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 

Abstract—Detecting changed regions between two given 

synthetic aperture radar images is very important to monitor 

change of landscapes, change of ecosystem and so on. This can be 

formulated as a classification problem and addressed by learning 

a classifier, traditional machine learning classification methods 

very easily stick to local optima which can be caused by noises of 

data. Hence, we propose an unsupervised algorithm aiming at 

constructing a classifier based on self-paced learning. Self-paced 

learning is a recently developed supervised learning approach and 

has been proven to be capable to overcome effectively this 

shortcoming. After applying a pre-classification to the difference 

image, we uniformly select samples using the initial result. Then, 

self-paced learning is utilized to train a classifier. Finally, a filter 

is used based on spatial contextual information to further smooth 

the classification result. In order to demonstrate the efficiency of 

the proposed algorithm, we apply our proposed algorithm on five 

real synthetic aperture radar images datasets. The results 

obtained by our algorithm are compared with five other 

state-of–the-art algorithms, which demonstrates that our 

algorithm outperforms those state-of-the-art algorithms in terms 

of accuracy and robustness. 

Index Terms—Change detection, synthetic aperture radar 

(SAR), self-paced learning. 

I. INTRODUCTION 

MAGE change detection is a technology to detect 

changed and unchanged regions between images 

taken from the same place at different times, which 

helps following studies and analyses [1]. In many 

civil or military applications such as medical 

detection and treatment [2, 3], remote sensing [4], 

and video surveillance [5, 6], image change 

detection plays a vital role [7, 8]. Change detection 

in SAR images is getting increased attention in 
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recent years for the imaging characteristics of SAR, 

such as all-time, all-weather, and large-area [9]. SAR 

images can provide more information than ordinary 

optical ones [10], but it suffers from speckle noise 

[11]. Processing of SAR images with multiplicative 

speckle noises is very challenging [12]. Most 

developed unsupervised algorithms used for 

detecting the changes in SAR images can be divided 

into three steps [13]. First, a geometric correction 

and registration are usually implemented to 

transform two images into a same coordinate system. 

Next, a difference image (DI) is generated based on 

two SAR images. Log-ratio operator is a widely used 

method [14] for this purpose, which transforms a 

difference image into a logarithmic scale one and 

converts multiplicative noises into additive ones. 

Finally, they analyze the DI aiming at forming a 

classification to classify the changed regions 

between two SAR images. The quality of the 

generated DI plays a decisive role in the final result 

of the change detection of SAR images.  

Two methods have been widely used for 

analyzing DI: (i) clustering methods and (ii) 

threshold methods. As for the clustering methods, 

fuzzy c-means clustering (FCM) is one of the most 

famous and classical one [15]. This method can 

retain more information than hard clustering. In this 

regard, Ahmed et al. [16] introduced the spatial 

neighborhood information by modifying the 

objective function in FCM_S causing a large time 

complexity. In order to speed up the running time, 

Szilagyi et al. [17] proposed the Enhanced FCM 

(EnFCM). Krindis Chatzis et al. [18] proposed 

robust fuzzy local information C-means clustering 

method (FLICM). Its main contribution was using a 

novel fuzzy local similarity measurement to alleviate 

the influence of noise and preserve more image 
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detail with no parameter setting. Gong et al. [19] 

proposed a reformulated FLICM (RFLICM) to 

further reduce the effect of speckle noises by adding 

a fuzzy factor to the objective function. The 

clustering methods mentioned above can achieved 

good change detection maps, but they are affected by 

the speckle noises [20]. In addition, it is difficult to 

achieve the balance between preserving the details 

and suppressing the noise's effect. 

Classical threshold methods mainly build a 

statistical model first for DI, and use algorithms such 

as Kittler Illingworth (KI) [21] or expectation 

maximization (EM) algorithm [22] to acquire an 

appropriate threshold. In this regard, Bruzzone et al. 

[23] proposed to use Gaussian distribution to model 

DI where an EM algorithm was used to find the 

threshold. The Markov random field (MRF) [24], the 

Fisher distribution [25], and the Nakagami 

distribution [26] were also used to model DI. 

Furthermore, the multinomial latent model [27] was 

applied on SAR images. Threshold method is easy to 

understand and simple to implement, but has a low 

accuracy. DI is complex because of the speckle 

noises, so methods mentioned above are hard to 

establish accurate models for DI. 

Li et al. [28] recently proposed a new 

unsupervised algorithm utilizing some known 

change detection maps and the matching pursuit to 

learn a dictionary. Gong et al. [29] used deep 

learning to achieve change detection for SAR 

images. They select samples based on a 

pre-classification without using difference image. 

Deep learning was then used to learn high-order 

features and classify the SAR images. Deep learning 

has shown promising performance in classification 

problems and it achieves accurate results. The 

learning algorithms used to tackle change detection 

issues in SAR images can avoid the shortcomings of 

traditional clustering and threshold methods [29] to 

some extent. In recent years, machine learning 

methods plays more and more important role in 

many areas. Such as for handling a quadratic 

formulation with a pair of equality constraints, an 

interesting accurate on-line algorithm for training 

ν-support vector classification was proposed [30]. 

Two finite mixture models was proposed to capture 

the structural information of the data from binary 

classification and obtained good results were 

obtained [31]. A robust regularization path algorithm 

for ν-support vector classification was proposed and 

the proposed algorithm found effective experimental 

results [32]. Kernel technique was introduced to 

improve the existing quaternion principal component 

analysis and the improved algorithm obtained 

effective results [33]. Nonetheless, classical machine 

learning methods are sensitive to noises of the 

samples, and they also easily get stuck into local 

optima. Although deep learning methods are 

superior to tradition methods, they are also affected 

by noises and have a large complexity.  

