4,198 research outputs found

    A recursive paradigm to solve Boolean relations

    Get PDF
    A Boolean relation can specify some types of flexibility of a combinational circuit that cannot be expressed with don't cares. Several problems in logic synthesis, such as Boolean decomposition or multilevel minimization, can be modeled with Boolean relations. However, solving Boolean relations is a computationally expensive task. This paper presents a novel recursive algorithm for solving Boolean relations. The algorithm has several features: efficiency, wide exploration of solutions, and customizable cost function. The experimental results show the applicability of the method in logic minimization problems and tangible improvements with regard to previous heuristic approaches

    NP-hardness of circuit minimization for multi-output functions

    Get PDF
    Can we design efficient algorithms for finding fast algorithms? This question is captured by various circuit minimization problems, and algorithms for the corresponding tasks have significant practical applications. Following the work of Cook and Levin in the early 1970s, a central question is whether minimizing the circuit size of an explicitly given function is NP-complete. While this is known to hold in restricted models such as DNFs, making progress with respect to more expressive classes of circuits has been elusive. In this work, we establish the first NP-hardness result for circuit minimization of total functions in the setting of general (unrestricted) Boolean circuits. More precisely, we show that computing the minimum circuit size of a given multi-output Boolean function f : {0,1}^n ? {0,1}^m is NP-hard under many-one polynomial-time randomized reductions. Our argument builds on a simpler NP-hardness proof for the circuit minimization problem for (single-output) Boolean functions under an extended set of generators. Complementing these results, we investigate the computational hardness of minimizing communication. We establish that several variants of this problem are NP-hard under deterministic reductions. In particular, unless ? = ??, no polynomial-time computable function can approximate the deterministic two-party communication complexity of a partial Boolean function up to a polynomial. This has consequences for the class of structural results that one might hope to show about the communication complexity of partial functions

    Minimization for Generalized Boolean Formulas

    Full text link
    The minimization problem for propositional formulas is an important optimization problem in the second level of the polynomial hierarchy. In general, the problem is Sigma-2-complete under Turing reductions, but restricted versions are tractable. We study the complexity of minimization for formulas in two established frameworks for restricted propositional logic: The Post framework allowing arbitrarily nested formulas over a set of Boolean connectors, and the constraint setting, allowing generalizations of CNF formulas. In the Post case, we obtain a dichotomy result: Minimization is solvable in polynomial time or coNP-hard. This result also applies to Boolean circuits. For CNF formulas, we obtain new minimization algorithms for a large class of formulas, and give strong evidence that we have covered all polynomial-time cases

    AbsSynthe: abstract synthesis from succinct safety specifications

    Full text link
    In this paper, we describe a synthesis algorithm for safety specifications described as circuits. Our algorithm is based on fixpoint computations, abstraction and refinement, it uses binary decision diagrams as symbolic data structure. We evaluate our tool on the benchmarks provided by the organizers of the synthesis competition organized within the SYNT'14 workshop.Comment: In Proceedings SYNT 2014, arXiv:1407.493

    A Novel SAT-Based Approach to the Task Graph Cost-Optimal Scheduling Problem

    Get PDF
    The Task Graph Cost-Optimal Scheduling Problem consists in scheduling a certain number of interdependent tasks onto a set of heterogeneous processors (characterized by idle and running rates per time unit), minimizing the cost of the entire process. This paper provides a novel formulation for this scheduling puzzle, in which an optimal solution is computed through a sequence of Binate Covering Problems, hinged within a Bounded Model Checking paradigm. In this approach, each covering instance, providing a min-cost trace for a given schedule depth, can be solved with several strategies, resorting to Minimum-Cost Satisfiability solvers or Pseudo-Boolean Optimization tools. Unfortunately, all direct resolution methods show very low efficiency and scalability. As a consequence, we introduce a specialized method to solve the same sequence of problems, based on a traditional all-solution SAT solver. This approach follows the "circuit cofactoring" strategy, as it exploits a powerful technique to capture a large set of solutions for any new SAT counter-example. The overall method is completed with a branch-and-bound heuristic which evaluates lower and upper bounds of the schedule length, to reduce the state space that has to be visited. Our results show that the proposed strategy significantly improves the blind binate covering schema, and it outperforms general purpose state-of-the-art tool

    LOT: Logic Optimization with Testability - new transformations for logic synthesis

    Get PDF
    A new approach to optimize multilevel logic circuits is introduced. Given a multilevel circuit, the synthesis method optimizes its area while simultaneously enhancing its random pattern testability. The method is based on structural transformations at the gate level. New transformations involving EX-OR gates as well as Reed–Muller expansions have been introduced in the synthesis of multilevel circuits. This method is augmented with transformations that specifically enhance random-pattern testability while reducing the area. Testability enhancement is an integral part of our synthesis methodology. Experimental results show that the proposed methodology not only can achieve lower area than other similar tools, but that it achieves better testability compared to available testability enhancement tools such as tstfx. Specifically for ISCAS-85 benchmark circuits, it was observed that EX-OR gate-based transformations successfully contributed toward generating smaller circuits compared to other state-of-the-art logic optimization tools

    Cyclic Boolean circuits

    Get PDF
    A Boolean circuit is a collection of gates and wires that performs a mapping from Boolean inputs to Boolean outputs. The accepted wisdom is that such circuits must have acyclic (i.e., loop-free or feed-forward) topologies. In fact, the model is often defined this way – as a directed acyclic graph (DAG). And yet simple examples suggest that this is incorrect. We advocate that Boolean circuits should have cyclic topologies (i.e., loops or feedback paths). In other work, we demonstrated the practical implications of this view: digital circuits can be designed with fewer gates if they contain cycles. In this paper, we explore the theoretical underpinnings of the idea. We show that the complexity of implementing Boolean functions can be lower with cyclic topologies than with acyclic topologies. With examples, we show that certain Boolean functions can be implemented by cyclic circuits with as little as one-half the number gates that are required by equivalent acyclic circuits

    Categorical invariance and structural complexity in human concept learning

    Get PDF
    An alternative account of human concept learning based on an invariance measure of the categorical\ud stimulus is proposed. The categorical invariance model (CIM) characterizes the degree of structural\ud complexity of a Boolean category as a function of its inherent degree of invariance and its cardinality or\ud size. To do this we introduce a mathematical framework based on the notion of a Boolean differential\ud operator on Boolean categories that generates the degrees of invariance (i.e., logical manifold) of the\ud category in respect to its dimensions. Using this framework, we propose that the structural complexity\ud of a Boolean category is indirectly proportional to its degree of categorical invariance and directly\ud proportional to its cardinality or size. Consequently, complexity and invariance notions are formally\ud unified to account for concept learning difficulty. Beyond developing the above unifying mathematical\ud framework, the CIM is significant in that: (1) it precisely predicts the key learning difficulty ordering of\ud the SHJ [Shepard, R. N., Hovland, C. L.,&Jenkins, H. M. (1961). Learning and memorization of classifications.\ud Psychological Monographs: General and Applied, 75(13), 1-42] Boolean category types consisting of three\ud binary dimensions and four positive examples; (2) it is, in general, a good quantitative predictor of the\ud degree of learning difficulty of a large class of categories (in particular, the 41 category types studied\ud by Feldman [Feldman, J. (2000). Minimization of Boolean complexity in human concept learning. Nature,\ud 407, 630-633]); (3) it is, in general, a good quantitative predictor of parity effects for this large class of\ud categories; (4) it does all of the above without free parameters; and (5) it is cognitively plausible (e.g.,\ud cognitively tractable)
    corecore