6.3, with the difference that
k′ = max1≤i≤t ki to guarantee that each occurrence of a pattern from H as a subgraph
of G is present in at least one subgraph from Gi, i ∈ I.

7.8 Conclusions and open questions
We analyzed the problem of excluding a set H of patterns as subgraphs of a graph
G by deleting a (minimum) number of edges from G. By a general result from Cour-
celle and through a formulation of the problem in Monadic Second Order Logic, we
implicitly showed that the decision version of the problem is solvable in linear time
on graphs that have bounded treewidth. Subsequently, we presented a constructive
algorithm solving the optimization version of the problem in linear time by using dy-
namic programming on a tree decomposition of the input graph. For this, however,
we needed the additional assumption that the input graph has bounded maximum
vertex degree, except for the case where H contains only cliques. Using Baker’s lay-
erwise decomposition approach, we created a polynomial time approximation scheme
for the problem on planar graphs, using the same additional assumption. It should be
noted that the constants in the time complexities of both the linear time algorithm as
the PTAS are immense, severely limiting their practical usage. The question remains
open whether a combinatorial linear time algorithm and a PTAS can be found that do
not require the condition concerning maximum vertex degree in the input graph.

109

Chapter 8

Summary

In this thesis we consider a set of problems from the areas of computational geom-
etry and algorithmic graph theory. We are driven by an idea of finding a geometric
property which provides some insights about the solution of the considered problem.
Part I of the thesis is devoted to one computational geometry problem. In this area,
a common problem is: given a terrain and a moving object together with its speed
and other parameters find the optimal trajectory with respect to some objective, for
example, time, distance, price and so on, see [2, 35, 90, 95].

It is often assumed that the speed of this moving object is constant; this assump-
tion may significantly simplify all the calculations. The situation is completely dif-
ferent when we assume that the speed of a mover depends on its position in space.
We consider a helicopter as an example of such a mover and model it in several ways.
In particular, we use the following physical restriction: when a helicopter goes up its
maximum velocity goes down as the air density decreases and the power of the rotor
drops. Although the decreasing function of the helicopter’s maximum velocity in alti-
tude is quite complex and hardly admits a closed analytical form, it is widely accepted
to model it by linear or piecewise linear function with a small number of breakpoints,
see, e.g. [8].

So, our first natural step is to model the helicopter’s velocity as a linear function.
We are looking for the fastest trajectory from one point to another, see Chapter 3. We
use some techniques of calculus of variations to tackle this problem; and we reduce
it to the well-known l’Hôpital’s light propagation problem [9]. The fastest trajectory
appears to be a circle segment. Furthermore, we model the obstacles (terrain) as
a continuous rectilinear curve in two-dimensional space and show that the fastest
trajectory within this terrain can be found in time, polynomial in the number of ob-
stacles. It is an open question whether it is possible to obtain a polynomial time
algorithm for an arbitrary continuous obstacle curve.

We generalize the previous model by making the velocity function piecewise lin-

Chapter 8. Summary

ear, see Chapter 4. It means that within each layer the velocity degradation rate
is different. We use the results of the previous chapter and conclude that the fastest
trajectory will be a combination of circle segments. This setting leads to a multivari-
able system of polynomial equations. We use some results from algebraic elimination
theory, see, e.g. [33], to reduce this system to one univariable polynomial equation
which can be solved by some quick numerical methods like Jenkins-Traub algorithm,
see [77]. Some questions stay open. The first question is whether there exists a poly-
nomial time solution to this problem with obstacles in 2D. The second, even more
challenging question is whether there are efficient polynomial time approximation
schemes for the general helicopter problem with obstacles in 3D.

Parts II and III are devoted to various problems involving the treewidth of a
graph. The notion of treewidth was introduced by Robertson and Seymour in 1983
[80, 82]. It indicates how much the considered graph is tree-like. Apparently, a lot of
hard problems which are easy on trees, are also easy on graphs of small treewidth,
see, e.g. [31, 32]. Therefore, the problems of determining the treewidth of a graph or
approximating it with a high precision are important for many applications.

We start with planar graphs which do not have bounded treewidth; the question
whether or not computing the treewidth of planar graphs is NP-hard is still open.
But it is known that there is a strong connection between the following parameters
of a planar graph: the treewidth, the branchwidth and the largest square-grid minor.
There were a number of publications obtaining the upper bounds on the treewidth of a
planar graph in terms of the branchwidth and the largest square-grid minor, see, e.g.
[52, 56, 83, 89]. The best known result is by Gu and Tamaki [56] which claims that
the treewidth is at most 4.5 times the size of the largest square-grid minor. We study
a lower bound on this upper bound of the treewidth (see Chapter 5) and construct
a class of planar graphs where the branchwidth is equal to the largest square-grid
minor and where the treewidth is 3

2
times away from them. This result is followed by

Gu and Tamaki [56]; they introduce a class of planar graphs where the treewidth is 2

times away from the largest square-grid minor and is equal to the branchwidth. One
of the most interesting questions left is whether there exists a class of planar graphs
such that all three parameters are pairwise different.