Self-paced learning (SPL) [34, 35] has attracted 

huge attentions in recent years. SPL is useful for 

many problems such as specific-class segmentation 

[36], long-term tracking [37], and visual category 

discovery [38]. Meng et al. [39] gave a theory 

analysis for SPL, and they proved that SPL is robust 

to noisy samples and can address local optima 

problem. Because of the superiority of SPL on 

classification problems, many variations of SPL 

have been proposed [40]. Jiang et al. [40] proposed 

SPLD incorporating diversity of samples into basic 

SPL. Jiang et al. [41] used self-paced reranking 

method to deal with multimedia search problems. 

They proposed SPCL [42] combining self-paced 

learning and curriculum learning. In addition, Li et 

al. proposed [43] MLSPL incorporating the 

self-paced learning strategy into multi-label learning 

regimes to improve classification accuracy. Li et al. 

[44] proposed SPMTL incorporating self-paced 

learning into multi-task learning paradigm. 

Self-paced learning has excellent performance on 

the classification problems due to its special learning 

mechanism. This can overcome the disadvantages of 

traditional learning algorithms mentioned above. But 

SAR image suffers from speckle noises and has 

spatial continuity, and these special characteristics 

make change detection of SAR image distinguish 

from other classification problems. Therefore, we 

propose a new self-paced learning algorithm 

combined with characteristics of SAR images to deal 
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with the change detection issues in SAR images in 

order to achieve more accurate and more robust 

results. Our algorithm has the following 

characteristics: (i) this algorithm does not need 

labeled data. Self-paced learning is a supervised 

learning method, which needs labeled samples. 

However, for SAR image change detection, 

manually labeling each pixel consumes a lot of time 

and manpower. So the proposed algorithm first uses 

basic FCM to pre-classify the DI and selects some 

samples based on the classification result of FCM; 

(ii) In SAR image change detection, the gap between 

the number of changed pixels and the number of 

unchanged pixels is often very large. Our algorithm 

uniformly selects samples to avoid lacking samples 

in one specific class. In addition, our algorithm uses 

spatial continuity of SAR image to ensure the 

accuracy and diversity of samples; (iii) the feature of 

selected sample in the proposed algorithm is not a 

single pixel but a neighborhood, so the learning 

process can incorporate spatial information to 

enhance the robustness of the algorithm; (iv) after 

the classification of the classifier obtained by 

self-paced learning, a simple filter is used to smooth 

the final result. So, our proposed algorithm benefits 

from the characteristics of SAR images and the 

superiority of self-paced learning. 

The rest of this paper is as follows: Section II 

describes the detail of self-paced learning algorithm 

for SAR images change detection. Introductions of 

datasets, evaluation criteria and parameter analysis 

are presented in section III. Section IV shows the 

experimental results of the proposed algorithm and 

five compared algorithms. And the conclusion of this 

paper is drawn in section V. 

II. METHODOLOGY 

Consider two co-registered SAR images I1={I1(i, 

j), 1iA, 1jB}, I2={I2(i, j), 1iA, 1jB}, which 

are captured from the same place at times t1 and t2 

respectively. The main purpose of change detection 

is to identify the change of every pixel at time t1 and 

t2 represented by I1 and I2, which actually is a 

classification problem. This ultimately forms a 

binary image I={I(i, j), 1iA, 1jB} where the size 

of I, I1 and I2 are AB, I(i, j) is 0 or 1 means that the 

corresponding pixel is unchanged or changed.  

Recently, Bengio et al. [45] proposed curriculum 

learning raising widespread concern in machine 

learning and computer vision fields. Kumar et al. 

[31] proposed Self-paced learning that can be 

considered as a subset of the curriculum learning 

[30]. Inspired from the learning process of human, 

this approach initially learns from easier samples. 

Then, it gradually utilizes more complex samples. 

Many experiments have demonstrated that 

self-paced learning avoids sticking to a local 

optimum and results in an effective solution [46]. In 

this paper, we propose to use self-paced learning 

combined with the characteristics of SAR images to 

achieve the change detection of SAR images. 

The main task of SPL is to obtain a classifier by 

minimizing an objective function as follows: 

 

,
1 1

min ( , ; ) ( , ( , )

s.t.   0 1

)

,

 

 



  
m m

i i i i
w v

i

m

i

E w v v L y f x

v

w v        
 (1) 

where m is the number of samples, xi is the ith sample 

in the training set, yi is the label of xi, f(xi,w) denotes 

the model of the classifier and w is the parameter of 

the classifier. L(yi, f(xi,w)) is the cost function of xi 

and indicates a difference between yi and f(xi,w). v is 

an m-dimension vector, and vi is the ith element 

which denotes the difficulty of sample xi where vi=1 

means xi is “easy”, and vi=0 means xi is “complex”.  

is an “age” parameter to determine whether a sample 

is “easy”. 

SPL is type of supervised learning which needs 

labeled samples, but labeling SAR images is a very 

difficult task in SAR image processing. To avoid this, 

we propose a unsupervised algorithm to realize 

change detection for SAR images based on 

self-paced learning,  including the following steps: 

1. Adopt log-ratio operator to generate difference 

image (DI). 

2. Use fuzzy c-means clustering method (FCM) to 

classify DI and obtain an initial result map. 

3. Obtain a high-quality training set based on the 

initial result obtained by FCM. 

4.Classify the DI using a trained classifier based 

on self-paced learning. 
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5. Smooth the classification result by considering 

the spatial neighborhood information. 

FCM is used to conduct a pre-classification over 

DI generated by log-ratio operator. Selection of the 

samples, training of the classifier using self-paced 

learning and filtering the results are performed as 

shown in section II.A, II.B, and II.C, respectively. A 

schematic flowchart of the proposed algorithm is 

reported in Fig. 1. 

 

Fig. 1.  Framework of the proposed algorithm 

A. Selection of The Samples  

As FCM just processes single pixel without 

considering any spatial information for DI's 

classification, the result is seriously affected by 

speckle noises. Hence, we need select some “good” 

pixels to train a classifier using the results obtained 

by pre-classification of FCM. Training the classifier 

using high-quality samples produces a very good 

result, where high quality means that samples in 

training set both possess accuracy and diversity [29]. 

