36 research outputs found

    Practical design of optimal wireless metropolitan area networks: model and algorithms for OFDMA networks

    Get PDF
    A thesis submitted to the University of Bedfordshire, in partial fulfilment of the requirements for the degree of Ph.D.This thesis contributes to the study of the planning and optimisation of wireless metropolitan area networks, in particular to the access network design of OFDMAbased systems, where different parameters like base station position, antenna tilt and azimuth need to be configured during the early stages of the network life. A practical view for the solution of this problem is presented by means of the development of a novel design framework and the use of multicriteria optimisation. A further consideration of relaying and cooperative communications in the context of the design of this kind of networks is done, an area little researched. With the emergence of new technologies and services, it is very important to accurately identify the factors that affect the design of the wireless access network and define how to take them into account to achieve optimally performing and cost-efficient networks. The new features and flexibility of OFDMA networks seem particularly suited to the provision of different broadband services to metropolitan areas. However, until now, most existing efforts have been focused on the basic access capability networks. This thesis presents a way to deal with the trade-offs generated during the OFDMA access network design, and presents a service-oriented optimization framework that offers a new perspective for this process with consideration of the technical and economic factors. The introduction of relay stations in wireless metropolitan area networks will bring numerous advantages such as coverage extension and capacity enhancement due to the deployment of new cells and the reduction of distance between transmitter and receiver. However, the network designers will also face new challenges with the use of relay stations, since they involve a new source of interference and a complicated air interface; and this need to be carefully evaluated during the network design process. Contrary to the well known procedure of cellular network design over regular or hexagonal scenarios, the wireless network planning and optimization process aims to deal with the non-uniform characteristics of realistic scenarios, where the existence of hotspots, different channel characteristics for the users, or different service requirements will determine the final design of the wireless network. This thesis is structured in three main blocks covering important gaps in the existing literature in planning (efficient simulation) and optimisation. The formulation and ideas proposed in the former case can still be evaluated over regular scenarios, for the sake of simplicity, while the study of latter case needs to be done over specific scenarios that will be described when appropriate. Nevertheless, comments and conclusions are extrapolated to more general cases throughout this work. After an introduction and a description of the related work, this thesis first focuses on the study of models and algorithms for classical point-to-multipoint networks on Chapter 3, where the optimisation framework is proposed. Based on the framework, this work: - Identifies the technology-specific physical factors that affect most importantly the network system level simulation, planning and optimization process. - It demonstrates how to simplify the problem and translate it into a formal optimization routine with consideration of economic factors. - It provides the network provider, a detailed and clear description of different scenarios during the design process so that the most suitable solution can be found. Existing works on this area do not provide such a comprehensive framework. In Chapter 4: - The impact of the relay configuration on the network planning process is analysed. - A new simple and flexible scheme to integrate multihop communications in the Mobile WiMAX frame structure is proposed and evaluated. - Efficient capacity calculations that allow intensive system level simulations in a multihop environment are introduced. In Chapter 5: - An analysis of the optimisation procedure with the addition of relay stations and the derived higher complexity of the process is done. - A frequency plan procedure not found in the existing literature is proposed, which combines it with the use of the necessary frame fragmentation of in-band relay communications and cooperative procedures. - A novel joint two-step process for network planning and optimisation is proposed. Finally, conclusions and open issues are exposed