We continue with the treewidth of general graphs in Chapter 6. Two Integer
Linear Programming formulations for the problem of finding the treewidth of a gen-
eral graph are considered. The first formulation is based on the vertex elimination
order formulation by Koster and Bodlaender [65]. This formulation can be merged
with the flow metric approach by Bornstein and Vempala [24]. Our resulting new
ILP cuts some feasible symmetric solutions in the linear relaxation of the original
ILP by new inequalities. Furthermore, we introduce a new structural ILP formula-
tion for the treewidth problem based on a drawing of the optimal tree-decomposition

112

on a grid. This new formulation fits within the framework of the local branching
technique by Fischetti and Lodi [46]. Therefore, we obtain an exact algorithm for
this problem. The computational experiments on different graph classes are left for
further research; they may demonstrate the strong and weak points of the proposed
ILPs.

Finally, in Part III, Chapter 7, one application of a treewidth-based approach is
introduced. We consider the problem of excluding a subgraph of the given graph by
deleting a minimum number of edges from it. This problem is NP-hard on general
graph instances. We show that by a general result of Courcelle [31, 32], the problem
is theoretically solvable in linear time on graphs of bounded treewidth. However,
this general approach is not practically useful because of the big constant hidden
in an algorithm’s running time. Therefore, we present a linear time combinatorial
algorithm for a class of graphs with a bounded maximum vertex degree. Moreover,
we show that the optimal solution of the problem can be approximated using Baker’s
type techniques if the input graph is planar, see [6]. The question remains open
whether a combinatorial linear time algorithm and a PTAS can be found that do not
require the condition concerning maximum vertex degree in the input graph.

113

Bibliography

[1] P.K. Agarwal, Har-Peled S., Sharir M. and Varadarajan K.R.: Approximating
Shortest Paths on a Convex Polytope in Three Dimensions. JACM, 44(4) (1997),
pp. 567–584.

[2] P.K. Agarwal, Raghavan P., and Tamaki H.: Motion Planning for a Steering
Constrained Robot through Moderate Obstacles. In Proc. of the 27th Annual ACM
Symposium on Theory of Computing (STOC 1995) (1995), pp. 343–352.

[3] E. Amir: Efficient Approximation for Triangulation of Minimum Treewidth. In
Proc. of the 17th Conference in Uncertainty in Artificial Intelligence (UAI01),
(2001), pp. 7–15.

[4] S. Arnborg, Lagergren J. and Seese D.: Easy Problems for Tree-Decomposable
Graphs. J. Algorithms, 12(2) (1991), pp. 308–340.

[5] S. Arora: Polynomial Time Approximation Schemes for Euclidean Traveling
Salesman and Other Geometric Problems. J. ACM, 45(5) (1998), pp. 753–782.

[6] B.S. Baker: Approximation Algorithms for NP-Complete Problems on Planar
Graphs. J. ACM, 41(1) (1994), pp. 153–180.

[7] D.J. Balkcom and Mason M.T.: Time Optimal Trajectories for Bounded Velocity
Differential Drive Vehicles. I. J. Robotic Res., 21(3) (2002), pp. 199–218.

[8] Basic Helicopter Handbook. US Department of Transportation, Federal Aviation
Administration, Advisory Circular 61-13A, (1973).

[9] D.P. Bertsekas: Dynamic Programming and Optimal Control. Athena Scientific
(1995).

[10] J.T. Betts: Survey of Numerical Methods for Trajectory Optimization. J. of Guid-
ance, Control, and Dynamics, 21(2) (1998), pp. 193–207.

Bibliography

[11] J.T. Betts: Practical Methods for Optimal Control Using Nonlinear Program-
ming. SIAM Press, Philadelphia (2001).

[12] Z. Bian and Gu Q.P.: Computing Branch Decomposition of Large Planar Graphs.
In Proc. of the 7th International Workshop in Experimental Algorithm (WEA
2008), Lecture Notes in Computer Science, 5038, Springer (2008), pp. 87–100.

[13] D. Bienstock and Monma C.L.: On the Complexity of Embedding Planar Graphs
To Minimize Certain Distance Measures. Algorithmica, 5(1) (1990), pp. 93–109.