Here, we first select a candidate training set 

including pixels satisfying the condition: they have 

the label same as most pixels in their neighborhood 

shown in Fig. 2. 

Each circle in Fig. 2 represents the pixel belonging 

to the changed or unchanged class and each cross 

shows the pixel belonging to the other class 

according to the classification performed by FCM. 

Fig. 2(a), (b) and (c) show the label of the center 

pixel is similar to the ones of most pixels in its 

neighborhood based on the pre-classification result. 

Hence, the center pixel is not considered to be a 

noise according to the spatial continuity of SAR 

images. 

   
(a)                (b)                         (c) 

   
(d)                        (e)                         (f) 

Fig. 2 different situations of a 33 neighborhood of pixel i after 

pre-classification; (a), (b) and (c) show pixel i is selected as a candidate sample; 

(d), (e) and (f) show pixel i is dropped. 

Fig. 2 (d), (e), and (f) show that label of the center 

pixel is different from the ones of most pixels in its 

neighborhood. If the label of a pixel and its 

neighbors are dissimilar, the label of this pixel is 

considered with high probability to be noise and will 

be discarded. We adopt a standard to select samples 

to form a candidate training set, as follows: 





t

s s
                           (2) 

where s represents the size of neighborhood centered 

by one certain pixel,  is a selecting threshold and t 

is the number of pixels in the neighborhood whose 

labels are identical to the label of the center pixel. A 

pixel is considered to be in our candidate training set 

Tc if the condition in eq. (2) is satisfied. According to 

the spatial continuity of SAR images [16], selecting 

“good” samples through this standard is rational. In 

order to achieve a desired result, we need the value 

of  to be neither very large nor very small. If  is 

very small, pixels shown in Fig. 2 (d) may be 

selected for the training set. Thus, noisy pixel may be 

selected as a sample. If  is very large, only pixels 

with neighborhood similar to what is shown in Fig. 2 

(a) can be selected. Nonetheless, pixels in edge 

regions will have small possibility to be selected as a 

sample, which will cause the final training set loss 

diversity. 

The candidate training set Tc consists of pixels 

satisfying the condition presented in eq. (2), but the 
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number of these pixels is large, so we need to select a 

certain number of pixels from candidate training set 

to generate the training set. In some SAR images 

change detection tasks, the number of pixels in 

changed class and the number of pixels in unchanged 

class have a big gap, and this gap still exists in the 

candidate training set Tc. If a random selection is 

carried out, the gap will be easily presented in the 

final training set. Because pixels in the class with 

fewer pixels in Tc have low probability to be 

selected, in final training set, the number of samples 

in this class will be too small. To avoid this, we 

introduce a uniform-selecting strategy, specifically, 

we copy pixels in the class with fewer pixels in Tc 

and add these copied pixels into Tc to make two class 

have similar amounts of pixels, then we randomly 

select a certain number of pixels into the training set 

T to generate final samples. By doing the copy, the 

number of pixels of the class with fewer pixels in Tc 

will increase, so the probabilities of these pixels to be 

selected as final samples become larger and the gap 

between samples' amounts in two classes will be 

alleviated. The processes of randomly selecting and 

selecting with uniform-selecting strategy are shown 

in Fig. 3 (a) and (b), respectively. In this figure, 

circles represent unchanged pixels while stars 

represent changed ones, blue stars represent the 

copied changed pixels. . 

 

(a) 

 

(b) 

Fig. 3.  Samples' selection: (a) The process of randomly selecting; (b) The 

process of selecting with a uniform-selecting strategy. 

As shown in Fig. 3 (a), amount of unchanged 

pixels is much larger than the amount of changed 

pixels in candidate training set Tc. After selecting 

randomly, changed samples are few in the training 

set T, so the diversity of samples in this class is hard 

to meet. Nonetheless, we can avoid such a situation 

after implementing a copy. Finally, a high-quality 

training set with a balanced number of samples of 

each class is obtained, as shown in Fig. 3 (b). After 

the copy, the number of changed pixels in Tc 

increases, so changed pixels have higher 

probabilities to be selected. And the in training set T, 

we can see from Fig. 3 (b) that the gap is alleviated a 

lot. We use a real SAR image dataset, which is 

shown in Fig. 4 and is called Bern dataset, to validate 

that diverse samples can be selected by the strategy 

mentioned above.  

   
(a)                                  (b)                                   (c) 

Fig. 4.  Bern dataset: (a) and (b) two SAR images captured at two different 

times; (c) the ground truth map. 

Fig. 4 shows two SAR images and the 

corresponding ground truth map. As shown in Fig. 

4(c), most pixels of the two SAR images are 

unchanged. The results of final samples selected 

randomly and selected with uniform-selecting 

strategy on this dataset are reported in Table I. 

TABLE I 

Results of selected samples  

Method 
Number of 

unchanged pixels 

Number of 

changed pixels 
Proportion 

Ground Truth 89446 1155 77.44 

Random Select 9029 31 291.25 

Uniform Select 4401 360 12.23 

We can see that in the ground truth map, the 

proportion of the number of unchanged pixels to the 

number of changed pixels is 77.44, as reported in 

Table I. Random selection even worsen this and 

makes the proportion 291.25 where we have only 31 

samples belonging to the changed class. On the other 

hand, using the uniform-selecting strategy helps us 

to reduce the proportion to 12.23, i.e. samples in 

unchanged class decreased whereas the number of 

samples in the other class increased very much. 

According to the result reported in Table I, we 

can get the desired number of samples for each class 

by uniformly selecting the samples. Besides, by 

using the standard in eq. (2), most samples have 
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correct labels. In the final training set of Bern 

dataset, only 4 out of 4743 samples are wrongly 

labeled resulting in the accuracy of 99.92%. This 

demonstrates that the selected samples by our 

algorithm have high quality. Once a pixel is selected 

to be a sample, its immediate aa neighborhood in 

DI is used to represent this sample, by which the 

training of the classifier can be provided more 

information. 

