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FAST-DECODABLE MIDO CODES FROM NONASSOCIATIVE

ALGEBRAS

S. PUMPLÜN AND A. STEELE

Abstract. By defining a multiplication on a direct sum of n copies of a given cyclic

division algebra, we obtain new unital nonassociative algebras. We employ their left

multiplication to construct rate-n and rate-2 fully diverse fast ML-decodable space-time

block codes for a multiple input-double output (MIDO) system. We give examples of

fully diverse rate-2 4× 2, 6× 2, 8× 2 and 12× 2 space-time block codes and of a rate-3

6 × 2 code. All are fast ML-decodable. Our approach generalizes the iterated codes in

[20].

1. Introduction

Space-time block codes (STBCs) are used for reliable high rate transmission over wireless

digital channels with multiple antennas at both the transmitter and receiver ends. Space-

time block codes used in settings where the number of receive antennas is less than the

number of transmit antennas are called asymmetric space-time block codes. Among these,

there are the multiple-input double output (MIDO) codes, with n antennas transmitting and

2 antennas receiving the data (an n × 2 system). In particular, the case of 4 transmit and

2 receive antennas has potential applications to digital video broadcasting used for example

for portable TV devices, or for transmitting data to mobile phones.

Central simple associative division algebras over number fields, in particular cyclic divi-

sion algebras, have been used to systematically build space-time block codes for an arbitrary

number of antennas (cf. for instance [1], [2], [3], [4], [5], [6], [7]). Similarly built nonassocia-

tive division algebras can also be used in code design, see for instance [8], [9], [10] or [11].

In order to obtain a family of complex matrices which can be used as STBC, the matrix

representing left multiplication in the (associative or nonassociative) algebra is calculated.

In the process, the algebras are usually viewed as right K-vector spaces over a maximal

subfield K, in order to obtain matrices with entries in K, which in a nonassociative setting

is only possible for certain well behaved algebras.

Date: 17.9.2014.

1991 Mathematics Subject Classification. Primary: 17A35, 94B05.

Key words and phrases. Iterated space-time code constructions, nonassociative division algebras, fast-

decodable, rate n, MIDO system.

1
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The goal is to construct space-time codes which are fast-decodable in the sense of [12], [13],

[14], also when there are less receive than transmit antennas, which support higher rates and

have the potential to be systematically built for given numbers of transmit/receive antennas.

Fast-decodable codes are treated by Biglieri, Hong and Viterbo [15], Vehkalahti, Hollanti

and Oggier [16], [17], Luzzi and Oggier [18], Markin and Oggier [19], and in [13], [14] and

[9], to name just a few.

Srinath and Rajan [21] build fully diverse, rate-2 STBCs which are full-rate for MIDO

systems and are fast ML-decodable, have large coding gain and non-vanishing determinant

(NVD). Their approach uses certain nonassociative algebras in the code construction, em-

ploying as main ingredients a cyclic division algebra D over a field F and some invertible

element d ∈ D. The resulting codes coincide with the iterated codes from Markin and Oggier

[20], if n = 2 and if the element d ∈ D used in the algebra (resp. code) construction lies in

F .

We use a new family of nonassociative algebras to build fully diverse rate-2 and rate-3

fast-decodable MIDO codes. Again, we use a cyclic division algebra D over a field F and

some invertible element d ∈ D as main ingredients of the construction of the algebra. Our

codes canonically generalize the iterated codes from [20] (for any invertible d ∈ D used

in the construction) and look very similar to the ones in [21]. The case n = 2 yields the

nonassociative algebras and related iterated codes also mentioned in [11].

1.1. Contribution and Organization. We propose an algebraic construction to build

rate-n (for n transmit antennas) fully diverse STBCs which canonically generalize the iter-

ated codes from [20] and cannot be obtained through the left regular representation of some

associative division algebra. The nonassociative algebras used in the construction can be

viewed as generalizations of cyclic associative (or nonassociative) algebras. They generalize

the nonassociative algebra behind the codes built in [20]. Their algebraic structure theory

is similar to the classical one for associative cyclic algebras.

We show how to obtain STBCs using the left multiplication of these new nonassociative

algebras and prove that division algebras yield fully diverse codes. We construct a fast-

decodable rate-3 fully diverse STBC for a 6×2 MIDO system, which is two-group decodable.

We construct rate-2 fully diverse STBCs for 4× 2, 6× 2, 8× 2 and 12× 2 MIDO systems

which look similar to the ones obtained in [21]. They have the same low ML-decoding

complexity as the ones obtained in [21] and are fast-decodable. After the preliminaries in

Section 2, we explain the mathematical model for our code construction in Section 3. Section

4 explains how the corresponding STBCs are designed and gives a condition for them to

be fast-decodable, and Section 5 gives examples of fast-decodable STBCs for 4 × 2, 6 × 2,

8 × 2 and 12 × 2 MIDO systems. Section 6 discusses the ML-decoding complexity, Section

7 contains some simulation results, and Section 8 the conclusions and suggestions for future

work.
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2. Preliminaries

2.1. Design criteria for space-time block codes. A space-time block code (STBC) for

an nt transmit antenna MIMO system is a set of complex nt ×T matrices, called codebook,

that satisfies a number of properties which determine how well the code performs. Here, nt

is the number of transmitting antennas, T the number of channels used.

Most of the existing codes are built from cyclic division algebras over number fields F ,

in particular over F = Q(i) or F = Q(ω) with ω = e2πi/3 a third root of unity, since these

fields are used for the transmission of QAM or HEX constellations, respectively.

One goal is to find fully diverse codebooks A, where the difference of any two code words

has full rank, i.e. with det(X − X ′) 6= 0 for all matrices X 6= X ′, X, X ′ ∈ A.

If the minimum determinant of the code, defined as

δ(A) = inf
X′ 6=X′′∈A

| det(X ′ − X ′′)|2,

is bounded below by a constant, even if the codebook A is infinite, the code A has non-

vanishing determinant (NVD). Since our codebooks A will be based on the matrix represent-

ing left multiplication in an algebra, they are linear and thus their minimum determinant is

given by

δ(A) = inf
06=X∈A

| det(X)|2.

If A is fully diverse, δ(A) defines the coding gain δ(A)
1

nt . The larger δ(A) is, the better the

error performance of the code is expected to be.