[14] H.L. Bodlaender: A Linear-Time Algorithm for Finding Tree-Decompositions of
Small Treewidth. SIAM J. Comput., 25(6) (1996), pp. 1305–1317.

[15] H.L. Bodlaender: A Partial k-Arboretum of Graphs with Bounded Treewidth.
Theor. Comput. Sci., 209(1-2) (1998), pp. 1–45.

[16] H.L. Bodlaender: Discovering Treewidth. In Proc. of the 31st Conference on Cur-
rent Trends in Theory and Practice of Computer Science (SOFSEM 2005), Lec-
ture Notes in Computer Science, 3381, Springer (2005), pp. 1–16.

[17] H.L. Bodlaender, Gilbert J.R., Hafsteinsson H. and Kloks T.: Approximating
Treewidth, Pathwidth, Frontsize, and Shortest Elimination Tree. J. Algorithms,
18(2) (1995), pp. 238–255.

[18] H.L. Bodlaender, Grigoriev A. and Koster A.M.C.A.: Treewidth Lower Bounds
with Brambles. Algorithmica, 51(1) (2008), pp. 81–98.

[19] H.L. Bodlaender and Koster A.M.C.A.: Safe Separators for Treewidth. Discrete
Mathematics, 306(3) (2006), pp. 337–350.

[20] H.L. Bodlaender, Koster A.M.C.A. and Eijkhof F. van den: Pre-processing Rules
for Triangulation of Probabilistic Networks. Computational Intelligence, 21
(2005), pp. 286-305.

[21] T. Bohman: The Triangle-free Process. Advances in Mathematics, 221(5) (2009),
pp. 1653–1677.

[22] B. Bollobás: Extremal Graph Theory. Handbook of combinatorics (vol. 2), MIT
Press, Cambridge, MA (1995).

[23] J.A. Bondy and Murty U.S.R.: Graph Theory. Springer Publishing Company, Inc.
(2008).

116

Bibliography

[24] C.F. Bornstein and Vempala S.: Flow Metrics. Theor. Comput. Sci., 321(1) (2004),
pp. 13–24.

[25] O.V. Borodin, Glebov A.N., Raspaud A. and Salavatipour M.R.: Planar Graphs
without Cycles of Length from 4 to 7 are 3-Colorable. J. Comb. Theory, Ser. B,
93(2) (2005), pp. 303–311.

[26] D. Brügmann, Komusiewicz C. and Moser H.: On Generating Triangle-Free
Graphs. Electronic Notes in Discrete Mathematics, 32 (2009), pp. 51–58.

[27] J. Canny and Reif J.H.: New Lower Bound Techniques for Robot Motion Plan-
ning Problems. In Proc. of the 28th Annual IEEE Symposium on Foundations of
Computer Science (FOCS 1987), (1987), pp. 49–60.

[28] H. Chen, C. Qiao, F. Zhou and Cheng C.-K.: Refined Single Trunk Tree: a Recti-
linear Steiner Tree Generator for Interconnect Prediction. In Proc. of 2002 Inter-
national Workshop on System-Level Interconnect Prediction (SLIP 2002) (2002),
pp. 85–89.

[29] H. Chitsaz and LaValle S.M.: Minimum Wheel-Rotation Paths for Differential
Drive Mobile Robots among Piecewise Smooth Obstacles. In Proc. of the IEEE
International Conference on Robotics and Automation (ICRA 2007) (2007), pp.
2718–2723.

[30] H. Chitsaz, LaValle S.M. and Balkcom D.J.: Minimum Wheel-Rotation Paths for
Differential-Drive Mobile Robots. I. J. Robotics Res., 28(1) (2009), pp. 66–80.

[31] B. Courcelle: The Monadic Second-Order Logic of Graphs. I. Recognizable Sets of
Finite Graphs. Inf. and Comput., 85(1) (1990), pp. 12–75.

[32] B. Courcelle: The Monadic Second-Order Logic of Graphs III: Tree-
decompositions, Minor and Complexity Issues. ITA, 26 (1992), pp. 257–286.

[33] D. Cox, Little J. and O’Shea D.: Ideals, Varieties and Algorithms, Springer-
Verlag, New York (1992).

[34] P. Crescenzi, Battista G. D. and Piperno A.: A Note on Optimal Area Algorithms
for Upward Drawings of Binary Trees. Comput. Geom., 2 (1992), pp. 187–200.