    Wireless distributed intelligence in personal applications

    Get PDF
    Tietokoneet ovat historian kuluessa kehittyneet keskustietokoneista hajautettujen, langattomasti toimivien järjestelmien suuntaan. Elektroniikalla toteutetut automaattiset toiminnot ympärillämme lisääntyvät kiihtyvällä vauhdilla. Tällaiset sovellukset lisääntyvät tulevaisuudessa, mutta siihen soveltuva tekniikka on vielä kehityksen alla ja vaadittavia ominaisuuksia ei aina löydy. Nykyiset lyhyen kantaman langattoman tekniikan standardit ovat tarkoitettu lähinnä teollisuuden ja multimedian käyttöön, siksi ne ovat vain osittain soveltuvia uudenlaisiin ympäristöälykkäisiin käyttötarkoituksiin. Ympäristöälykkäät sovellukset palvelevat enimmäkseen jokapäiväistä elämäämme, kuten turvallisuutta, kulunvalvontaa ja elämyspalveluita. Ympäristöälykkäitä ratkaisuja tarvitaan myös hajautetussa automaatiossa ja kohteiden automaattisessa seurannassa. Tutkimuksen aikana Seinäjoen ammattikorkeakoulussa on tutkittu lyhyen kantaman langatonta tekniikkaa: suunniteltu ja kehitetty pienivirtaisia radionappeja, niitten ohjelmointiympäristöä sekä langattoman verkon synkronointia, tiedonkeruuta ja reititystä. Lisäksi on simuloitu eri reititystapoja, sisäpaikannusta ja kaivinkoneen kalibrointia soveltaen mm. neurolaskentaa. Tekniikkaa on testattu myös käytännön sovelluksissa. Ympäristöälykkäät sovellusalueet ovat ehkä nopeimmin kasvava lähitulevaisuuden ala tietotekniikassa. Tutkitulla tekniikalla on runsaasti uusia haasteita ihmisten hyvinvointia, terveyttä ja turvallisuutta lisäävissä sovelluksissa, kuten myös teollisuuden uusissa sovelluksissa, esimerkiksi älykkäässä energiansiirtoverkossa.The development of computing is moving from mainframe computers to distributed intelligence with wireless features. The automated functions around us, in the form of small electronic devices, are increasing and the pace is continuously accelerating. The number of these applications will increase in the future, but suitable features needed are lacking and suitable technology development is still ongoing. The existing wireless short-range standards are mostly suitable for use in industry and in multimedia applications, but they are only partly suitable for the new network feature demands of the ambient intelligence applications. The ambient intelligent applications will serve us in our daily lives: security, access control and exercise services. Ambient intelligence is also adopted by industry in distributed amorphous automation, in access monitoring and the control of machines and devices. During this research, at Seinäjoki University of Applied Sciences, we have researched, designed and developed short-range wireless technology: low-power radio buttons with a programming environment for them as well as synchronization, data collecting and routing features for the wireless network. We have simulated different routing methods, indoor positioning and excavator calibration using for example neurocomputing. In addition, we have tested the technology in practical applications. The ambient intelligent applications are perhaps the area growing the most in information technology in the future. There will be many new challenges to face to increase welfare, health, security, as well as industrial applications (for example, at factories and in smart grids) in the future.fi=vertaisarvioitu|en=peerReviewed

    Mobile Ad hoc Networking: Imperatives and Challenges

    Get PDF
    Mobile ad hoc networks (MANETs) represent complex distributed systems that comprise wireless mobile nodes that can freely and dynamically self-organize into arbitrary and temporary, "ad-hoc" network topologies, allowing people and devices to seamlessly internetwork in areas with no pre-existing communication infrastructure, e.g., disaster recovery environments. Ad hoc networking concept is not a new one, having been around in various forms for over 20 years. Traditionally, tactical networks have been the only communication networking application that followed the ad hoc paradigm. Recently, the introduction of new technologies such as the Bluetooth, IEEE 802.11 and Hyperlan are helping enable eventual commercial MANET deployments outside the military domain. These recent evolutions have been generating a renewed and growing interest in the research and development of MANET. This paper attempts to provide a comprehensive overview of this dynamic field. It first explains the important role that mobile ad hoc networks play in the evolution of future wireless technologies. Then, it reviews the latest research activities in these areas, including a summary of MANET\u27s characteristics, capabilities, applications, and design constraints. The paper concludes by presenting a set of challenges and problems requiring further research in the future

    Underwater Sensor Networks: Applications, Advances, and Challenges

    Get PDF
    This paper examines the main approaches and challenges in the design and implementation of underwater wireless sensor networks. We summarize key applications and the main phenomena related to acoustic propagation, and discuss how they affect the design and operation of communication systems and networking protocols at various layers. We also provide an overview of communications hardware, testbeds, and simulation tools available to the research community

