677 research outputs found

    Predictor Order and Error Distribution of MMAE Predictors for Lossless Image Coding

    Get PDF
    This paper investigates the relation between error distribution and predictive order of minimum mean abusolute error predictors (MMAE predictors) designed for lossless coding of grayscale images. Design of MMAE predictors reduces to the linear programming problem. Let k be the number of coefficients in a predictor (predictor order), we imagine that predictor order k may have a distribution shaping effect. Main purpose of this paper is to ensure that k has such an effect

    Implementation issues in source coding

    Get PDF
    An edge preserving image coding scheme which can be operated in both a lossy and a lossless manner was developed. The technique is an extension of the lossless encoding algorithm developed for the Mars observer spectral data. It can also be viewed as a modification of the DPCM algorithm. A packet video simulator was also developed from an existing modified packet network simulator. The coding scheme for this system is a modification of the mixture block coding (MBC) scheme described in the last report. Coding algorithms for packet video were also investigated

    A Novel Rate Control Algorithm for Onboard Predictive Coding of Multispectral and Hyperspectral Images

    Get PDF
    Predictive coding is attractive for compression onboard of spacecrafts thanks to its low computational complexity, modest memory requirements and the ability to accurately control quality on a pixel-by-pixel basis. Traditionally, predictive compression focused on the lossless and near-lossless modes of operation where the maximum error can be bounded but the rate of the compressed image is variable. Rate control is considered a challenging problem for predictive encoders due to the dependencies between quantization and prediction in the feedback loop, and the lack of a signal representation that packs the signal's energy into few coefficients. In this paper, we show that it is possible to design a rate control scheme intended for onboard implementation. In particular, we propose a general framework to select quantizers in each spatial and spectral region of an image so as to achieve the desired target rate while minimizing distortion. The rate control algorithm allows to achieve lossy, near-lossless compression, and any in-between type of compression, e.g., lossy compression with a near-lossless constraint. While this framework is independent of the specific predictor used, in order to show its performance, in this paper we tailor it to the predictor adopted by the CCSDS-123 lossless compression standard, obtaining an extension that allows to perform lossless, near-lossless and lossy compression in a single package. We show that the rate controller has excellent performance in terms of accuracy in the output rate, rate-distortion characteristics and is extremely competitive with respect to state-of-the-art transform coding

    Scanning and Sequential Decision Making for Multi-Dimensional Data - Part I: the Noiseless Case

    Get PDF
    We investigate the problem of scanning and prediction ("scandiction", for short) of multidimensional data arrays. This problem arises in several aspects of image and video processing, such as predictive coding, for example, where an image is compressed by coding the error sequence resulting from scandicting it. Thus, it is natural to ask what is the optimal method to scan and predict a given image, what is the resulting minimum prediction loss, and whether there exist specific scandiction schemes which are universal in some sense. Specifically, we investigate the following problems: First, modeling the data array as a random field, we wish to examine whether there exists a scandiction scheme which is independent of the field's distribution, yet asymptotically achieves the same performance as if this distribution was known. This question is answered in the affirmative for the set of all spatially stationary random fields and under mild conditions on the loss function. We then discuss the scenario where a non-optimal scanning order is used, yet accompanied by an optimal predictor, and derive bounds on the excess loss compared to optimal scanning and prediction. This paper is the first part of a two-part paper on sequential decision making for multi-dimensional data. It deals with clean, noiseless data arrays. The second part deals with noisy data arrays, namely, with the case where the decision maker observes only a noisy version of the data, yet it is judged with respect to the original, clean data.Comment: 46 pages, 2 figures. Revised version: title changed, section 1 revised, section 3.1 added, a few minor/technical corrections mad

    Exclusive-or preprocessing and dictionary coding of continuous-tone images.

    Get PDF
    The field of lossless image compression studies the various ways to represent image data in the most compact and efficient manner possible that also allows the image to be reproduced without any loss. One of the most efficient strategies used in lossless compression is to introduce entropy reduction through decorrelation. This study focuses on using the exclusive-or logic operator in a decorrelation filter as the preprocessing phase of lossless image compression of continuous-tone images. The exclusive-or logic operator is simply and reversibly applied to continuous-tone images for the purpose of extracting differences between neighboring pixels. Implementation of the exclusive-or operator also does not introduce data expansion. Traditional as well as innovative prediction methods are included for the creation of inputs for the exclusive-or logic based decorrelation filter. The results of the filter are then encoded by a variation of the Lempel-Ziv-Welch dictionary coder. Dictionary coding is selected for the coding phase of the algorithm because it does not require the storage of code tables or probabilities and because it is lower in complexity than other popular options such as Huffman or Arithmetic coding. The first modification of the Lempel-Ziv-Welch dictionary coder is that image data can be read in a sequence that is linear, 2-dimensional, or an adaptive combination of both. The second modification of the dictionary coder is that the coder can instead include multiple, dynamically chosen dictionaries. Experiments indicate that the exclusive-or operator based decorrelation filter when combined with a modified Lempel-Ziv-Welch dictionary coder provides compression comparable to algorithms that represent the current standard in lossless compression. The proposed algorithm provides compression performance that is below the Context-Based, Adaptive, Lossless Image Compression (CALIC) algorithm by 23%, below the Low Complexity Lossless Compression for Images (LOCO-I) algorithm by 19%, and below the Portable Network Graphics implementation of the Deflate algorithm by 7%, but above the Zip implementation of the Deflate algorithm by 24%. The proposed algorithm uses the exclusive-or operator in the modeling phase and uses modified Lempel-Ziv-Welch dictionary coding in the coding phase to form a low complexity, reversible, and dynamic method of lossless image compression

    Entropy coder for audio signals

    Get PDF
    In the paper an effective entropy coder designed for coding of prediction errors of audio signals is presented. The coder is implemented inside a greater structure which signal modeling part is a lossless coding backward adaptation algorithm consisting of cascaded OLS and NLMS sections is presented. The technique performance is compared to that of 4 other lossless codecs, including MPEG-4 ALS one, and it is shown that indeed, the new method is the best one. The entropy coder is an advanced context adaptive Golomb one followed by two context adaptive arithmetic coders

    Novel Ideas for Lossless Audio Coding

    Get PDF
    Novel ideas for lossless audio coding analyzed in the paper are linked with forward predictor adaptation, and concern optimization of predictors on the basis of zero-orderentropy and MMAE criterions, and context sound coding. Direct use of the former criterion is linked with exponential growth of optimization procedure, hence, a suboptimal algorithm having polynomial complexity is proposed. It is shown that on average the new types of predictors are better than those obtained by MMSE technique, while two- and three context systems are on average better than a single predictor one. It also appears that 7-bit PARCOR coefficients in the MPEG-4 ALS standard have insufficient precision for some predictor length, and that for very long frames coding results improve with the predictor rank practically in unlimited way
    corecore