If a STBC has NVD then it will perform well independently of the constellation size we

choose. The NVD property guarantees that a full rate linear STBC has optimal diversity-

multiplexing gain trade-off (DMT) and also an asymmetric linear STBC with NVD often

has DMT (for results on the relation between NVD and DMT-optimality for asymmetric

linear STBCs, cf. for instance [22]).

We look at transmission over a MIMO fading channel with nt = nm transmit and n receive

antennas, and assume the channel is coherent, that is the receiver has perfect knowledge of

the channel. We consider both the rate-n case (where mn2 symbols are sent) and the rate-2

case. The system is modeled as

Y =
√

ρHS + N,

with Y the complex nr × T matrix consisting of the received signals, S the the complex

nt × T codeword matrix, H is the the complex nr × nt channel matrix (which we assume

to be known) and N the the complex nr × T noise matrix, their entries being identically

independently distributed Gaussian random variables with mean zero and variance one. ρ

is the average signal to noise ratio.

Since we assume the channel is coherent, ML-decoding can be obtained via sphere decod-

ing. The hope is to find codes which are easy to decode with a sphere decoder, i.e. which are

fast-decodable: Let M be the size of a complex constellation of coding symbols and assume
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the code A encodes s symbols. If the decoding complexity by sphere decoder needs only

O(M l), l < s computations, then A is called fast-decodable.

For a matrix B, let B∗ denote its Hermitian transpose. Consider a code A of rate n. Any

X ∈ A ⊂ Matmn×mn(C) can be written as a linear combination

X =

nm2∑

i=1

giBi,

of nm2 R-linearly independent basis matrices B1, . . . , Bnm2 , with gi ∈ R. Define

Mg,k = ||BgB
∗
k + BkB∗

g ||.

Let S be a real constellation of coding symbols. A STBC with s = nm2 linear independent

real information symbols from S in one code matrix is called l-group decodable, if there is

a partition of {1, . . . , s} into l nonempty subsets Γ1, . . . ,Γl, so that Mg,k = 0, where g, k

lie in disjoint subsets Γi, . . . ,Γj . The code A then has decoding complexity O(|S|L), where

L = max1≤i≤l|Γi|.

2.2. Nonassociative algebras. Let F be a field. By “F -algebra” we mean a finite dimen-

sional unital nonassociative algebra over F .

A nonassociative algebra A 6= 0 is called a division algebra if for any a ∈ A, a 6= 0, the

left multiplication with a, La(x) = ax, and the right multiplication with a, Ra(x) = xa, are

bijective. A is a division algebra if and only if A has no zero divisors [23], pp. 15, 16. Let

A× = {x ∈ A |x invertible}. If A is a division algebra then A× = A \ {0}.
For an F -algebra A, associativity in A is measured by the associator [x, y, z] = (xy)z −

x(yz). The left nucleus of A is defined as Nucl(A) = {x ∈ A | [x, A, A] = 0}, the middle

nucleus of A is defined as Nucm(A) = {x ∈ A | [A, x, A] = 0} and the right nucleus of

A is defined as Nucr(A) = {x ∈ A | [A, A, x] = 0}. Their intersection Nuc(A) = {x ∈
A | [x, A, A] = [A, x, A] = [A, A, x] = 0} is the nucleus of A, x(yz) = (xy)z whenever one of

the elements x, y, z is in Nuc(A).

2.3. Cyclic Algebras. Let K/F be a cyclic field extension of degree m with Galois group

generated by the automorphism σ. For an element γ ∈ F×, the cyclic algebra (K/F, σ, γ) of

degree m is the right K-vector space

K ⊕ eK ⊕ e2K ⊕ · · · ⊕ em−1K,

with multiplication defined by the rules ke = eσ(k) and em = γ. The associative and

distributive laws then give us the full multiplication for the algebra (K/F, σ, γ). The set

{1, e, e2, . . . , em−1} is called the standard basis for the cyclic algebra (viewed as a right K-

vector space). A cyclic algebra is called a division algebra if it contains no zero divisors.

(K/F, σ, γ) is a division algebra for all γ ∈ F× with γs 6∈ NK/F (K×) for all s, 1 ≤ s ≤ m−1,

which are prime divisors of m.
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Let a = a0 + ea1 + · · ·+ em−1am−1 ∈ (K/F, σ, γ). The left regular representation λ(a) of

a yields an m × m matrix with entries in K:

(1) λ(a) =




a0 γσ(am−1) γσ2(am−2) · · · γσm−1(a1)

a1 σ(a0) γσ2(am−1) · · · γσm−1(a2)

a2 σ(a1) σ2(a0) · · · γσm−1(a3)
...

...
...

. . .
...

am−1 σ(am−2) σ2(am−3) · · · σm−1(a0)




.

If we represent elements of (K/F, σ, γ) as column vectors a = (a0, a1, . . . , am−1)
T , b =

(b0, b1, . . . , bm−1)
T , then we can write the multiplication in (K/F, σ, γ) as the matrix multi-

plication

ab = λ(a)b.

It follows that if a is not a left zero divisor in (K/F, σ, γ), i.e. ab = 0 if and only if b = 0,

then the matrix λ(a) is invertible. Let D = (K/F, σ, γ) be a cyclic algebra of degree m,

then the left regular representation λ : D → Matm×m(K) is an algebra homomorphism,

i.e. λ(x)λ(y) = λ(xy) for all x, y ∈ D. Moreover, if D is a division algebra then the set

{λ(a) | 0 6= a ∈ D} is an infinite set of invertible matrices and gives rise to a fully diverse

linear STBC when we work over appropriate base fields (usually number fields).

3. Mathematical background: an iterated construction method for

nonassociative algebras out of associative cyclic algebras

In the following, let F and L be fields, let K be a cyclic extension of both F and L such

that

(1) Gal(K/F ) = 〈σ〉 and [K : F ] = m,

(2) Gal(K/L) = 〈τ〉 and [K : L] = n,

(3) σ and τ commute: στ = τσ

and F0 = L ∩ F . Let D = (K/F, σ, γ) be a cyclic division algebra of degree m for some

suitable element γ ∈ F0. For x = x0 + ex1 + e2x2 + · · ·+ en−1xn−1 ∈ D, define the L-linear

map τ̃ : D → D via

τ̃(x) = τ(x0) + eτ(x1) + e2τ(x2) + · · · + en−1τ(xn−1).