[35] O. Daescu, Mitchell J.S.B., Ntafos S., Palmer J.D. and Yap C.K.: k-Link Short-
est Paths in Weighted Subdivisions. In Proc. of the 9th International Workshop
on Algorithms and Data Structures (WADS 2005), Lecture Notes in Computer
Science, 3608, Springer (2005), pp. 325–327.

117

Bibliography

[36] O. Daescu, Mitchell J.S.B., Ntafos S., Palmer J.D. and Yap C.K.: Approximat-
ing Minimum-Cost Polygonal Paths of Bounded Number of Links in Weighted
Subdivisions. In Proc. of the 22th ACM Symposium on Computational Geometry
(SoCG 2006) (2006), pp. 483–484.

[37] E.D. Demaine and Hajiaghayi M.: Approximation Schemes for Planar Graph
Problems. Encyclopedia of Algorithms, Springer (2008).

[38] E.D. Demaine and Hajiaghayi M.: Bidimensionality. Encyclopedia of Algorithms,
Springer (2008).

[39] R. Diestel: Graph Theory. Springer-Verlag, Heidelberg (2010).

[40] R. Diestel, Jensen T.R., Gorbunov K.Y. and Thomassen C.: Highly Connected
Sets and the Excluded Grid Theorem. J. Comb. Theory, Ser. B, 75(1) (1999), pp.
61–73.

[41] J.E. Dunbar and Frick M.: The Path Partition Conjecture is True for Claw-free
Graphs. Discrete Mathematics, 307(11-12) (2007), pp. 1285–1290.

[42] P. Erdös, Kleitman D.J. and Rothschild B.: Asymptotic Enumeration of Kn-free
Graphs. Atti Dei Convegni Lincei 17, Colloquio Internazionale sulle Teorie Com-
binatorie, 20 (1976), pp. 19–27.

[43] U. Feige, Hajiaghayi M. and Lee J.R.: Improved Approximation Algorithms for
Minimum Weight Vertex Separators. SIAM J.Comput., 38(2) (2008), pp. 629–657.

[44] U. Feige and Lee J.R.: An Improved Approximation Ratio for the Minimum Lin-
ear Arrangement Problem. Inf. Process. Lett., 101(1) (2007), pp. 26–29.

[45] G.M. Fichtenholz: Differential- und Integralrechnung. B. I–III. Translated from
the Russian. VEB Deutscher Verlag der Wissenschaften, Berlin (1986).

[46] M. Fischetti, and Lodi A.: Local Branching. Math. Program., 98(1-3) (2003), pp.
23–47.

[47] F.V. Fomin, Kratsch D, Todinca I., Villanger Y.: Exact Algorithms for Treewidth
and Minimum Fill-In. SIAM J. Comput., 38(3) (2008), pp. 1058–1079.

[48] M.R. Garey and Johnson D.S.: The Rectilinear Steiner Tree Problem in NP Com-
plete. SIAM Journal of Applied Mathematics, 32 (1977), pp. 826–834.

[49] I.M. Gelfand and Fomin S.V.: Calculus of Variations. Dover Publications, Inc.,
New York (2000).

118

Bibliography

[50] I.M. Gelfand and Fomin S.V.: Calculus of Variations. Gos. Izd. fiz.-mat. lit.,
Moscow (1961).

[51] Graph Theory, Combinatorics and Algorithms. In M.C. Golumbic and Hart-
man I.B.-A. (Eds.) Interdisciplinary Applications, Springer (2005).

[52] A.Grigoriev: Treewidth and Large Grid Minors in Planar Graphs. Discrete
Mathematics and Theoretical Computer Science, 13(1) (2011), pp. 13–20.

[53] J.L. Gross and Yellen J.: Graph Theory and Its Applications. Second Edition
(Discrete Mathematics and Its Applications), Chapman & Hall/CRC (2005).

[54] M. Grötschel, Lovász L. and Schrijver A.: Geometric Algorithms and Combina-
torial Optimization. Ser. Algorithms and Combinatorics, 2, Springer (1988).

[55] Q.P. Gu and Tamaki H.: Optimal Branch-Decomposition of Planar Graphs in
O(n3) Time. ACM Transactions on Algorithms, 4(3) (2008), pp. 30:1–30:13.

[56] Q.P. Gu and Tamaki H.: Improved Bounds on the Planar Branchwidth with Re-
spect to the Largest Grid Minor Size. In Proc. of the 21st International Sympo-
sium on Algorithms and Computation (ISAAC 2010) Part II, Lecture Notes in
Computer Science, 6507, Springer (2010), pp. 85–96.

[57] I.V. Hicks: Planar Branch Decompositions I: The Ratcatcher. INFORMS Journal
on Computing, 17(4) (2005), pp. 402–412.