B. Classifier Training Based on Self-paced Learning 

After obtaining the labeled samples, we can train 

the classifier based on these samples and SPL. In 

SPL, the samples utilized to train the classifier are 

form “easy” to “complex”. The criterion to 

determine whether a sample is “easy” or “complex” 

is based on a cost function L(yi, f(xi,w)) in eq. (1) 

which represents an error between real label and 

predicted probability by the present hypothesized 

model and the “age” parameter . If the cost value 

computed for a sample is larger than , the existing 

hypothesis, i.e. the model at this iteration, cannot 

explain this sample well. Hence, this sample is 

considered to be “complex” and is not considered for 

training. Otherwise, the sample is regarded as “easy” 

and added into the training. At every iteration,  is 

increased, and the value of the parameter w of 

classifier computed at each iteration is used as initial 

value in the next iteration.  is similar to the age of 

human in human learning, hence, we call it “age” 

[40]. So the iterative process learns from “easy” 

samples in the initial iterations and it incrementally 

uses more “complex” samples.  

In fact, eq. (1) is a non-convex optimization 

problem, which may be impossible to directly solve. 

Alternative convex search (ACS) [47] is often used 

to solve eq. (1). In detail, ACS is an iterative 

optimization method where the iteration in ACS is 

called self-paced iteration. Each self-paced iteration 

in ACS can be divided into the following two steps: 

1) Optimize parameter v= [v1,v2, …, vm] 

Based on the classifier's parameter w obtained in 

last iteration, determine vi as follows: 

1,     ( , ( , ))

0,                      


 


i i

i

if L y f x w
v

otherwise  i=1, 2, …, m  (3) 

2) Optimize parameter w 

After calculating parameter v based on eq. (3), we 

update parameter w using eq. (4): 

1

argmin ( , ( , ))


 
m

i i i
w i

w v L y f x w           (4) 

 is increased in each self-paced iteration by 

=, where >1. The value of  in the present 

iteration is larger than the one in last iteration. This 

allows some more “complex” samples to be added in 

the present iteration. Parameter w used in the first 

step uses the parameter w optimized at the previous 

iteration through the second step. Eventually, we 

obtain a good classifier by iterating over two steps. 

The cost function L(yi, f(xi,w)) need to be convex, 

hence, we consider the log likelihood cost function 

used in logistic regression [29]. We assume the 

samples in our dataset are independent and 

identically distributed (i.i.d). Hence, 

( , ( , ))

      ( log( ( )) (1 )log(1 ( )))



   

i i

T T

i i i i

L y f x w

y g w x y g w x
 (5) 

where xi is ith sample with n+1 features, xi=(1, xi1, xi1, 

…, xin)
T
, yi is the label of xi whose value is 0 

(unchanged) or 1 (changed), w is the classifier's 

parameter, w=(w0, w1, w2, …, wn). g()is sigmoid 

function 1
( )

1 


 z
g z

e
. Logistic regression has been 

successfully applied to binary classification 

problems in many domains [48] by using maximum 

likelihood estimation to solve parameter w as 

follows: 

*

1

argmin ( , ( , ))
m

i i
w i

w L y f x w


                      (6) 

Although the optimization process in logistic 

regression uses all the samples, in SPL we only use 

“easy” samples, as eq. (4). Increasing number of 

samples is considered at the iteration with increased 

value of , and all the samples are considered to be 

“easy” in the last iteration, i.e. the optimization in eq. 

(4) will become the same as the one in eq. (6). 

To find an optimal solution to the optimization 

problem in eq. (4) we utilize basic gradient descent 

[49]. This method easily sticks to local optimum, and 

the situation is more serious when problem becomes 

more complex. Besides, the obtained solution by 
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gradient descent highly depends on the initial values 

of the parameters. But SPL can avoids local minima 

[46] which will be demonstrated in section IV. And 

parameter w is updated based on gradient descent as 

follows: 

1 1

1

( ( , ( , )))

( ( , ( , )))
      ( )

m

i i i
t t i
j j

j

m
t i i
j i

i j

v L y f x w
w w

w

L y f x w
w v

w





 



 
 




 


                  (7) 

where t represents current iteration of gradient 

descent,  is a step parameter to control the gradient 

descent, the derivation of eq. (5) is given as follows: 

( ( , ( , )))

( )1 1
((1 ) )

1 ( ) ( )

i i

j

T
ji

i i iT T T

i i

L y f x w

w

dg w x
y y x

g w x g w x dw x





  


 

( ( ) )T j

i i ig w x y x                                                  (8)
 

where the derivation of sigmoid function g(wTxi) is: 

( )
( )(1 ( ))

T
T Ti

i iT

dg w x
g w x g w x

dw x
 

                 (9) 

A pseudo algorithm of the training of the classifier 

is reported in Table II. 

TABLE II 

TRAINING PROCESS OF CLASSIFIER 

Algorithm: procedure of the classifier training based on self-paced learning 

Input: training set T, max number of self-paced iterations Maxiter, max 

number of gradient descent iterations Maxgrad, initial , parameter . 

Output: final classifier parameter w*. 

Begin 

1. Initialize parameter w randomly, set the self-paced iteration counter to 1; 

2. Optimize parameter v = [v1, v2, …,vm] by (3); 

3. Optimize parameter w by (7) and (8) through Maxgrad gradient descent 

iterations； 

4. Check the current self-paced iteration counter, if it reaches Maxiter, w* 

equals to current w; otherwise, =, continue to execute step 2； 

5. Output the final parameter w*； 

End 

The final classifier parameters w
* 

are obtained 

after converging to a solution, and eq.(10) is used to 

calculate the probability that every non-sample pixel 

in DI belongs to the changed class and the labels of 

these pixels is determined using eq. (11). 