Definition 1. Pick d ∈ D× and define an algebra multiplication on the right D-module

Itn(D, τ, d) = D ⊕ fD ⊕ f2D ⊕ · · · ⊕ fn−1D

with basis 1, f, . . . , fn−1 by the rules

(f ix)(f jy) =





f i+j τ̃ j(x)y if i + j < n

f (i+j)−ndτ̃ j(x)y if i + j ≥ n
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for all x, y ∈ D.

Itn(D, τ, d) is a unital nonassociative algebra over F0. For n = 2, this algebra is studied

in [11]; it is implicitly used in the iterated codes constructed in [20].

Remark 1. (i) Our assumption that γ is also an element of L implies that τ̃(xy) = τ̃(x)τ̃ (y)

for all x, y ∈ D.

(ii) The fact that τ(γ) = γ also implies that λ(τ̃ (x)) = τ(λ(x)) for all x ∈ D, where, for any

matrix X , τ(X) means applying τ to each entry of the matrix. In particular, this means

that for d ∈ D×, the condition that d 6= zτ̃(z) · · · τ̃n−1(z) for all z ∈ D is equivalent to

λ(d) 6= Zτ(Z) · · · τn−1(Z) for all Z = λ(z) ∈ λ(D).

(iii) A = Itn(D, τ, d) is a right D-module and left multiplication λx in A is a D-linear map, so

that we have a well-defined injective additive map λ : A → EndD(A) ⊂ Matn(D), x 7→ λx

and we can consider the matrix given by left multiplication with entries in D.

(iv) If d ∈ F×, the algebra Itn(D, τ, d) is identical to the algebra used in [21]: The multiplica-

tion of the algebra used in [21] is defined on the right K-module D⊕fD⊕f2D⊕· · ·⊕fn−1D

via

(f ix)(f jy) =





f i+j τ̃ j(x)y if i + j < n

f (i+j)−nτ̃ j(x)yd if i + j ≥ n

for all x, y ∈ D, hence is different when i + j ≥ n and d 6∈ F : the coefficient of f (i+j)−n

in the product is dτ̃ j(x)y. Only by choosing d ∈ L×, this left multiplication λx becomes

a K-endomorphism and can be represented by a matrix with entries in K. (This is why

d ∈ L \ F is assumed in the design procedure of the codes of [21].)

The difference between our codes and those in [21] is that in our codes, the matrix

multiplication λ(d)τ i(λ(xi)) will appear as entries above the main diagonal, whereas in

[21], the corresponding entries are given by scalar multiplication dτ i(λ(xi)), with d being

restricted to be an element of L. Moreover, we are able to give conditions for our codes to

be fully diverse, which seem hard to obtain for the codes treated in [21].

For x = x0 + fx1 + f2x2 + · · · + fn−1xn−1 ∈ Itn(D, τ, d), where xi ∈ D, we define the

n × n matrix

M(x) =




x0 dτ̃(xn−1) dτ̃2(xm−2) · · · dτ̃n−1(x1)

x1 τ̃(x0) dτ̃2(xn−1) · · · dτ̃n−1(x2)

x2 τ̃(x1) τ̃2(x0) · · · dτ̃n−1(x3)
...

...
...

. . .
...

xn−1 τ̃ (xn−2) τ̃2(xn−3) · · · τ̃n−1(x0)




with entries in D. If we represent y = y0 + fy1 + · · · fn−1yn−1 ∈ Itn(D, τ, d) as a column

vector (y0, y1, . . . , yn−1)
T , where each yi ∈ D, then we can write the product of x, y ∈

Itn(D, τ, d) as the matrix multiplication

xy = M(x)y.
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Since D is a right K-vector space of dimension m, Itn(D, τ, d) is a right K-vector space of

dimension mn. If {1, e, . . . , em−1} is the standard basis for D, then

{1, e, . . . , em−1, f, fe, . . . , fn−1em−1}

is a basis for Itn(D, τ, d) as a right K-vector space. Taking this into consideration, we write

elements in Itn(D, τ, d) as column vectors of length mn with entries in K. We can now

express the product of two elements x, y ∈ Itn(D, τ, d) by the matrix multiplication

xy = λ(M(x))y,

where λ(M(x)) is the mn × mn matrix defined by taking the left regular representation of

each entry in the matrix M(x). We write the matrix λ(M(x)) as

(2) λ(M(x)) =




λ(x0) λ(d)τ(λ(xn−1)) · · · λ(d)τn−1(λ(x1))

λ(x1) τ(λ(x0)) · · · λ(d)τn−1(λ(x2))
...

...
. . .

...

λ(xn−1) τ(λ(xn−2)) · · · τn−1(λ(x0))




with xi ∈ D; it is the matrix of left multiplication by the element x.

Theorem 2. Let D = (K/F, σ, γ) be a cyclic division algebra and let A = Itn(D, τ, d) for

some d ∈ D.

(i) For all x = x0 + fx1 + · · · + fn−1xn−1 ∈ A, det(λ(M(x)) ∈ F .

(ii) If d ∈ F0 then det(λ(M(x))) ∈ F0.

(iii) A is division if and only if λ(M(x)) is an invertible matrix for all non-zero x ∈ A.

(iv) If all the elements of λ(M(x)) belong to OK , the ring of integers of K (i.e. γ ∈ OL),

then det(λ(M(x)) ∈ F ∩ OK = OF .

Proof. (i) Clearly det(λ(M(x)) ∈ K. To show it belongs to F we calculate σ(det(λ(M(x))) =

det(σ(λ(M(x))). For all elements u = u0 + eu1 + · · · em−1um−1 ∈ D, we have λ(u) =

Pσ(λ(x))P−1 where P is the matrix




0 0 · · · 0 γ

1 0 · · · 0 0

0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0




,

and P−1 is the matrix 


0 1 0 · · · 0

0 0 1 · · · 0
...

...
. . .

...
...

0 0 0 · · · 1

γ−1 0 0 · · · 0




.
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In particular, this is also true for the entries λ(d)λ(τ̃ i(x)) which appear above the main

diagonal in the matrix λ(M(x)) since they are again representations of elements in D. It

follows that

λ(M(x)) = diag[P, P, . . . , P ]σ(λ(M(x)))diag[P−1, . . . , P−1],

and thus det(σ(λ(M(x))) = det(λ(M(x))).

(ii) If d ∈ F0, then the matrix λ(M(x)) is exactly the matrix M considered in [21] in which

it is shown that the determinant belongs to L.