    Improved Internet Security Protocols Using Cryptographic One-Way Hash Chains

    Get PDF
    In this dissertation, new approaches that utilize the one-way cryptographic hash functions in designing improved network security protocols are investigated. The proposed approaches are designed to be scalable and easy to implement in modern technology. The first contribution explores session cookies with emphasis on the threat of session hijacking attacks resulting from session cookie theft or sniffing. In the proposed scheme, these cookies are replaced by easily computed authentication credentials using Lamport\u27s well-known one-time passwords. The basic idea in this scheme revolves around utilizing sparse caching units, where authentication credentials pertaining to cookies are stored and fetched once needed, thereby, mitigating computational overhead generally associated with one-way hash constructions. The second and third proposed schemes rely on dividing the one-way hash construction into a hierarchical two-tier construction. Each tier component is responsible for some aspect of authentication generated by using two different hash functions. By utilizing different cryptographic hash functions arranged in two tiers, the hierarchical two-tier protocol (our second contribution) gives significant performance improvement over previously proposed solutions for securing Internet cookies. Through indexing authentication credentials by their position within the hash chain in a multi-dimensional chain, the third contribution achieves improved performance. In the fourth proposed scheme, an attempt is made to apply the one-way hash construction to achieve user and broadcast authentication in wireless sensor networks. Due to known energy and memory constraints, the one-way hash scheme is modified to mitigate computational overhead so it can be easily applied in this particular setting. The fifth scheme tries to reap the benefits of the sparse cache-supported scheme and the hierarchical scheme. The resulting hybrid approach achieves efficient performance at the lowest cost of caching possible. In the sixth proposal, an authentication scheme tailored for the multi-server single sign-on (SSO) environment is presented. The scheme utilizes the one-way hash construction in a Merkle Hash Tree and a hash calendar to avoid impersonation and session hijacking attacks. The scheme also explores the optimal configuration of the one-way hash chain in this particular environment. All the proposed protocols are validated by extensive experimental analyses. These analyses are obtained by running simulations depicting the many scenarios envisioned. Additionally, these simulations are supported by relevant analytical models derived by mathematical formulas taking into consideration the environment under investigation

    Wireless Network Coding: Analysis, Control Mechanisms, and Incentive Design

    Get PDF
    The access to information anywhere and anytime is becoming a necessity in our daily life. Wireless technologies are expected to provide ubiquitous access to information and to support a broad range of emerging applications, such as multimedia streaming and video conferencing. The need to support the explosive growth in wireless traffic requires new tools and techniques that maximize the spectrum efficiency, as well as minimize delays and power consumption. This dissertation aims at novel approaches for the design and analysis of efficient and reliable wireless networks. We plan to propose efficient solutions that leverage user collaboration, peer-to-peer data exchange, and the novel technique of network coding. Network coding improves the performance of wireless networks by exploiting the broadcast nature of the wireless spectrum. The new techniques, however, pose significant challenges in terms of control, scheduling, and mechanism design. The proposed research will address these challenges by developing novel network controllers, packet schedulers, and incentive mechanisms that would encourage the clients to collaborate and contribute resources to the information transfer. Our contributions can be broadly divided into three research thrusts: (1) stochastic network coding; (2) incentive mechanism design; (3) joint coding and scheduling design. In the first thrust we consider a single-relay network and propose an optimal controller for the stochastic setting as well as a universal controller for the on-line setting. We prove that there exist an optimal controller for the stochastic setting which is stationary, deterministic, and threshold type based on the queue length. For the on-line setting we present a randomized algorithm with the competitive ratio of e/(e-1). In the second thrust, we propose incentive mechanisms for both centralized and distributed settings. In the third thrust, we propose joint coding and scheduling algorithms for time-varying wireless networks. The outcomes of our research have both theoretical and practical impact. We design and validate efficient algorithms, as well as provide insights on the fundamental properties of wireless networks. We believe these results are valuable for the industry as they are instrumental for the design and analysis of future wireless and cellular networks that are more efficient and robust
    corecore