[58] I.V. Hicks: Planar Branch Decompositions II: The Cycle Method. INFORMS Jour-
nal on Computing, 17(4) (2005), pp. 413–421.

[59] I.V. Hicks: Graphs, Branchwidth, and Tangles! Oh my! Networks, 45(2) (2005),
pp. 55–60.

[60] F. Kammer: Determining the Smallest k such that G is k-Outerplanar. In Proc. of
the 5th Annual European Symposium on Algorithms (ESA 2007), Lecture Notes
in Computer Science, 4698, Springer (2007), pp. 359–370.

[61] R.M. Karp: Reducibility Among Combinatorial Problems. In R.F. Miller and
Thatcher J.W. (Eds.) Complexity of Computer Computations, Advances in Com-
puting Research, Plenum Press (1972), pp. 85–103.

[62] H.J. Keisler: Elementary Calculus: An Infinitesimal Approach. Prindle, Weber,
and Schmidt, Boston, MA (1986).

119

Bibliography

[63] M. Kline: Calculus: an Intuitive and Physical Approach. Dover Publications,
Inc., New York (1998).

[64] T. Kloks: Treewidth: Computations and Approximations. Lecture Notes in Com-
puter Science, 842, Springer-Verlag, Heidelberg (1994).

[65] A.M.C.A. Koster and Bodlaender H.L.: Private communication.

[66] K. Kuratowski: Sur le Problème des Courbes Gauches en Topologie. Fund. Math.,
15 (1930), pp. 271–283.

[67] C.G. Lekkerkerker and Boland J.C.: Representation of Finite Graphs by a Set of
Intervals on the Real Line. Fund. Math., 51 (1962), pp. 45–64.

[68] D. Manocha: Solving Systems of Polynomial Equations. IEEE Comput. Graph.
Appl., 14 (1994), pp. 46–55.

[69] G.J. Minty: On Maximal Independent Sets of Vertices in Claw-free Graphs. J.
Comb. Theory, Ser. B, 28(3) (1980), pp. 284–304.

[70] J.S.B. Mitchell and Papadimitriou C.H.: Planning Shortest Paths. In Proc. of the
SIAM Conference on Geometric Modeling and Robotics (1985), pp. 1–21.

[71] J.S.B. Mitchell and Sharir M.: New Results on Shortest Paths in Three Dimen-
tions. In Proc. of the 20th ACM Symposium on Computational Geometry (SoCG
2004) (2004), pp. 124–133.

[72] J. Palsberg and Naik M.: ILP-based Resource-aware Compilation. In A. Jerraya
and Wolf W. (Eds) Multiprocessor Systems-on-Chips, Elsevier, (2004).

[73] C.H. Papadimitriou: The Euclidean Traveling Salesman Problem is NP-
Complete. Theor. Comput. Sci., 4(3) (1977), pp. 237–244.

[74] C.H. Papadimitriou and Steiglitz K.: Combinatorial Optimization: Algorithms
and Complexity. Prentice-Hall, Inc., Upper Saddle River, NJ (1982).

[75] G. Pokam and Bodin F.: Energy-Delay Tradeoff Analysis of ILP-based Compi-
lation Techniques on a VLIW Architecture. INRIA Research Report, RR-5026,
(2003).

[76] L.S. Pontryagin, Boltyanskii V.G., Gamkrelidze R.V. and Mishchenko E.F.: The
Mathematical Theory of Optimal Processes. John Wiley & Sons Inc. (1962).

120

Bibliography

[77] W.H. Press, Teukolsky S.A., Vetterling W.T. and Flannery B.P.: Numerical
Recipes in C. The Art of Scientific Computing. Cambridge University Press, Cam-
bridge (1992).

[78] S. Rao, and Richa A.W.: New Approximation Techniques for Some Linear Order-
ing Problems. SIAM J. Comput., 34(2) (2004), pp. 388–404.

[79] D.S. Richeson: Eulers Gem: The Polyhedron Formula and the Birth of Topology.
Prinston and Oxford, Prinston University Press (2008).

[80] N. Robertson and Seymour P.D.: Graph Minors. I. Excluding a Forest. J. Comb.
Theory, Ser.B, 35(1) (1983), pp. 39–61.

[81] N. Robertson and Seymour P.D.: Graph Minors. III. Planar Tree-width. J. Comb.
Theory, Ser. B, 36(1) (1984), pp. 49–64.

[82] N. Robertson and Seymour P.D.: Graph Minors. II. Algorithmic Aspects of Tree-
Width. J. Algorithms, 7(3) (1986), pp. 309–322.