(iii) is proved in [26] and (iv) follows from (ii). �

Matrices representing left multiplication with elements in Itn(D, τ, d) will form our space-

time codes. Because the matrices λ(M(x)) define multiplication in Itn(D, τ, d), we get the

following, more general, version of Theorem 2 in [21].

Theorem 3. Let A = Itn(D, τ, d) and let x ∈ A be nonzero. If x is not a left zero divisor

in A, then the matrix of left multiplication by x, λ(M(x)) has nonzero determinant. In

particular, if C ⊆ A is a linear subset of A such that every x ∈ C is not a left zero divisor,

then

C = {λ(M(x)) | x ∈ C}

forms a fully diverse, linear STBC.

Proof. Suppose λ(M(x)) is a singular matrix. Then the system of mn linear equations

λ(M(x))(y0, . . . , ymn−1)
T = 0

has a non-trivial solution (y0, . . . , ymn−1) ∈ Kmn which contradicts the assumption that x

is not a left zero divisor in A. �

Employing that D = Nucm(Itn(D, τ, d)) [26] and following the proof of in [21, Theorem

1] (note that D ⊂ Nucm(Itn
R(D, τ, d)) is also required for the proof of [21, Theorem 1] to

work), we obtain:

Theorem 4. Let D = (K/F, σ, γ) be a cyclic division algebra of degree m such that γ ∈ L

and let A = Itn(D, τ, d). All elements in A of the form x = x0 + fx1 are not left zero

divisors if and only if d 6= zτ̃(z)τ̃2(z) . . . τ̃n−1(z) for all z ∈ D.

Corollary 5. Let D = (K/F, σ, γ) be a cyclic division algebra of degree m such that γ ∈ L

and let A = Itn(D, τ, d).

(i) If ND/F (d) 6= aτ(a) · · · τn−1(a) for all a ∈ ND/F (D×), then all elements in A of the

form x = x0 + fx1 are not left zero divisors.

(ii) Suppose F ⊂ L and ND/F (d) 6∈ ND/F (D×)n, then all elements in A of the form x =

x0 + fx1 are not left zero divisors.

(iii) Suppose F/F0 is a cyclic extension of degree n with Galois group generated by the
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automorphism τ . If ND/F (d) 6∈ NF/F0
(F ), then all elements of A of the form x = x0 + fx1

are not left zero divisors.

Proof. Let ND/F be the norm of D. Since γ ∈ Fix(τ) = L we have ND/F (τ̃ (x)) =

τ(ND/F (x)) for all x ∈ D by [11], Proposition 4. Assume d = zτ̃(z) · · · τ̃n−1(z), then

ND/F (d) = ND/F (z)ND/F (τ̃ (z)) · · ·ND/F (τ̃n−1(z)) = ND/F (z)τ(ND/F (z)) · · · τ(ND/F (z)).

Put a = ND/F (z) to obtain (i). If additionally F ⊂ L = Fix(τ), this means that ND/F (d) =

ND/F (z)n and we have proved (ii). Since ND/F (z) ∈ F for all z ∈ D and NF/F0
(u) =

uτ(u) . . . τn−1(u) for all u in F , (iii) follows directly from (i). �

More generally, we know:

Theorem 6. Let A = Itn(D, τ, d) and C = {λ(M(x)) | x ∈ A}.
(i) C is a fully diverse, linear STBC if and only if the polynomial

f(t) = tn − d

is irreducible in the twisted polynomial ring D[t; τ̃−1].

(ii) Suppose that n is prime and F0 contains a primitive nth root of unity. Then C is a fully

diverse, linear STBC if and only if

d 6= zτ̃(z)τ̃2(z) · · · τ̃n−1(z) and τ̃n−1(d) 6= zτ̃(z) · · · τ̃n−1(z)

for all z ∈ D.

(iii) Suppose that n = 3. Then C is a fully diverse, linear STBC if and only if

d 6= zτ̃(z)τ̃(z)2 and τ̃2(d) 6= zτ̃(z)τ̃(z)2

for all z ∈ D.

Proof. C is a fully diverse, linear STBC if and and only if A is a division algebra by Theorem

2. Now A is a division algebra if and only if

(i) f(t) = tn − d ∈ D[t; τ̃−1] is irreducible [26].

(ii) d 6= zτ̃(z)τ̃2(z) · · · τ̃n−1(z) and τ̃n−1(d) 6= zτ̃(z) · · · τ̃n−1(z) for all z ∈ D [26].

(iii) d 6= zτ̃(z)τ̃(z)2 and τ̃2(d) 6= zτ̃(z)τ̃(z)2 for all z ∈ D [26]. �

Analogously, using results from [26], we obtain:

Proposition 7. Let A = Itn(D, τ, d), d ∈ F , and C = {λ(M(x)) | x ∈ A}.
(i) Suppose that n is prime and F0 contains a primitive nth root of unity. If τ(dm) 6= dm

and τn−1(dm) 6= dm for all z ∈ D, then C is a fully diverse, linear STBC.

(ii) Let n = 3. If τ(dm) 6= dm and τ2(dm) 6= dm for all z ∈ D, then C is a fully diverse,

linear STBC.

We refer the reader to [26] for some additional criteria for A to be a division algebra,

which make the corresponding C a fully diverse, linear STBC.
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3.1. Special Case: If n = 2 in Definition 1, A = It2(D, τ, d) = D ⊕ fD for some cyclic

division algebra D, cf. [20] and [11]. It2(D, τ, d) is a division algebra if and only if d 6= zτ̃(z)

for all z ∈ D× [11]. The fully diverse STBC corresponding to our construction then consists

of the matrices [
λ(x0) λ(d)τ(λ(x1))

λ(x1) τ(λ(x0))

]
,

of left multiplication by elements in the division algebra A, where x0, x1 ∈ D.

Example 8. Suppose that D is a quaternion division algebra and let d = d0 + ed1 ∈ D be

such that d 6= zτ̃(z) for all z ∈ D. Let x = x0 + ex1, y = y0 + ey1 ∈ D×, where xi, yi ∈ K.

Then

λ(x) =

[
x0 γσ(x1)

x1 σ(x0)

]
.

The matrix of left multiplication by the element x + fy ∈ A = It2(D, τ, d) is represented by
[

λ(x) λ(d)τ(λ(y))

λ(y) τ(λ(x))

]
,

with

λ(d)τ(λ(y)) =

[
d0τ(y0) + γσ(d1)τ(y1) γ(d0στ(y1) + σ(d1)στ(y0))

d1τ(y0) + σ(d0)τ(y1) d1γστ(y1) + σ(d0)στ(y0)

]
=

[
u1 u2

u3 u4

]
.

