5 research outputs found

    Minimum Degrees of Minimal Ramsey Graphs for Almost-Cliques

    Full text link
    For graphs FF and HH, we say FF is Ramsey for HH if every 22-coloring of the edges of FF contains a monochromatic copy of HH. The graph FF is Ramsey HH-minimal if FF is Ramsey for HH and there is no proper subgraph F′F' of FF so that F′F' is Ramsey for HH. Burr, Erdos, and Lovasz defined s(H)s(H) to be the minimum degree of FF over all Ramsey HH-minimal graphs FF. Define Ht,dH_{t,d} to be a graph on t+1t+1 vertices consisting of a complete graph on tt vertices and one additional vertex of degree dd. We show that s(Ht,d)=d2s(H_{t,d})=d^2 for all values 1<d≤t1<d\le t; it was previously known that s(Ht,1)=t−1s(H_{t,1})=t-1, so it is surprising that s(Ht,2)=4s(H_{t,2})=4 is much smaller. We also make some further progress on some sparser graphs. Fox and Lin observed that s(H)≥2δ(H)−1s(H)\ge 2\delta(H)-1 for all graphs HH, where δ(H)\delta(H) is the minimum degree of HH; Szabo, Zumstein, and Zurcher investigated which graphs have this property and conjectured that all bipartite graphs HH without isolated vertices satisfy s(H)=2δ(H)−1s(H)=2\delta(H)-1. Fox, Grinshpun, Liebenau, Person, and Szabo further conjectured that all triangle-free graphs without isolated vertices satisfy this property. We show that dd-regular 33-connected triangle-free graphs HH, with one extra technical constraint, satisfy s(H)=2δ(H)−1s(H) = 2\delta(H)-1; the extra constraint is that HH has a vertex vv so that if one removes vv and its neighborhood from HH, the remainder is connected.Comment: 10 pages; 3 figure

    Extremal and Ramsey Type Questions for Graphs and Ordered Graphs

    Get PDF
    In this thesis we study graphs and ordered graphs from an extremal point of view. In the first part of the thesis we prove that there are ordered forests H and ordered graphs of arbitrarily large chromatic number not containing such H as an ordered subgraph. In the second part we study pairs of graphs that have the same set of Ramsey graphs. We support a negative answer to the question whether there are pairs of non-isomorphic connected graphs that have this property. Finally we initiate the study of minimal ordered Ramsey graphs. For large families of ordered graphs we determine whether their members have finitely or infinitely many minimal ordered Ramsey graphs
    corecore