[83] N. Robertson and Seymour P.D.: Graph Minors. X. Obstructions to Tree-
decomposition. J. Comb. Theory, Ser. B, 52(2) (1991), pp. 153–190.

[84] D.J. Rose, Tarjan R.E. and Lueker G.S.: Algorithmic Aspects of Vertex Elimini-
nation on Graphs. SIAM J. Comput., 5(2) (1976), pp. 266–283.

[85] N. Sbihi: Algorithme de Recherche d’un Stable de Cardinalité Maximum dans un
Graphe sans Étoile. Discrete Mathematics, 29(1) (1980), pp. 53–76.

[86] P.D. Seymour and Thomas R.: Graph Searching and a Min-Max Theorem for
Tree-Width. J. Comb. Theory, Ser. B, 58(1) (1993), pp. 22–33.

[87] P.D. Seymour and Thomas R.: Call Routing and the Ratcatcher. Combinatorica,
14(2) (1994), pp. 217–241.

[88] J.A. Storer and Reif J.H.: Shortest Paths in the Plane with Polygonal Obstacles.
J. ACM, 41(5) (1994), pp. 982–1012.

[89] R. Thomas: Tree-Decompositions of Graphs.
http://people.math.gatech.edu/˜thomas/SLIDE/CBMS/trdec.pdf

[90] A. Venkatraman and Bhat S.P.: Planar Time-Optimal and Length-Optimal Paths
under Acceleration Constraints. In Proc. of Americal Control Conference (2006),
pp. 5219–5224.

121

Bibliography

[91] K. Wagner: Über eine Eigenshaft der ebenen Complexe. Math. Ann., 14 (1937),
pp. 570–590.

[92] S. Warner: Modern Algebra. Prentice-Hall, Inc., (1965).

[93] J.H. Wilkinson: The Evaluation of the Zeros of Ill-Conditioned Polynomials. Parts
i and ii. Numer. Math., 1(1), Springer Berlin-Heidelberg (1959), pp. 150–180.

[94] M. Yannakakis: Edge-Deletion Problems. SIAM J. Comput., 10(2) (1981), pp.
297–309.

[95] J.W. Yeol, Ryu Y.S. and Montalvo M.A.: Shortest Trajectory Planning of Wheeled
Mobile Robots with Constraints. In Proc. of Networking, Sensing and Control,
IEEE (2005), pp. 883–888.

122

Nederlandse Samenvatting

In dit proefschrift staan een aantal vraagstukken uit de gebieden van computationele
geometrie en algoritmische grafentheorie centraal. Een belangrijke leidmotief bij de
behandeling van deze vraagstukken vormt het zoeken naar en het benutten van geo-
metrische eigenschappen die inzicht bieden in mogelijke oplossingen en oplosmetho-
den.

Deel I van het proefschrift is gewijd aan de computationele geometrie. Een be-
kend vraagstuk binnen dit vakgebied is het bepalen van het optimale traject voor een
bewegend object met betrekking tot een gegeven grootheid, bijvoorbeeld snelheid, af-
stand of prijs, zie [2, 35, 90, 95]. Vaak wordt hierbij verondersteld dat de snelheid van
het object constant is; een aanname die de benodigde berekeningen vergemakkelijkt.
De complexiteit van het probleem neemt aanzienlijk toe wanneer wordt veronder-
steld dat de maximale snelheid van het object afhangt van zijn positie in de bewe-
gingsruimte. Als voorbeeld van zo’n bewegend object wordt in dit proefschrift een
helikopter genomen. Verschillende varianten van het vinden van het optimale traject
worden in deze dissertatie vervolgens gemodelleerd. De gebruikte relatie tussen de
maximale snelheid en de ruimtelijke positie wordt bepaald door de volgende fysieke
eigenschap: wanneer een helikopter omhoog vliegt, neemt de luchtdichtheid af wat
resulteert in een afname van de stuwkracht van de rotoren en dientengevolge in een
reductie van de snelheid. De daadwerkelijke relatie tussen snelheid en hoogte is re-
delijk complex en is nauwelijks in gesloten analytische vorm uit te drukken. In de
literatuur is het echter gebruikelijk en geaccepteerd om de maximale snelheid van
een helikopter te modelleren als een lineaire dalende functie van de hoogte of als een
stuksgewijs lineaire functie met een klein aantal breekpunten, zie [8].