Thus, the 4 × 4 matrix of left multiplication by x + fy is given by



x0 γσ(x1) u1 u2

x1 σ(x0) u3 u4

y0 γσ(y1) τ(x0) γτ(σ(x1))

y1 σ(y0) τ(x1) τ(σ(x0))




.

Since by our assumption that γ ∈ F0, the algebra D is defined over F0, we know that

for all choices of d ∈ F \ F0, this code always is fully diverse and in fact, represents left

multiplication in the tensor product of two quaternion algebras, one of them nonassociative

[26, Theorem 14]. (Even for d ∈ L, these are still different codewords to those built in [21,

p. 5], since by assumption, σ acts non-trivially on L.)

Example 9. Let F = Q(
√

5) and let K be the quadratic extension of F , K = Q(i,
√

5).

The automorphism σ : K → K is defined by σ(i) = −i. Let D be the quaternion algebra

(Q(i,
√

5)/Q(
√

5), σ,−1) = (−1,−1)Q(
√

5) which is a subalgebra of Hamilton’s quaternion

algebra and, therefore, is a division algebra.

Let L = Q(i) so that K/L is a quadratic separable field extension with nontrivial auto-

morphism τ :
√

5 7→ −
√

5. The algebra It2(D, τ, i) will be considered later in Section 5;

here we give a few more examples when It2(D, τ, d) is a division algebra for some d ∈ D.

Let ϕ = 1+
√

5
2 be the golden ratio. Consider ϕ = ϕ+ e0 ∈ D, then ND/F (ϕ) = ϕ2 6∈ Q so

by Corollary 5 (iii), It2(D, τ, ϕ) is a division algebra. Similarly we could consider d = 0+eϕ.

Again ND/F (d) = ϕ2, so It2(D, τ, d) is division and we get another fully diverse code.
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Example 10. Suppose that D = (K/F, σ, γ) is a cyclic division algebra of degree 3 and let

d ∈ K. Let x = x0 + ex1 + e2x2, y = y0 + ey1 + e2y2 ∈ D where each xi, yi ∈ K. Then

λ(x) =




x0 γσ(x2) γσ2(x1)

x1 σ(x0) γσ2(x2)

x2 σ(x1) σ2(x0)


 .

We have λ(d) = diag[d, σ(d), σ2(d)]. For the element x + fy ∈ It2(D, τ, d) = A, the 6 × 6

left multiplication matrix is given by



x0 γσ(x2) γσ2(x1) dτ(y0) dγτσ(y2) dγτσ2(y1)

x1 σ(x0) γσ2(x2) σ(d)τ(y1) σ(d)τσ(y0) σ(d)γτσ2(y2)

x2 σ(x1) σ2(x0) σ2(d)τ(y2) σ2(d)τσ(y1) σ2(d)τσ2(y0)

y0 γσ(y2) γσ2(y1) τ(x0) γτσ(x2) γτσ2(x1)

y1 σ(y0) γσ2(y2) τ(x1) τσ(x0) γτσ2(x2)

y2 σ(y1) σ2(y0) τ(x2) τσ(x1) τσ2(x0)




.

4. Design Procedure for Space-Time Block Codes

4.1. To construct fully diverse space-time block codes for mn transmit antennas we make

the following assumptions.

(1) Let L, F be number fields, and L or F be either Q(i) or Q(ω), where ω is a primitive

third root of unity. This allows us to use the QAM constellation (a finite subset of

Z(i)) or the HEX constellation (a finite subset of Z(ω)).

(2) Let D = (K/F, σ, γ) be a cyclic division algebra of degree m over F , where K is a

cyclic extension of L of degree n with Galois group generated by τ .

(3) σ and τ commute.

(4) γ ∈ F0.

(5) A = Itn(D, τ, d) with d ∈ D is such that f(t) = tn − d ∈ D[t; ˜̃τ
−1

] is irreducible, or,

if we look at the sparse codes treated in 4.2, such that d 6= zτ̃(z) . . . τ̃n−1(z).

Remark 11. If L is either Q(i) or Q(ω) and we want the code to have NVD we have to

choose d ∈ OF0
, such that A = Itn(D, τ, d) is division. Then det(X) ∈ L for all X in the

code built using left multiplication in A and the code has NVD, if all matrix entries are

chosen in OK . If F is Q(i) or Q(ω) and d ∈ OK is such that Itn(D, τ, d) is division then

det(X) ∈ OF for all X in that code and the code has NVD, if all matrix entries are chosen

in OK .

The next step depends on whether F or L is Q(i) or Q(ω). It L is either Q(i) or Q(ω) then

proceed as described in the following, if F is either Q(i) or Q(ω), adjust the next step and

consider matrix entries as linear combinations of m linear independent entries in F etc.

Each codeword in C is a matrix of the form given in (2), where λ(x) is the m×m matrix

with entries in K given by the left regular representation in D. For A division, these are

invertible mn × mn matrices with entries in K. Each entry of λ(xi) can be viewed as a
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linear combination of n independent elements of L. As such we express each entry of these

as a linear combination of some chosen L-basis {θ1, θ2, . . . , θn | θi ∈ OK} over OL. Thus an

entry λ(x) has the form

(3) λ(x) =




∑n
i=1 siθi γσ(

∑n
i=1 si+nm−nθi) . . . γσm−1(

∑n
i=1 si+nθi)∑n

i=1 si+nθi σ(
∑n

i=1 siθi) . . . γσm−1(
∑n

i=1 si+2nθi)
...

...
. . .

...
∑n

i=1 si+nm−nθi σ(
∑n

i=1 si+nm−2nθi) . . . σm−1(
∑n

i=1 siθi)




.

The elements si, 1 ≤ i ≤ mn, are the complex information symbols with values from QAM

(Z(i)) or HEX (Z(ω)) constellations.

Proposition 12. If mn channels are used the space-time block code C consisting of matrices

S of the form (2) with entries as in (3) has a rate of n complex symbols per channel use.

Proof. The matrices S encode n × mn independent complex information symbols in mn

channel uses giving a rate of n complex symbols per channel use. �

If the decoding complexity of C is less than O(Mmn2

), then C is fast-decodable.