* *( 1| , ) (( ) )   T

j zj j jP P y z w g w z           (10) 

1,      P 0 

0,    


 


j

zj

if
y

otherwise
                    (11) 

where zj represents the jth non-sample pixel in DI, 

and yzj is the label of zj predicted by the obtained 

classifier. 

C. Smooth the Classification Result 

SAR images are spatially continuous, i.e. each 

pixel is related to its neighborhood. Nonetheless, we 

did not consider this in the selection of the samples 

and training of the classifier. Here, we introduce the 

local spatial neighborhood information into a filter to 

smooth the classification result and to further 

suppress the effect of noises.  

After gaining a classification result by the 

classifier, the classification information of a pixel’s 

neighborhood is used to set the final label of that 

pixel. The final change-detection label yi of pixel i is 

determined by its neighborhood, and can be obtained 

by eq. (12). 

1 21,     >  

0,    

i i

i

if n n
y

otherwise


 


                  (12) 

where ni1 is the number of pixels whose labels are 1 

according to the classifier in neighborhood Si 

centered by pixel i, while ni2 represents the number 

of the pixels whose labels are 0. If ni1> ni2, most 

pixels’ labels are 1 in Si, and we set the label of pixel 

i to be 1 and 0 otherwise. In this way, we can get a 

smooth change detection map. This helps us to 

discard the effect of noises on the final result. 

Selecting the size of Si, denoted by r, is very 

important. If r is large, the algorithm will have high 

robustness to the noise but pixels in edge regions are 

likely to be wrongly classified. If r is small, majority 

of the details of the image is preserved. However, the 

algorithm is more sensitive to noise resulting in error 

in labeling. In addition, the edges in the final map are 

rough. Consequently, regardless of the value of r, 

which is very large or very small, the accuracy of 

result decreases. So, we will set r to be 33 in the 

proposed algorithm in order to achieve a balance 

between preserving details and suppressing noises. 

III. EXPERIMENTS SETTING 

We use five real SAR images datasets and 5 

compared algorithms to test our proposed algorithm. 

The datasets and evaluation criteria are presented in 
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section III. A and B. Section III. C illustrates the 

influence of parameters involved in the proposed 

algorithm. 

A.  Datasets and Compared Algorithms 

We use 5 other algorithms as compared 

algorithms to validate the effectiveness of the 

proposed algorithm, which are logistic regression 

(LR) [48], FCM [15], MRFFCM [50], FLICM [18], 

and D_JFCM [29]. D_JFCM is an algorithm that 

uses JFCM and the restricted Boltzmann machine 

(RBM) to achieve a promising result without 

generating a DI. Parameters of MRFFCM and 

D_JFCM are set referring to the original papers, and 

there is no parameter setting in FLICM. Besides, five 

datasets are used for experiments, as shown in Fig. 4 

and Fig. 5. 

   
(a1)                                  (b1)                                   (c1) 

        
(a2)                               (b2)                             (c2) 

     
(a3)                                (b3)                                 (c3) 

   
(a4)                                      (b4)                                        (c4) 

Fig. 5.  Datasets. (a1)-(c1) Ottawa dataset. (a2)-(c2) Inland River dataset. 

(a3)-(c3) Farmland dataset. (a4)-(c4) Shimen Reservoir dataset.  

The details of each dataset include the size, the 

imaging location, imaging times, and the reason why 

changes happened are listed in Table III. 

 

TABLE III 

DETAILS OF DATASETS  

Name size Location Time t1 Time t2 
Change 

reason 

Bern 301301 
Bern, 

Switzerland 

April, 

1999 
May, 1999 flood 

Ottawa  290350 
Ottawa, 

Canada 

May, 

1997 

August, 

1997 
rain 

Inland 

River  
444291 

Yellow River 

estuary 

June 

2008 

June,  

2009 
farming 

Farmland  291306 
Yellow River 

estuary 

June 

2008 

June,  

2009 
farming 

Shimen 

Reservoir 
252349 

Taiwan, 

China 

August,

2004 

September

, 2004 
typhoon 

B. Evaluation Criteria 

In this paper, we use both qualitative and 

quantitative analysis to evaluate the change detection 

results on all datasets. Qualitative analysis means 

that we compare the maps obtained by all algorithms 

with the ground truth maps by human eyes, which is 

not very accurate. 

We adopt the standard proposed in [51] for the 

quantitative analysis. First, using the ground truth 

map we count all the pixels, denoted by N, the 

changed pixels, denoted by Nc, and the unchanged 

pixels, denoted by Nu. Then, we compare the 

obtained binary image to the ground truth map pixel 

by pixel and compute the number of unchanged 

pixels which are undetected, denoted by FP, and the 

number of changed pixels which are undetected, 

denoted by FN. In addition, the numbers of changed 

pixels and unchanged pixels that are correctly 

labeled, are denoted by TP and TN, respectively. 

These can be computed using eq. (13). 

 


 

TP Nc FN

TN Nu FP
                  (13) 

FP, FN, TP, and TN are not enough to evaluate 

more precisely the change detection results. So we 

compute the percentage of correct classification 

(PCC) by eq. (14).  




TP TN
PCC

N
                   (14) 

PCC represents the proportion of pixels classified 

correctly to total pixels. In general, we expect to 

have a large PCC if the algorithm can effectively 

classify the dataset. We compute the overall error 

(OE) by (15).  




FP FN
OE

N
                    (15) 

OE is the proportion of pixels classified wrongly 
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to total pixels. If an algorithm is effective, it should 

have a low OE. It is worth noting that the sum of 

PCC and OE is equal to 1. 

However, standard widely used is the kappa 

coefficient (KC), which is an evaluation criterion in 

the image segmentation [52] computed as follows: 

1






PCC PRE
KC

PRE
                    (16) 

where 

( ) ( )    




TP FP Nc FN TN Nu
PRE

N N
        (17) 

If two algorithms have similar PCC and OE, their 

KC may differ significantly because the calculation 

of KC considers more detail information. KC is a 

number between 0 and 1. The larger the value of KC, 

the better the result of change detection. 