Allereerst wordt de snelheid van de helikopter dan ook als een lineaire func-
tie gemodelleerd. Hoofdstuk 3 beschrijft de situatie waarin de helikopter zich be-
weegt in een tweedimensionale ruimte met obstakels, die bijvoorbeeld bergen kunnen
voorstellen. Een obstakel wordt gemodelleerd als een continue rechtlijnige curve. De
vraagstelling in dit hoofdstuk is het bepalen van de snelste route voor de helikopter

Nederlandse Samenvatting

tussen twee gegeven punten in deze ruimte. Om dit probleem op te lossen worden ver-
schillende technieken uit de variatierekening (onderdeel van de functionaalanalyse)
aangewend en wordt het probleem uiteindelijk gereduceerd tot het licht propagatie
probleem van l’Hôpital [9]. De route die de helikopter dient te volgen om zo snel mo-
gelijk zijn doel te bereiken blijkt uiteindelijk een cirkelsegment te zijn. Betreffende de
complexiteit van het probleem wordt als resultaat gevonden dat het optimale traject
bepaald kan worden in tijd, die polynomiaal is in het aantal obstakels. Of er ook voor
de situatie waarin obstakels als willekeurige continue curven gemodelleerd worden
een algoritme bestaat met een polynomiale doorlooptijd, blijft een open vraag.

In Hoofdstuk 4 wordt het bovenstaande model gegeneraliseerd door de maxi-
male snelheid van de helikopter als stuksgewijze lineaire functie van de hoogte te
modelleren. In dit hoofdstuk wordt de lucht dus gezien als een niet uniform medium
dat bestaat uit verschillende lagen. Binnen elke luchtlaag is het tempo waarin de
snelheid afneemt met de hoogte verschillend. Mede door gebruik te maken van de re-
sultaten uit het vorige hoofdstuk volgt als resultaat in dit hoofdstuk dat het optimale
traject in een tweedimensionale ruimte in deze situatie bestaat uit een combinatie
van cirkelsegmenten. De wiskundige beschrijving van de situatie in dit hoofdstuk
leidt tot een multivariaat model met polynomiale vergelijkingen. Door gebruik te
maken van resultaten uit de eliminatie theorie binnen de algebraı̈sche meetkunde,
zie [33], wordt dit systeem gereduceerd tot een polynomiale vergelijking in één vari-
abele, die met behulp van snelle numerieke methoden, zoals het Jenkings-Traub algo-
ritme, opgelost kan worden, zie [77]. Enkele vragen blijven onopgelost. Eén daarvan
is of er een polynomiale tijd algoritme bestaat voor de gegeneraliseerde situatie met
obstakels in de tweedimensionale ruimte. Een meer uitdagende open vraag is of er
een efficiënt polynomiaal benaderingsschema bestaat voor het gegeneraliseerde he-
likopter probleem met obstakels in de driedimensionale ruimte.

Deel II en III van dit proefschrift zijn gewijd verschillende aspecten van de boom-
breedte van een graaf. De notie van boombreedte van een graaf is geı̈ntroduceerd door
Robertson en Seymour in 1983 [80, 82]. Het vormt een maat voor de gelijkenis die de
graaf vertoont met een samenhangende graaf zonder cykels; een zogenaamde boom.
Menig NP-volledig graaftheoretisch probleem laat zich in polynomiale tijd oplossen
op een boom. Het is een bekend gegeven dat dergelijke problemen ook vaak in polyno-
miale tijd oplosbaar zijn op grafen die een lage boombreedte hebben, zie bijvoorbeeld
[31, 32]. Het bepalen of het nauwkeurig benaderen van de boombreedte van een graaf
is dan ook een relevant vraagstuk met vele nuttige toepassingen.

Allereerst wordt in Hoofdstuk 5 aandacht besteed aan de boombreedte van planai-
re grafen. De grafen in deze klasse hebben geen begrensde boombreedte. De vraag
of het bepalen van de boombreedte van planaire grafen een NP-moeilijk probleem is,
staat nog altijd open. Wel is bekend dat er een connectie bestaat tussen de volgende

124

Nederlandse Samenvatting

parameters van een planaire graaf: de boombreedte, de zogenaamde ’takbreedte’ en
de (grootte van de) grootste zogenaamde ’vierkante-grid minor’ van de graaf. Er zijn
een aantal publicaties waarin bovengrenzen worden verkregen voor de boombreedte
van een planaire graaf in termen van de takbreedte en de grootste vierkante-grid
minor van de graaf, zie o.a. [52, 56, 83, 89]. Eén van de verkregen resultaten is
dat de boombreedte van een planaire graaf hooguit viereneenhalf maal zo groot kan
zijn als de grootste vierkante-grid minor in de graaf. In Hoofdstuk 5 wordt on-
derzocht in hoeverre deze bovengrens nog naar beneden kan worden bijgesteld. Er
wordt een klasse van planaire grafen geconstrueerd waarvoor de takbreedte gelijk
is aan de grootste vierkante-grid minor en waarvoor de boombreedte anderhalf keer
zo groot is als de takbreedte. Deze ondergrens voor de bovengrens is later verbeterd
door Gu en Tamaki [56], die een klasse van planaire grafen construeren waarvoor
de boombreedte gelijk is aan de takbreedte en tweemaal zo groot is als de grootste
vierkante-grid minor. Een interessante open vraag is of er een klasse van planaire
grafen bestaat waarvoor de drie parameters paarsgewijs van elkaar verschillen.