Lemma 13. If the subset of codewords in C made up of the diagonal block matrix

S(λ(x0)) = diag[λ(x0), τ(λ(x0)) . . . , τn−1(λ(x0))]

is l-group decodable, then C has ML-decoding complexity O(Mmn2−mn(l−1)/l)).

Proof. To analyze ML-decoding complexity, we have to minimize the ML-complexity metric

||Y −√
ρHS||2

over all codewords S ∈ C. Every S ∈ C can be written as

S = S(λ(x0)) + S(λ(x1)) + · · · + S(λ(xn−1))

with S(λ(x0)) = diag[λ(x0), τ(λ(x0)), τ(λ(x0))] and S(λ(xj)) being the matrix obtained by

putting λ(xj) = 0, for all j 6= i in (2). Each S(λ(xi)) contains nm complex information

symbols. Since S(λ(x0)) is l-group decodable by assumption, we need O(Mnm/l) compu-

tations to compute minS(λ(x0))){||Y − √
ρHS||2}. So the ML-decoding complexity of C is

O(M (n−1)(nm)+nm/l) = O(Mmn2−mn(l−1)/l)) �

Example 14. If D = Cay(K/F,−1) is a quaternion division algebra which is a subalgebra

of Hamilton’s quaternion algebra (i.e., σ commutes with complex conjugation here), then a

code consisting of the block diagonal matrices

diag[λ(x0), τ(λ(x0)) . . . , τn−1(λ(x0))]

with entries as in (3) is four-group decodable if take the values si from M -QAM and two

group-decodable if take the values si from M -HEX. Consequently, C has decoding complex-

ity O(M (n−1)(2n)+n/2) = O(M2n2−3n/2) if the si take values from M -QAM and decoding
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complexity O(M (n−1)(2n)+n) = O(M2n2−n) if the si take values from M -HEX [21, Propo-

sition 7 and text after]. Therefore both times it is fast-decodable, since this is less than

O(M2n2

). Recall that the Alamouti code has the best coding gain among known 2×1 codes

of rate one, so in our examples in 5.1, 5.4, 5.5, we will use D = (−1,−1)F .

4.2. Codes with sparse entries. Consider the linear subset {x + fy |x, y ∈ D, (x, y) 6=
(0, 0)} of A. By Theorem 4, this subset contains no left zero divisors of A. Our codes will

consist of the matrices

(4)




λ(x) 0 . . . λ(d)λ(τ̃n−1(y))

λ(y) λ(τ̃ (x)) . . . 0

0 λ(τ̃ (y)) . . . 0
...

...
. . .

...

0 0 . . . λ(τ̃n−1(x))




representing left multiplication with these elements, where λ(x) is the m × m matrix given

by the left regular representation of D. For x 6= 0, these are invertible mn × mn matrices

with entries in K.

Proposition 15. If mn channels are used the space-time block code consisting of matrices

of the form given in (4) with entries as in (3) has a rate of 2 complex symbols per channel

use.

Proof. The matrices of (4) encode 2mn independent complex information symbols in mn

channel uses giving a rate of 2 complex symbols per channel use. �

For the analysis of the ML-decoding complexity of such codes, the reader is referred to

Section 6.

Remark 16. For the code constructions in [21], it is assumed that d ∈ L \ F and that

L 6= F . We do not assume that L 6= F and do not restrict the choice of d ∈ D. Comparing

their code matrices with ours, we note:

If d ∈ F they would have the same shape (however, this case is not studied in [21]).

If d ∈ L \ F (or even d ∈ K \ L), they differ.

Moreover, we do not need to restrict ourselves to sparse matrices with many zero entries

anymore as was done in [21], since we have conditions on the whole set of matrices to be a

fully diverse code. We can therefore construct fast-decodable codes of rate n.

5. Specific Code Examples

We give five specific code examples using the same algebras and automorphisms as in

the examples of [21]. Since the Alaouti code has the lowest ML-decoding complexity among

the STBCs obtained from associative division algebras, the division algebra D will be a

subalgebra of Hamilton’s quaternions in each example. The choice of the extensions L and
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K from [21] seems optimal since they are related to the corresponding perfect STBCs in the

respective dimensions. The code matrices obtained this way thus look similar to the ones

of [21], and although both of our codes do not have NVD, the codeword error rates for the

sparse 6 × 2 and 6 × 2 MIDO codes we present in 5.2 and 5.4 are similar.

Thus although the NVD property is sufficient for these types of asymmetric MIDO codes

to have DMT-optimality [22], it may not always be required.

One advantage of our codes is that we have conditions for the underlying algebras to be

division, and thus do not need to rely on Theorem 3 to build fully diverse ones, i.e. we can

also build fully diverse codes which do not have zero entries using Theorem 6, which we do

in 5.3.

5.1. A 4 × 2 MIDO System. Let F = Q(
√

5) and let K be the quadratic extension of

F , K = Q(i,
√

5). The automorphism σ : K → K is defined by σ(i) = −i. Let D be

the quaternion algebra (Q(i,
√

5)/Q(
√

5), σ,−1) = (−1,−1)Q(
√

5) which is a subalgebra of

Hamilton’s quaternion algebra and, therefore, is a division algebra.

Let L = Q(i) so that K/L is a quadratic separable field extension with nontrivial au-

tomorphism τ :
√

5 7→ −
√

5. Let A = It2(D, τ, i). It was shown in [21, Proposition

3] that i 6= zτ̃(z) for any z ∈ D and so A is a division algebra by Theorem 4. It fol-

lows that the matrices of left multiplication by nonzero elements x + fy ∈ A, where

x = x0 + ex1, y = y0 + ey1 ∈ D×, are invertible. Following the design procedure in the

previous section and Example 8, our codewords are

(5) C4×2 =








x0 −σ(x1) iτ(y0) −iστ(y1)

x1 σ(x0) −iτ(y1) −iστ(y0)

y0 −σ(y1) τ(x0) −στ(x1)

y1 σ(y0) τ(x1) στ(x0)








.

We have xi = xi0θ1 +xi1θ2 and yi = yi0θ1 + yi1θ2 for i = 0, 1, where {θ1, θ2} is a suitable

Q(i) basis for Q(i,
√

5) and each xij and yij take values in M -QAM ⊂ Z(i). Following [7],

we pick θ1 = α, θ2 = αθ, where α = 1 + i(1 − θ) and θ = (1 +
√

5)/2 so that {α, αθ} is a

basis of a principal ideal of OK generated by α. By Theorem 2 (iv), the determinant of any

nonzero codeword is an element in OF .

