10 research outputs found

    Fast-decodable MIDO codes from non-associative algebras

    Get PDF
    By defining a multiplication on a direct sum of n copies of a given cyclic division algebra, we obtain new unital non-associative algebras. We employ their left multiplication to construct rate-n and rate-2 fully diverse fast ML-decodable space-time block codes for a Multiple-Input-Double-Output (MIDO) system. We give examples of fully diverse rate-2 4×2, 6×2, 8×2 and 12×2 space-time block codes and of a rate-3 6×2 code. All are fast ML-decodable. Our approach generalises the iterated codes in Markin and Oggier

    The nonassociative algebras used to build fast-decodable space-time block codes

    Get PDF
    Let K/F and K/L be two cyclic Galois field extensions and D a cyclic algebra. Given an invertible element d in D, we present three families of unital nonassociative algebras defined on the direct sum of n copies of D. Two of these families appear either explicitly or implicitly in the designs of fast-decodable space-time block codes in papers by Srinath, Rajan, Markin, Oggier, and the authors. We present conditions for the algebras to be division and propose a construction for fully diverse fast decodable space-time block codes of rate-m for nm transmit and m receive antennas. We present a DMT-optimalrate-3 code for 6 transmit and 3 receive antennas which is fast-decodable, with ML-decoding complexity at most O(M^15)

    Minimizing the complexity of fast sphere decoding of STBCs

    No full text
    Decoding of linear space-time block codes (STBCs) with sphere-decoding (SD) is well known. A fast-version of the SD known as fast sphere decoding (FSD) was introduced by Biglieri, Hong and Viterbo. Viewing a linear STBC as a vector space spanned by its defining weight matrices over the real number field, we define a quadratic form (QF), called the Hurwitz-Radon QF (HRQF), on this vector space and give a QF interpretation of the FSD complexity of a linear STBC. It is shown that the FSD complexity is only a function of the weight matrices defining the code and their ordering, and not of the channel realization (even though the equivalent channel when SD is used depends on the channel realization) or the number of receive antennas. It is also shown that the FSD complexity is completely captured into a single matrix obtained from the HRQF. Moreover, for a given set of weight matrices, an algorithm to obtain an optimal ordering of them leading to the least FSD complexity is presented. The well known classes of low FSD complexity codes (multi-group decodable codes, fast decodable codes and fast group decodable codes) are presented in the framework of HRQF

    Minimizing the Complexity of Fast Sphere Decoding of STBCs

    No full text

    Minimizing the complexity of fast sphere decoding of STBCs

    No full text
    Decoding of linear space-time block codes (STBCs) with sphere-decoding (SD) is well known. A fast-version of the SD known as fast sphere decoding (FSD) has been recently studied by Biglieri, Hong and Viterbo. Viewing a linear STBC as a vector space spanned by its defining weight matrices over the real number field, we define a quadratic form (QF), called the Hurwitz-Radon QF (HRQF), on this vector space and give a QF interpretation of the FSD complexity of a linear STBC. It is shown that the FSD complexity is only a function of the weight matrices defining the code and their ordering, and not of the channel realization (even though the equivalent channel when SD is used depends on the channel realization) or the number of receive antennas. It is also shown that the FSD complexity is completely captured into a single matrix obtained from the HRQF. Moreover, for a given set of weight matrices, an algorithm to obtain a best ordering of them leading to the least FSD complexity is presented. The well known classes of low FSD complexity codes (multi-group decodable codes, fast decodable codes and fast group decodable codes) are presented in the framework of HRQF
    corecore