4,229 research outputs found

    A Distributed Demand-Side Management Framework for the Smart Grid

    Get PDF
    This paper proposes a fully distributed Demand-Side Management system for Smart Grid infrastructures, especially tailored to reduce the peak demand of residential users. In particular, we use a dynamic pricing strategy, where energy tariffs are function of the overall power demand of customers. We consider two practical cases: (1) a fully distributed approach, where each appliance decides autonomously its own scheduling, and (2) a hybrid approach, where each user must schedule all his appliances. We analyze numerically these two approaches, showing that they are characterized practically by the same performance level in all the considered grid scenarios. We model the proposed system using a non-cooperative game theoretical approach, and demonstrate that our game is a generalized ordinal potential one under general conditions. Furthermore, we propose a simple yet effective best response strategy that is proved to converge in a few steps to a pure Nash Equilibrium, thus demonstrating the robustness of the power scheduling plan obtained without any central coordination of the operator or the customers. Numerical results, obtained using real load profiles and appliance models, show that the system-wide peak absorption achieved in a completely distributed fashion can be reduced up to 55%, thus decreasing the capital expenditure (CAPEX) necessary to meet the growing energy demand

    Polynomial-Time Approximation Scheme for Data Broadcast

    Full text link
    The data broadcast problem is to find a schedule for broadcasting a given set of messages over multiple channels. The goal is to minimize the cost of the broadcast plus the expected response time to clients who periodically and probabilistically tune in to wait for particular messages. The problem models disseminating data to clients in asymmetric communication environments, where there is a much larger capacity from the information source to the clients than in the reverse direction. Examples include satellites, cable TV, internet broadcast, and mobile phones. Such environments favor the ``push-based'' model where the server broadcasts (pushes) its information on the communication medium and multiple clients simultaneously retrieve the specific information of individual interest. This paper presents the first polynomial-time approximation scheme (PTAS) for data broadcast with O(1) channels and when each message has arbitrary probability, unit length and bounded cost. The best previous polynomial-time approximation algorithm for this case has a performance ratio of 9/8

    A note on on-line broadcast scheduling with deadlines

    Get PDF
    In this paper, we study an on-line broadcast scheduling problem with deadlines, in which the requests asking for the same page can be satisfied simultaneously by broadcasting this page, and every request is associated with a release time, deadline and a required page with a unit size. The objective is to maximize the number of requests satisfied by the schedule. In this paper, we focus on an important special case where all the requests have their spans (the difference between release time and deadline) less than 2. We give an optimal online algorithm, i.e., its competitive ratio matches the lower bound of the problem.postprin
    • …
    corecore