134 research outputs found

    Optimal Vaccine Allocation to Control Epidemic Outbreaks in Arbitrary Networks

    Full text link
    We consider the problem of controlling the propagation of an epidemic outbreak in an arbitrary contact network by distributing vaccination resources throughout the network. We analyze a networked version of the Susceptible-Infected-Susceptible (SIS) epidemic model when individuals in the network present different levels of susceptibility to the epidemic. In this context, controlling the spread of an epidemic outbreak can be written as a spectral condition involving the eigenvalues of a matrix that depends on the network structure and the parameters of the model. We study the problem of finding the optimal distribution of vaccines throughout the network to control the spread of an epidemic outbreak. We propose a convex framework to find cost-optimal distribution of vaccination resources when different levels of vaccination are allowed. We also propose a greedy approach with quality guarantees for the case of all-or-nothing vaccination. We illustrate our approaches with numerical simulations in a real social network

    Dynamic control of modern, network-based epidemic models

    Get PDF
    In this paper we make the first steps to bridge the gap between classic control theory and modern, network-based epidemic models. In particular, we apply nonlinear model predictive control (NMPC) to a pairwise ODE model which we use to model a susceptible-infectious-susceptible (SIS) epidemic on nontrivial contact structures. While classic control of epidemics concentrates on aspects such as vaccination, quarantine, and fast diagnosis, our novel setup allows us to deliver control by altering the contact network within the population. Moreover, the ideal outcome of control is to eradicate the disease while keeping the network well connected. The paper gives a thorough and detailed numerical investigation of the impact and interaction of system and control parameters on the controllability of the system. For a certain combination of parameters, we used our method to identify the critical control bounds above which the system is controllable. We foresee that our approach can be extended to even more realistic or simulation-based models with the aim of applying these to real-world situations

    A comparison of node vaccination strategies to halt SIR epidemic spreading in real-world complex networks

    Get PDF
    : We compared seven node vaccination strategies in twelve real-world complex networks. The node vaccination strategies are modeled as node removal on networks. We performed node vaccination strategies both removing nodes according to the initial network structure, i.e., non-adaptive approach, and performing partial node rank recalculation after node removal, i.e., semi-adaptive approach. To quantify the efficacy of each vaccination strategy, we used three epidemic spread indicators: the size of the largest connected component, the total number of infected at the end of the epidemic, and the maximum number of simultaneously infected individuals. We show that the best vaccination strategies in the non-adaptive and semi-adaptive approaches are different and that the best strategy also depends on the number of available vaccines. Furthermore, a partial recalculation of the node centrality increases the efficacy of the vaccination strategies by up to 80%

    Strategic Decision-making about Travel during Disease Outbreaks: a Game Theoretical Approach

    Get PDF
    This is an accepted manuscript that has been accepted for publication by the Royal Society in the Journal of the Royal Society Interface and is made available under the following terms: https://royalsociety.org/journals/ethics-policies/media-embargo/Visitors can play an important role in the spread of infections. Here, we incorporate an epidemic model into a game theoretical framework to investigate the effects of travel strategies on infection control. Potential visitors must decide whether to travel to a destination that is at risk of infectious disease outbreaks. We compare the individually optimal (Nash equilibrium) strategy to the group optimal strategy that maximizes the overall population utility. Economic epidemiological models often find that individual and group optimal strategies are very different. In contrast, we find perfect agreement between individual and group optimal strategies across a wide parameter regime. For more limited regimes where disagreement does occur, the disagreement is (1) generally very extreme; (2) highly sensitive to small changes in infection transmissibility and visitor costs/benefits; and (3) can manifest either in a higher travel volume for individual optimal than group optimal strategies, or vice versa. The simulations show qualitative agreement with the 2003 Severe Acute Respiratory Syndrome (SARS) outbreak in Beijing, China. We conclude that a conflict between individual and group optimal visitor travel strategies during outbreaks may not generally be a problem, although extreme differences could emerge suddenly under certain changes in economic and epidemiological conditions.Early Career Scheme grant from the Hong Kong Research 343 Grant Council || PolyU 251001/14

    A Convex Framework for Epidemic Control in Networks

    Get PDF
    With networks becoming pervasive, research attention on dynamics of epidemic models in networked populations has increased. While a number of well understood epidemic spreading models have been developed, little to no attention has been paid to epidemic control strategies; beyond heuristics usually based on network centrality measures. Since epidemic control resources are typically limited, the problem of optimally allocating resources to control an outbreak becomes of interest. Existing literature considered homogeneous networks, limited the discussion to undirected networks, and largely proposed network centrality-based resource allocation strategies. In this thesis, we consider the well-known Susceptible-Infected-Susceptible spreading model and study the problem of minimum cost resource allocation to control an epidemic outbreak in a networked population. First, we briefly present a heuristic that outperforms network centrality-based algorithms on a stylized version of the problem previously studied in the literature. We then solve the epidemic control problem via a convex optimization framework on weighted, directed networks comprising heterogeneous nodes. Based on our spreading model, we express the problem of controlling an epidemic outbreak in terms of spectral conditions involving the Perron-Frobenius eigenvalue. This enables formulation of the epidemic control problem as a Geometric Program (GP), for which we derive a convex characterization guaranteeing existence of an optimal solution. We consider two formulations of the epidemic control problem -- the first seeks an optimal vaccine and antidote allocation strategy given a constraint on the rate at which the epidemic comes under control. The second formulation seeks to find an optimal allocation strategy given a budget on the resources. The solution framework for both formulations also allows for control of an epidemic outbreak on networks that are not necessarily strongly connected. The thesis further proposes a fully distributed solution to the epidemic control problem via a Distributed Alternating Direction Method of Multipliers (ADMM) algorithm. Our distributed solution enables each node to locally compute its optimum allocation of vaccines and antidotes needed to collectively globally contain the spread of an outbreak, via local exchange of information with its neighbors. Contrasting previous literature, our problem is a constrained optimization problem associated with a directed network comprising non-identical agents. For the different problem formulations considered, illustrations that validate our solutions are presented. This thesis, in sum, proposes a paradigm shift from heuristics towards a convex framework for contagion control in networked populations
    corecore