8 research outputs found

    Knowledge management overview of feature selection problem in high-dimensional financial data: Cooperative co-evolution and Map Reduce perspectives

    Get PDF
    The term big data characterizes the massive amounts of data generation by the advanced technologies in different domains using 4Vs volume, velocity, variety, and veracity-to indicate the amount of data that can only be processed via computationally intensive analysis, the speed of their creation, the different types of data, and their accuracy. High-dimensional financial data, such as time-series and space-Time data, contain a large number of features (variables) while having a small number of samples, which are used to measure various real-Time business situations for financial organizations. Such datasets are normally noisy, and complex correlations may exist between their features, and many domains, including financial, lack the al analytic tools to mine the data for knowledge discovery because of the high-dimensionality. Feature selection is an optimization problem to find a minimal subset of relevant features that maximizes the classification accuracy and reduces the computations. Traditional statistical-based feature selection approaches are not adequate to deal with the curse of dimensionality associated with big data. Cooperative co-evolution, a meta-heuristic algorithm and a divide-And-conquer approach, decomposes high-dimensional problems into smaller sub-problems. Further, MapReduce, a programming model, offers a ready-To-use distributed, scalable, and fault-Tolerant infrastructure for parallelizing the developed algorithm. This article presents a knowledge management overview of evolutionary feature selection approaches, state-of-The-Art cooperative co-evolution and MapReduce-based feature selection techniques, and future research directions

    A self-paced learning algorithm for change detection in synthetic aperture radar images

    Get PDF
    Detecting changed regions between two given synthetic aperture radar images is very important to monitor the change of landscapes, change of ecosystem and so on. This can be formulated as a classification problem and addressed by learning a classifier, traditional machine learning classification methods very easily stick to local optima which can be caused by noises of data. Hence, we propose an unsupervised algorithm aiming at constructing a classifier based on self-paced learning. Self-paced learning is a recently developed supervised learning approach and has been proven to be capable to overcome effectively this shortcoming. After applying a pre-classification to the difference image, we uniformly select samples using the initial result. Then, self-paced learning is utilized to train a classifier. Finally, a filter is used based on spatial contextual information to further smooth the classification result. In order to demonstrate the efficiency of the proposed algorithm, we apply our proposed algorithm on five real synthetic aperture radar images datasets. The results obtained by our algorithm are compared with five other state-of-the-art algorithms, which demonstrates that our algorithm outperforms those state-of-the-art algorithms in terms of accuracy and robustness

    Minimax sparse logistic regression for very high-dimensional feature selection

    Full text link
    Because of the strong convexity and probabilistic underpinnings, logistic regression (LR) is widely used in many real-world applications. However, in many problems, such as bioinformatics, choosing a small subset of features with the most discriminative power are desirable for interpreting the prediction model, robust predictions or deeper analysis. To achieve a sparse solution with respect to input features, many sparse LR models are proposed. However, it is still challenging for them to efficiently obtain unbiased sparse solutions to very high-dimensional problems (e.g., identifying the most discriminative subset from millions of features). In this paper, we propose a new minimax sparse LR model for very high-dimensional feature selections, which can be efficiently solved by a cutting plane algorithm. To solve the resultant nonsmooth minimax subproblems, a smoothing coordinate descent method is presented. Numerical issues and convergence rate of this method are carefully studied. Experimental results on several synthetic and real-world datasets show that the proposed method can obtain better prediction accuracy with the same number of selected features and has better or competitive scalability on very high-dimensional problems compared with the baseline methods, including the \ell 1-regularized LR. © 2013 IEEE

    Aco-based feature selection algorithm for classification

    Get PDF
    Dataset with a small number of records but big number of attributes represents a phenomenon called “curse of dimensionality”. The classification of this type of dataset requires Feature Selection (FS) methods for the extraction of useful information. The modified graph clustering ant colony optimisation (MGCACO) algorithm is an effective FS method that was developed based on grouping the highly correlated features. However, the MGCACO algorithm has three main drawbacks in producing a features subset because of its clustering method, parameter sensitivity, and the final subset determination. An enhanced graph clustering ant colony optimisation (EGCACO) algorithm is proposed to solve the three (3) MGCACO algorithm problems. The proposed improvement includes: (i) an ACO feature clustering method to obtain clusters of highly correlated features; (ii) an adaptive selection technique for subset construction from the clusters of features; and (iii) a genetic-based method for producing the final subset of features. The ACO feature clustering method utilises the ability of various mechanisms such as intensification and diversification for local and global optimisation to provide highly correlated features. The adaptive technique for ant selection enables the parameter to adaptively change based on the feedback of the search space. The genetic method determines the final subset, automatically, based on the crossover and subset quality calculation. The performance of the proposed algorithm was evaluated on 18 benchmark datasets from the University California Irvine (UCI) repository and nine (9) deoxyribonucleic acid (DNA) microarray datasets against 15 benchmark metaheuristic algorithms. The experimental results of the EGCACO algorithm on the UCI dataset are superior to other benchmark optimisation algorithms in terms of the number of selected features for 16 out of the 18 UCI datasets (88.89%) and the best in eight (8) (44.47%) of the datasets for classification accuracy. Further, experiments on the nine (9) DNA microarray datasets showed that the EGCACO algorithm is superior than the benchmark algorithms in terms of classification accuracy (first rank) for seven (7) datasets (77.78%) and demonstrates the lowest number of selected features in six (6) datasets (66.67%). The proposed EGCACO algorithm can be utilised for FS in DNA microarray classification tasks that involve large dataset size in various application domains

    Towards ultrahigh dimensional feature selection for big data

    Full text link
    In this paper, we present a new adaptive feature scaling scheme for ultrahigh-dimensional feature selection on Big Data, and then reformulate it as a convex semi-infinite programming (SIP) problem. To address the SIP, we propose an eficient feature generating paradigm. Different from traditional gradient-based approaches that conduct optimization on all input features, the proposed paradigm iteratively activates a group of features, and solves a sequence of multiple kernel learning (MKL) subproblems. To further speed up the training, we propose to solve the MKL subproblems in their primal forms through a modified accelerated proximal gradient approach. Due to such optimization scheme, some eficient cache techniques are also developed. The feature generating paradigm is guaranteed to converge globally under mild conditions, and can achieve lower feature selection bias. Moreover, the proposed method can tackle two challenging tasks in feature selection: 1) group-based feature selection with complex structures, and 2) nonlinear feature selection with explicit feature mappings. Comprehensive experiments on a wide range of synthetic and real-world data sets of tens of million data points with O(1014) features demonstrate the competitive performance of the proposed method over state-of-the-art feature selection methods in terms of generalization performance and training eficiency. © 2014 Mingkui Tan, Ivor W. Tsang and Li Wang

    A Survey on Evolutionary Computation Approaches to Feature Selection

    Get PDF
    Feature selection is an important task in data mining and machine learning to reduce the dimensionality of the data and increase the performance of an algorithm, such as a classification algorithm. However, feature selection is a challenging task due mainly to the large search space. A variety of methods have been applied to solve feature selection problems, where evolutionary computation (EC) techniques have recently gained much attention and shown some success. However, there are no comprehensive guidelines on the strengths and weaknesses of alternative approaches. This leads to a disjointed and fragmented field with ultimately lost opportunities for improving performance and successful applications. This paper presents a comprehensive survey of the state-of-the-art work on EC for feature selection, which identifies the contributions of these different algorithms. In addition, current issues and challenges are also discussed to identify promising areas for future research.</p
    corecore