6 research outputs found

    Generalized linear-in-parameter models : theory and audio signal processing applications

    Get PDF
    This thesis presents a mathematically oriented perspective to some basic concepts of digital signal processing. A general framework for the development of alternative signal and system representations is attained by defining a generalized linear-in-parameter model (GLM) configuration. The GLM provides a direct view into the origins of many familiar methods in signal processing, implying a variety of generalizations, and it serves as a natural introduction to rational orthonormal model structures. In particular, the conventional division between finite impulse response (FIR) and infinite impulse response (IIR) filtering methods is reconsidered. The latter part of the thesis consists of audio oriented case studies, including loudspeaker equalization, musical instrument body modeling, and room response modeling. The proposed collection of IIR filter design techniques is submitted to challenging modeling tasks. The most important practical contribution of this thesis is the introduction of a procedure for the optimization of rational orthonormal filter structures, called the BU-method. More generally, the BU-method and its variants, including the (complex) warped extension, the (C)WBU-method, can be consider as entirely new IIR filter design strategies.reviewe

    Channelization for Multi-Standard Software-Defined Radio Base Stations

    Get PDF
    As the number of radio standards increase and spectrum resources come under more pressure, it becomes ever less efficient to reserve bands of spectrum for exclusive use by a single radio standard. Therefore, this work focuses on channelization structures compatible with spectrum sharing among multiple wireless standards and dynamic spectrum allocation in particular. A channelizer extracts independent communication channels from a wideband signal, and is one of the most computationally expensive components in a communications receiver. This work specifically focuses on non-uniform channelizers suitable for multi-standard Software-Defined Radio (SDR) base stations in general and public mobile radio base stations in particular. A comprehensive evaluation of non-uniform channelizers (existing and developed during the course of this work) shows that parallel and recombined variants of the Generalised Discrete Fourier Transform Modulated Filter Bank (GDFT-FB) represent the best trade-off between computational load and flexibility for dynamic spectrum allocation. Nevertheless, for base station applications (with many channels) very high filter orders may be required, making the channelizers difficult to physically implement. To mitigate this problem, multi-stage filtering techniques are applied to the GDFT-FB. It is shown that these multi-stage designs can significantly reduce the filter orders and number of operations required by the GDFT-FB. An alternative approach, applying frequency response masking techniques to the GDFT-FB prototype filter design, leads to even bigger reductions in the number of coefficients, but computational load is only reduced for oversampled configurations and then not as much as for the multi-stage designs. Both techniques render the implementation of GDFT-FB based non-uniform channelizers more practical. Finally, channelization solutions for some real-world spectrum sharing use cases are developed before some final physical implementation issues are considered

    Minimax Design of Two-Channel Nonuniform-Division Filterbanks Using IIR Allpass Filters

    No full text

    Unified Theory for Biorthogonal Modulated Filter Banks

    Get PDF
    Modulated filter banks (MFBs) are practical signal decomposition tools for M -channel multirate systems. They combine high subfilter selectivity with efficient realization based on polyphase filters and block transforms. Consequently, the O(M 2 ) burden of computations in a general filter bank (FB) is reduced to O(M log2 M ) - the latter being a complexity order comparable with the FFT-like transforms.Often hiding from the plain sight, these versatile digital signal processing tools have important role in various professional and everyday life applications of information and communications technology, including audiovisual communications and media storage (e.g., audio codecs for low-energy music playback in portable devices, as well as communication waveform processing and channelization). The algorithmic efficiency implies low cost, small size, and extended battery life, bringing the devices close to our skins.The main objective of this thesis is to formulate a generalized and unified approach to the MFBs, which includes, in addition to the deep theoretical background behind these banks, both their design by using appropriate optimization techniques and efficient algorithmic realizations. The FBs discussed in this thesis are discrete-time time-frequency decomposition/reconstruction, or equivalently, analysis-synthesis systems, where the subfilters are generated through modulation from either a single or two prototype filters. The perfect reconstruction (PR) property is a particularly important characteristics of the MFBs and this is the core theme of this thesis. In the presented biorthogonal arbitrary-delay exponentially modulated filter bank (EMFB), the PR property can be maintained also for complex-valued signals.The EMFB concept is quite flexible, since it may respond to the various requirements given to a subband processing system: low-delay PR prototype design, subfilters having symmetric impulse responses, efficient algorithms, and the definition covers odd and even-stacked cosine-modulated FBs as special cases. Oversampling schemes for the subsignals prove out to be advantageous in subband processing problems requiring phase information about the localized frequency components. In addition, the MFBs have strong connections with the lapped transform (LT) theory, especially with the class of LTs grounded in parametric window functions.<br/
    corecore