Remark 17. We observe that for all non-zero a = a0 +
√

5a1 with ai ∈ Q, we have

aτ(a) = (a0 +
√

5a1)(a0−
√

5a1) = a2
0−5a2

1 ∈ Q, and that for x = x0 + ix1 + jx2 + ijx3 ∈ D,

we get NK/F (x) = x2
0 + x2

1 + x2
2 + x2

3 ∈ Q(
√

5) with xi ∈ Q(
√

5). By Corollary 5, hence

any d ∈ D such that NK/F (d) 6∈ Q will yield a division algebra It2(D, τ, d) and therefore a

fully diverse code. E.g., any d = d0 +
√

5d1 with d0, d1 ∈ Q×, will yield a division algebra

It2(D, τ, d).

5.2. A 6 × 2 MIDO System. Let ω denote the primitive third root of unity and θ =

ζ7 + ζ−1
7 = 2 cos(2π

7 ) where ζ7 is a primitive 7th root of unity and let F = Q(θ). Let
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K = F (ω) = Q(ω, θ) and take the quaternion division algebra D = (K/F, σ,−1). Note that

σ : i 7→ −i and therefore σ(ω) = ω2. Finally, we let L = Q(ω) so that K/L is a cubic

cyclic field extension whose Galois group is generated by the automorphism τ : ζ7 + ζ−1
7 7→

ζ2
7 + ζ−2

7 . It was shown in [21] that ω 6= zτ̃(z)τ̃2(z) for all z ∈ D, therefore, in the algebra

A = It3(D, τ, ω), all elements of the form x + fy are not left zero divisors where x, y ∈ D

are nonzero. It follows that the code consisting of all matrices of the form



λ(x) 0 λ(ω)λ(τ̃2(y))

λ(y) λ(τ̃ (x)) 0

0 λ(τ̃ (y)) λ(τ̃2(x))


 ,

where x, y are not both zero, is fully diverse. If x = x0 + ex1 and y = y0 + ey1 where

xi, yi ∈ K, then the 6 × 6 matrix is given by




x0 −σ(x1) 0 0 ωτ2(y0) −ωτ2σ(y1)

x1 σ(x0) 0 0 ω2τ2σ(y1) ω2τ2σ(y0)

y0 −σ(y1) τ(x0) −τσ(x1) 0 0

y1 σ(y0) τ(x1) τσ(x0) 0 0

0 0 τ(y0) −τσ(y1) τ2(x0) −τ2σ(x1)

0 0 τ(y1) τσ(y0) τ2(x1) τ2σ(x0)




.

Again, following [7], we let θ1 = 1 + ω + θ, θ2 = −1 − 2ω + ωθ2 and θ3 = (−1 − 2ω) +

(1 + ω)θ + (1 + ω)θ2 so that {θ1, θ2, θ3} is a basis of a principal ideal in OK generated by

θ1. Thus, taking xi = xi1θ1 + xi2θ2 + xi3θ3, yi = yi1θ1 + yi2θ2 + yi3θ3, where the xij , yij are

values in the M -HEX ⊂ Z[ω] constellation, we encode 12 complex information symbols with

each codeword. By Theorem 2, the determinant of any nonzero codeword is an element in

OF .

5.3. Take the setup in Section 5.2 and note that τ̃2(ω) = ω, thus also ω 6= zτ̃(z)τ̃2(z) for

all z ∈ D and so It3(D, τ, ω) is a division algebra by Theorem 6 (ii). Thus

(6) C6×2 =




λ(x) λ(ω)λ(τ̃ (z)) λ(ω)λ(τ̃2(y))

λ(y) λ(τ̃ (x)) λ(ω)λ(τ̃2(z))

λ(z) λ(τ̃ (y)) λ(τ̃2(x))


 ,

with x, y, z not all zero, is a fully diverse code. Write x = x0+ex1, y = y0+ey1, z = z0+ez1,

where xi, yi, zi ∈ K, then a 6 × 6 matrix in C6×2 is given by

S =




x0 −σ(x1) ωτ̃ (z0) −ωτ̃σ(z1) ωτ̃2(y0) −ωτ̃2σ(y1)

x1 σ(x0) ω2τ̃ (z1) ω2τ̃σ(z0) ω2τ̃2σ(y1) ω2τ̃2σ(y0)

y0 −σ(y1) τ̃ (x0) −τ̃σ(x1) ωτ̃2(z0) −ωτ̃2σ(z0)

y1 σ(y0) τ̃ (x1) τ̃σ(x0) ω2τ̃2(z1) ω2τ̃2σ(z1)

z0 σ(z0) τ̃ (y0) −τ̃σ(y1) τ̃2(x0) −τ̃2σ(x1)

z1 −σ(z1) τ̃ (y1) τ̃σ(y0) τ̃2(x1) τ̃2σ(x0)



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and the code has rate 3. With the same encoding as in 5.2., we encode 18 complex infor-

mation symbols with each codeword S. By Theorem 2, the determinant of any nonzero

codeword S is an element in OF .

5.4. An 8 × 2 MIDO System. Let:

(1) θ = ζ15 + ζ−1
15 = 2 cos 2π

15 where ζ15 is a primitive 15th root of unity and F = Q(θ).

(2) K = F (i) and D = (K/F, σ,−1) which is a subalgebra of Hamilton’s quaternions.

(3) L = Q(i) so that K/L is a cyclic field extension of degree 4 with Galois group

generated by the automorphism τ : ζ15 + ζ−1
15 7→ ζ2

15 + ζ−2
15 .

(4) A = It4(D, τ, i).

It was shown in [21] that i 6= zτ̃(z)τ̃2(z)τ̃3(z) for any z ∈ D and hence elements of the form

x + fy ∈ A, x, y ∈ D nonzero, are not left zero divisors. Therefore, the matrices of left

multiplication by such elements are invertible and

C8×2 =








λ(x) 0 0 λ(i)λ(τ̃3(y))

λ(y) λ(τ̃ (x)) 0 0

0 λ(τ̃ (y)) λ(τ̃2(x)) 0

0 0 λ(τ̃2(y)) λ(τ̃3(x))








is fully diverse. If x = x0 + ex1 for x0, x1 ∈ K, then

λ(x) =

[
x0 −σ(x1)

x1 σ(x0)

]
,

and similarly for λ(y). It should be noted that the top right block matrix now has the form

[
iτ3(y0) −iτ3σ(y1)

−iτ3(y1) −iτ3σ(y0)

]
,

which is different from the matrix in [21, p. 9]. By Theorem 2 (iv), the determinant of any

nonzero codeword is an element in OF .