C. Parameter Analysis 

1) Threshold  

After pre-classifying DI by FCM, some samples 

are selected for training the classifier. The standard 

used in the selection of the samples is related to the 

threshold . This threshold is essential as it 

determines the quality of samples. If parameter  is 

very large, most of the samples will be pixels in 

homogeneous regions according to eq. (2) where the 

pixels in edge regions are not included. In contrast, if 

 is too small, there may be many noises in the 

training set and the necessary accuracy of the 

samples will not be satisfied. We consider  being 

0.05, 0.10, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 

0.55, 0.6, 0.65, 0.7, 0.75, 0.8, and 0.85, and use five 

datasets mentioned above to test the influence of 

threshold  on the kappa coefficient where the 

corresponding result is shown in Fig. 6. 

 
Fig. 6.   versus kappa 

As we can see in Fig. 6, when  increases from 

0.05 to 0.85, the kappa coefficients on all datasets by 

the proposed algorithm increase first, and then 

decrease slowly. When  is small, i.e. <0.45, kappa 

coefficients are low, the reason is that the selected 

samples may suffer serious noises and the accuracy 

of samples cannot be guaranteed, so the classifier has 

a weak performance. But when  continues 

increasing, i.e. when >0.7, kappa coefficients will 

slightly go down. The reason is that some pixels in 

edge regions cannot be selected as samples, so the 

samples under this situation may not meet the 

diversity. In Fig. 6, kappa coefficients of the Inland 

River, Farmland, and Shimen Reservoir datasets are 

influenced by  obviously unlike other two datasets, 

this is because there exists many changed pixels in 

edge regions on these three datasets. But the 

uniform-selecting strategy and spatial neighborhood 

feature used can ameliorate the diversity of the 

samples to some extent, so the kappa coefficients  are 

just a little lower with large .  

2) Parameter  

In self-paced learning, complex samples will be 

increasingly added to learning process iteratively.  

determines whether a sample is “easy” or “complex” 

where a sample with a larger cost function value than 

 is regarded as “complex” and is not included in the 

training of the classifier. Otherwise, this sample is 

“easy” and will be included in the training phase.  is 

a parameter whose value is changing during 

self-paced learning iterations. It is quite small in the 

beginning and gradually increases during the 

learning process. Parameter  controls the increasing 

speed of  as well as the increasing speed of samples 

involved in the training. If  is very large, the 

difficulty of samples involved in the training process 

increases sharply during the iterations; i.e. if a few 

"easy" samples are used to train the classifier at the 

present iteration, much more “complex” samples 

will be added to the training process based on a large 

 in the next iteration; If  is very small, the 

algorithm needs to take a long time in order to 

generate a good result. In addition, there may be 

some samples cannot be involved in the training in 

the last iteration. Therefore, we consider  to be 1.0, 
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1.2, 1.4, 1.6, 1.8, and 2.0 with initial  equal to 0.1 to 

test the influence of parameter  on results of all 

datasets during 5 self-paced iterations. The changes 

of the number of samples involved in the training 

during 5 iterations on five datasets are shown in Fig. 

7 for different values of . 

 
(a)                                                      (b) 

 
(c)                                                  (d) 

 
(e) 

Fig. 7.  Number of samples involved in the training at each iteration for 

different . (a) On Bern dataset. (b) On Ottawa dataset. (c) On Inland River 

dataset. (d) On Farmland dataset. (e) On Shimen Reservoir dataset. 

During the experiments, we select 10% of all 

pixels on each dataset to form the training set. In Fig. 

7, we can see that for all dataset, the number of 

samples used to train the classifier increases at 

different speeds with different  during the iteration. 

When  is small, such as 1 or 1.2, shown as yellow 

and green lines in Fig. 7, samples involved in the 

training increase slow during the iterations. Even in 

the last iteration, especially on the Bern and Ottawa 

datasets, the number of samples involved in the 

training is very few as shown in Figure 11 (a) and (b). 

In this way, the final obtained classifier cannot 

achieve good results because of the lack of samples. 

When  is larger, such as 1.4 and 1.6, shown as the 

green and blue lines in Fig. 7, samples involved in 

the training increase in a gentle speed and in the last 

iteration, all samples can participate in the training. 

However, when  continues to increase such as 1.8 

or 2 as black and pink lines in Fig. 7,  will change a 

lot in two consecutive iterations and will have large 

value in early iterations. As  is a crucial 

measurement to judge whether a sample is "easy", 

large  will make more "complex" samples involved 

in the training, but the model in early iterations may 

not be mature enough to learn from these samples. 

And Fig.8 shows the kappa coefficients on all 

datasets with different  after 5 self-paced iterations. 

 
Fig. 8.   versus Kappa coefficient after 5th self-paced iteration. 

As shown in Fig. 8, when  is small, kappa 

coefficients on all data sets are a little low for the 

lack of samples involved in the training. And kappa 

coefficients increase with the increase of , but when 

 continues to increase, the increase speed of  and 

samples involved in the training will be too fast, 

which results in the kappa coefficients' decrease. The 

total number of self-paced iterations is 5, different  

has great influence on the kappa coefficients in Fig. 8. 

However, when we increase the number of 

self-paced iterations to be 10, the kappa coefficients 

will not be so sensitive to , as shown in Fig. 9. 

 
Fig. 9.   versus Kappa coefficient after 10th self-paced iteration 
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From Fig. 9 we can conclude that if iteration 

number increases, parameter  will have a slight 

effect on the final result for all datasets. Compared to 

Fig. 8, the kappa coefficients are much more stable 

than that in Fig. 8 with different . Even though  is 

small,  can be large enough after enough iterations 

so that all samples can be involved in the training. 

But KC will still goes down a little if  is very large, 

the reason is that under this situation samples 

involved in the training may be too “complex” to be 

learned by the current model. 