Vervolgens wordt in Hoofdstuk 6 de focus verlegd naar de studie van boom-
breedte van grafen in het algemeen. Het boombreedte probleem wordt in dit hoofd-
stuk op twee manieren als een geheeltallig lineair programmeringsprobleem gefor-
muleerd. De eerste formulering is afgeleid van de ’knoop eliminatie volgorde’ formu-
lering zoals die is opgesteld door Koster en Bodlaender [65]. Deze formulering wordt
gefuseerd met de ’stroom metriek’ aanpak van Bornstein en Vempala [24]. Door
het toevoegen van een aantal nieuwe ongelijkheden wordt in onze eerste formule-
ring het toegelaten oplossingsgebied van de relaxatie van de formulering van Koster
en Bodlaender gereduceerd. Aansluitend daarop wordt in Hoofdstuk 6 een tweede
geheeltallig lineair programmeringsprobleem voor boombreedte geformuleerd. Deze
nieuwe structurele formulering is gebaseerd op een inbedding van een optimale boom
decompositie in een grid graaf, die past binnen het raamwerk van een ’lokale ver-
takkings methode’, die bedacht is door Fischetti en Lodi [46]. Gebruikmakend van
dit gegeven wordt in dit proefschrift een exact algoritme voor het probleem gecon-
strueerd. Om meer inzicht te krijgen in de sterke en zwakke punten van beide
boombreedte formuleringen zouden in een vervolgonderzoek rekenexperimenten op
verschillende klassen van grafen uitgevoerd moeten worden.

Tenslotte wordt in Deel III van het proefschrift een toepassing behandeld van
het gebruik van boombreedte en boom decomposities in algoritmes. Het vraagstuk
wat daarvoor wordt gebruikt is het uitsluiten van een bepaalde subgraaf in een graaf
door het verwijderen van een minimum aantal lijnen uit de graaf. Dit probleem is
NP-moeilijk voor algemene grafen. Uit een bekend resultaat van Courcelle [31, 32]
volgt dat het probleem theoretisch oplosbaar is in lineaire tijd op grafen met be-
grensde boombreedte. Deze benadering zou echter leiden tot een algoritme met een

125

Nederlandse Samenvatting

enorme verborgen constante term in de O()-notatie van de looptijd, en zou derhalve
niet praktisch zijn. In Hoofdstuk 7 wordt voor het beschreven subgraaf eliminatie
probleem een combinatorisch algoritme gepresenteerd waarvan de looptijd lineair is,
voor grafen waarvan de maximum graad van de knopen begrensd is. Verder wordt
in dit hoofdstuk aangetoond dat een optimale oplossing voor het subgraaf eliminatie
probleem op planaire grafen kan worden benaderd door gebruik te maken van een
techniek, die bedacht is door Baker [6]. Het blijft vooralsnog een open vraag of er ook
voor grafen waarvoor de graad van de knopen niet begrensd is een lineaire tijd algo-
ritme en een polynomiaal benaderingsschema voor het subgraaf eliminatie probleem
bestaat.

126

Curriculum Vitae

Natalya Usotskaya was born on October 25, 1983 in Kurgan, Russia. In June 2000,
she received her high school diploma from the Specialized Educational Scientific Cen-
ter of Novosibirsk State University in Russia. In September 2000, she started study-
ing Mathematics with specialty Applied Mathematics and Informatics at Novosibirsk
State University. She received her Master’s degree in June 2006. From September
2006 till May 2008, Natalya was employed as a PhD-student at Novosiborsk State
University and as a teaching assistant at Siberian State University of Telecommu-
nication and Information Sciences. In June 2008, she joined the Quantitative Eco-
nomics department of Maastricht University as a PhD-student and became a part
of the Operations Research group. The results of her research are presented in this
thesis.

	Acknowledgements
	Contents
	Chapter 1 - Introduction
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8 - Summary
	Bibliography
	Nederlandse samenvatting
	Curriculum vitae