5.5. A 12 × 2 MIDO System. In this configuration we have the following parameters:

(1) θ = ζ28 + ζ−1
28 = 2 cos π

14 where ζ28 is a primitive 28th root of unity and F = Q(θ).

(2) K = F (ω) and D = (K/F, σ,−1) which is a subalgebra of Hamilton’s quaternions.

(3) L = Q(ω) so that K/L is a cyclic field extension of degree 6 with Galois group

generated by the automorphism τ : ζ28 + ζ−1
28 7→ ζ2

28 + ζ−2
28 .

(4) A = It6(D, τ,−ω).

It was shown in [21] that −ω 6= zτ̃(z)τ̃2(z) . . . τ̃5(z) for any z ∈ D and hence elements of

the form x + fy ∈ A, x, y ∈ D nonzero, are not left zero divisors. Therefore, the matrices of
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left multiplication by such elements are invertible and

C12×2 =








λ(x) 0 0 0 0 −λ(ω)λ(τ̃5(y))

λ(y) λ(τ̃ (x)) 0 0 0 0

0 λ(τ̃ (y)) λ(τ̃2(x)) 0 0 0

0 0 λ(τ̃2(y)) λ(τ̃3(x)) 0 0

0 0 0 λ(τ̃3(y)) λ(τ̃4(x)) 0

0 0 0 0 λ(τ̃4(y)) λ(τ̃5(x))








is fully diverse. If y = y0 + ey1 for y0, y1 ∈ K, then

λ(x) =

[
y0 −σ(y1)

y1 σ(y0)

]
.

Note that the top right block matrix has the form
[

−ωτ5(y0) ωτ5σ(y1)

−ω2τ5(y1) −ω2τ5σ(y0)

]
,

which is different from the matrix in [21, p. 9]. By Theorem 2 (iv), the determinant of any

nonzero codeword is an element in OF .

6. ML-decoding Complexity

The analysis of the ML-decoding complexity of our sparse codes 5.1, 5.2, 5.4. and 5.5 is

exactly the same as that in [21, V.], because our codewords differ from those in [21] only in

the top right block matrix, and the complexity of the off-diagonal block matrices is given

by exhaustive search. The reduced complexity comes from the block matrices on the main

diagonal which are exactly the same as in [21].

Using M -HEX complex constellations and the same notation as in [21], for the rate-3 code

C6×2 in 5.3 each codeword S(λ(x0)) = diag[λ(x0), τ(λ(x0)), τ(λ(x0))] is 2-group decodable

[21, Proposition 7]. S(λ(x0)), S(λ(x1)) and S(λ(x2)) contain each 6 complex information

symbols. To analyze ML-decoding complexity, we have to minimize the ML-complexity

metric

||Y −√
ρHS||2

over all codewords S. To calculate minS(λ(x0))){||Y −√
ρHS||2} requires O(M3) computa-

tions [21], thus the decoding complexity of the rate-3 code in 5.2 is O(M6+6+3) = O(M15).

It is fast-decodable. We are no experts in coding theory but assume that hard-limiting the

code as done in [21] might reduce the ML-complexity further, by a factor of
√

M .

7. Simulation Results

We now present simulation results (done by B. Sundar Rajan and L. P. Natarajan)

comparing the codeword error rate performance of the new codes with those from [21] for
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Figure 1. Comparison of codeword error rates for 4 × 2 MIMO, 4 and 8 bpcu.
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Figure 2. Comparison of codeword error rates for 6 × 2 MIMO, 4 bpcu.

nt = 4, 6 and 8 antennas under ML-decoding. In all the simulations we assume nr = 2

receive antennas and perfect channel knowledge at the receiver.

Fig. 1 shows the error performance for 4 × 2 MIMO, for data rates of 4 and 8 bits per

channel use (bpcu). Both the new sparse code and the code from [21] use 4-QAM and

16-QAM constellations to attain data rates of 4 and 8 bpcu respectively. The code from [21]

shows superior performance.
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Figure 3. Comparison of codeword error rates for 8 × 2 MIMO, 4 and 8 bpcu.

The codeword error rates for the sparse 6 × 2 MIMO and 4 bpcu are shown in Fig. 2.

Both codes use 4-HEX constellation to encode the information symbols, and both codes

have similar error performances.

The sparse nt = 8 code of this paper and the eight antenna code from [21] are compared

in Fig. 3 for 4 and 8 bpcu. Both codes use 4-QAM and 16-QAM constellations to achieve 4

and 8 bpcu respectively. We see that both the codes have similar error performance.

8. Conclusion and future work

Inspired by the work in [21] and [20] we defined a new family of nonassociative algebras

A = Itn(D, τ, d), and use their left multiplication to build fully diverse fast-decodable STBCs

of rate n: The definition employs several copies of a cyclic division algebra D which are

then equipped with a multiplicative structure. The left multiplication of A written as a

matrix provided us with STBCs which are fully diverse iff the algebra is division. We found

conditions for A to be a division algebra. This improves on previous code constructions:

the fully diverse codes in [21] have zero entries as soon as n is larger than 2, and so their

rate (number of independent complex symbols per channel use) is automatically limited to

2. We consequently were able to built a fast ML-decodable rate-3 code.

We believe our construction deserves further investigation: it is a straightforward gener-

alization of the one successfully used by Marking and Oggier for the n = 2 case to arbitrary

n, and can be applied to a range of different MIMO configurations.

We obtained conditions for the codes to be fully diverse for any n.
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The NVD property is not guaranteed for the example codes we constructed in Section 5,

whereas the codes obtained in [21], despite also being sparse with lots of zero entries, as soon

as n is larger than 2, were shown to have NVD. Nonetheless, the simulations we present for

our sparse codes for nt = 6 and nt = 8 have similar error performances as the comparable

codes from [21], so the NVD property is not reflected in their performance.

From a mathematical point of view, it makes sense to systematically investigate the

nonassociative algebras used both here and in [21], see [26]. A better understanding might

lead to a more refined way of using them in future code constructions. It would also be

interesting to obtain bounds for fast-decodability for codes obtained from nonassociative

algebras.
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