IV. EXPERIMENTAL STUDY 

We performed a series of experiments using the 

datasets and algorithms mentioned in the previous 

sections. In this section, we only use 10% of all the 

pixels in a dataset for training the classifier. The 

threshold  is 0.7 and features of each sample are 

gray values of pixels in the selected pixel's 55 

neighborhood of DI. 

We need to set the initial  and parameter  of 

self-paced learning before the experiment. The initial 

 determines samples involved in the initial 

self-paced iteration. If  is large, samples involved in 

the training may be too “complex” in the initial 

iteration. On the other hand, if  is small, the number 

of samples involved in the training is too small to 

meet the necessary diversity for our algorithm. In eq. 

(5), the value of cost function for each sample is 

from 0 to positive infinity. So, we set  to be 0.1 for 

all the datasets. According to the argument in the 

previous section, we set  to be 1.1 and 15 times 

self-paced iterations are performed allowing the 

number of samples involved in the training smoothly 

increases. This setting is empirically proved to make 

promising results. We developed all the experiments 

using MATLAB R2013 on a machine with Intel core 

I3 2.30-GHz CPU and 4-GB RAM. 

We applied our algorithm on five datasets. To 

validate the obtained results we also use five other 

algorithms and compare the results in two ways: (i) 

final binary result maps are displayed where white 

indicates the changed region and black indicates 

unchanged region; (ii) the five criteria FP, FN, OE, 

PCC and KC are utilized to compare the results of 

the proposed algorithm and 5 other algorithms. In 

addition, we provide evidence of the computation 

cost for all the algorithms.  

A. Results on Bern dataset 

Fig. 14 shows the change detection maps of Bern 

dataset using the 5 compared algorithms and our 

proposed algorithm. As shown in this figure, the 

difference between the map of LR and the ground 

truth map is very large. We can infer that the simple 

LR stuck in a local optimum for training the 

classifier by using all the samples.  

   
(a)                                (b)                               (c) 

   
(d)                                (e)                               (f) 

Fig. 10.  Change detection maps on Bern dataset by: (a)LR, (b) FCM, (c) 

MRFFCM, (d) FLICM, (e) D_JFCM, and (f) the proposed algorithm. 

Moreover, Fig. 10 (b) shows that the map of FCM 

contains a lot of noises, and it does not result in a 

good regional continuity because FCM does not use 

the spatial information of the image. On the other 

hand, MRFFCM introduces an improved energy 

function into FCM to suppress noises and to preserve 

details. Fig. 10 (c) demonstrates that MRFFCM is 

good at preserving details, but its map still contains a 

lot of noises. FLICM use a neighborhood item to 

suppress the effect of noise. There are few isolated 

noises in the map as shown in Fig. 10 (d). 

Nonetheless, FLICM has a limited capability to 

detect smaller changed areas. For example, it could 

not detect some discrete white areas at right bottom 

of the map. Fig. 10 (e) shows that D_JFCM wrongly 

classifies many pixels as unchanged regions because 

the gaps of samples' amounts between two classes 

are not considered in the process of samples' 

selection. The training process by deep learning 

lacks samples in changed class, so the final classifier 

cannot achieve effective detection in changed 

regions. Fig. 10 (f) shows that the proposed 
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algorithm is not only effective to suppress the noise, 

but also very effective to preserve details. In the 

map, we see that the proposed algorithm detects 

some small changed areas. 

It is not feasible to compare precisely the obtained 

results using human eyes if the results of different 

algorithms are very similar. Consequently, we need 

to compare the results quantitatively as reported in 

Table IV. 

TABLE IV 
QUANTITATIVE RESULTS ON BERN DATASET 

Criteria 

Method 
FN FP OE% PCC KC t/s 

LR 848 85 1.03 0.9897 0.3930 8.1978 

FCM 123 350 0.52 0.9948 0.7703 5.9028 

MRFFCM 63 281 0.38 0.9962 0.8337 33.0796 

FLICM 36 293 0.36 0.9964 0.8379 11.8626 

D_JFCM 893 52 1.04 0.9896 0.3532 98.3740 

The proposed 
algorithm 

131 154 0.31 0.9969 0.8738 55.7557 

It can be seen from Table IV that the learning 

process of LR results in a local optimum, so the KC 

of LR is very low. And a lot of changed regions are 

wrongly classified as shown in Fig. 10 (a) resulting 

in a high FN. Similar to the result of LR, D_JFCM 

also has a high FN because deep learning cannot 

learn enough features with few samples in changed 

class. Furthermore, a lot of pixels in changed regions 

are not detected by D_JFCM, making the KC of 

D_JFCM very low. The performance of FCM is 

affected by noises and has the largest FP shown in 

Table IV. MRFFCM and FLICM have similar 

results. They both have high value of KC. However, 

our proposed algorithm results in the best KC. In 

contrast to D_JFCM, our FN and FP on Bern dataset 

are very close because our algorithm considers the 

diversity of samples when selecting them. Regarding 

the running time, the proposed algorithm is not the 

fastest one on Bern dataset, but is much swifter than 

D_JFCM with a better performance. 

B. Results on Ottawa dataset 

Fig. 11 shows the maps obtained by five 

algorithms on Ottawa dataset. This figure shows that 

nearly all maps are close to the ground truth map 

except LR. Specifically, Fig. 11 (a) shows that the 

map obtained by LR is very poor because the 

original LR suffers from noises seriously and it 

easily sticks in a local optimum. Although FCM 

preserves many details in the final map, it has poor 

robustness to noises, as shown in Fig. 11 (b). The 

map of MRFFCM is shown in Fig. 11 (c), which is 

very close to the ground truth map. MRFFCM 

achieves a more accurate detection than other 

algorithms especially for the changed regions in the 

upper part of the image. But the resulting map still 

contains a small amount of noises. The result of 

FLICM shows that this algorithm efficiently 

suppresses the noises, but it misclassifies many 

changed pixels in top part as shown in Fig. 11 (d). 

   
(a)                           (b)                           (c) 

   
(d)                          (e)                            (f) 

Fig. 11.  Change detection maps on Ottawa dataset by: (a)LR, (b) FCM, (c) 

MRFFCM, (d) FLICM, (e) D_JFCM, and (f) the proposed algorithm. 

D_JFCM also misclassifies these pixels. 

Moreover, the map of D_JFCM contains a lot of 

noises as shown in Fig. 11 (e). Fig. 11 (f) shows that 

the proposed algorithm also has pretty good result 

not only in terms of suppressing the noises but also 

in terms of preserving details. Quantitative 

comparison of the results obtained by different 

algorithms on Ottawa dataset is shown in Table V. 

Table V shows that LR has the worst results with a 

very high FN because the poor classifier obtained by 

LR wrongly classifies a large number of changed 

pixels. The KC of FCM is higher than that of FLICM 

because this dataset has many small, limited, and 

changed  pixels in the ground truth map, FLICM has 

lost a lot of detailed information while suppressing 

the noises. D_JFCM still has high FN because the 

training of classifier lacks samples of changed class. 

So the KC of D_JFCM is also very low. MRFFCM 

can achieve precise detections with a high KC 

because it uses MRF, but it is still worse than the 

proposed algorithm. It can be seen from Table V that 

the algorithm has very close FN and FP. 

Furthermore, it has the lowest OE and the highest KC 

because a good classifier is learned by SPL. 
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TABLE V 

QUANTITATIVE RESULTS ON OTTAWA DATASET 

Criteria 

Method 
FN FP OE% PCC KC t/s 

LR 13090 164 13.06 0.8694 0.2711 7.8240 

FCM 853 2015 2.83 0.9717 0.8907 3.8312 

MRFFCM 1703 666 2.33 0.9767 0.9146 32.4224 

FLICM 131 2664 2.75 0.9725 0.8895 6.2948 

D_JFCM 3034 1078 4.05 0.9595 0.8399 113.147 

The proposed 

algorithm 
894 1010 1.88 0.9812 0.9293 58.7057 

D_JFCM has the longest computation time on 

Ottawa dataset because of the deep learning 

framework. In addition, MRFFCM has long 

computation time since it calculates a Markov 

energy equation at each iteration. Although the 

proposed algorithm takes longer time to converge 

than most of the other algorithms, it finally obtains 

the best KC and OE. 

C. Results on Yellow River Estuary dataset 

1) Results on Inland Water dataset 

The qualitative results obtained by the compared 

algorithms and our proposed one on Inland River 

dataset are displayed in Fig. 12.  

   
 (a)                    (b)                    (c) 

   
(d)                       (e)                   (f) 

Fig. 12.  Change detection maps on Inland River dataset by: (a) LR, (b) FCM, 

(c) MRFFCM, (d) FLICM, (e) D_JFCM, and(f) the proposed algorithm. 

The map obtained by LR is severely affected by 

noises and is not smooth enough, as shown in Fig. 12 

(a). The map of FCM also contains a lot of noises, 

but it retains the details to a large extent, as shown in 

Fig. 12 (b). The map obtained by MRFFCM is close 

to the ground truth map, as shown in Fig. 12 (c), but 

there is a lot of noises in the top-right of the map. 

Fig. 12 (d) shows that FLICM achieves a map with 

many noises. D_JFCM has achieved a good result 

with a bit of noises. But Fig. 12 (e) shows that 

D_JFCM misclassifies many changed pixels because 

the samples are not balanced. Although map of the 

proposed algorithm contains a small amount of 

noises shown in Fig. 12 (f), it retains more precise 

details. The quantitative results of five algorithms 

and our proposed algorithm are shown in Table VI. 

TABLE VI 

QUANTITATIVE RESULTS ON INLAND RIVER DATASET 

Criteria 

Method 
FN FP 

OE

% 
PCC KC t/s 

LR 1690 2012 2.87 0.9713 0.5660 9.9719 

FCM 326 3947 3.31 0.9669 0.6320 2.5330 

MRFFCM 305 2484 2.16 0.9784 0.7283 49.6091 

FLICM 793 1381 1.68 0.9832 0.7524 10.0796 

D_JFCM 1365 634 1.55 0.9845 0.7351 180.2740 

The proposed 

algorithm 
804 913 1.33 0.9867 0.7939 73.7318 

According to the results reported in Table VI, both 

FCM and LR have poor KC because they are 

affected by noises seriously. MRFFCM also suffers 

from noises and wrongly classifies pixels in the 

upper part of the map, which results in a high FP. 

FLICM and D_JFCM have close KC, but their FN 

and FP are very different because FLICM suffers 

from noises and misclassifies unchanged pixels. In 

contrast, D_JFCM misclassifies changed pixels due 

to the unbalanced samples. Our proposed algorithm 

achieves the highest KC and has close FN and FP. 

We can conclude that the computation time of the 

proposed algorithm is much less than D_JFCM and it 

achieves the best result in the mean time. 

2) Results on Farmland dataset 

The binary maps on Farmland dataset obtained by 

five algorithms are shown in Fig. 13. In particular, 

LR, FCM, and MRFFCM are not robust to noises 

and their maps contain a lot of noises, as shown in 

Fig. 13 (a), (b), and (c). The maps obtained by FCM 

and MRFFCM are similar. The map in Fig. 13 (d) 

shows that FLICM can suppress the noises much 

better than others, but in the middle and lower part of 

the map, a lot of unchanged pixels are misclassified. 

   
(a)                                  (b)                                 (c) 
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(d)                                 (e)                                 (f) 

Fig. 13.  Change detection maps on Farmland dataset by: (a)LR, (b) FCM, (c) 

MRFFCM, (d) FLICM, (e) D_JFCM, and (f) the proposed algorithm. 

The map obtained by D_JFCM is also affected by 

noises, but it is more capable to distinguish the 

middle and lower parts in the map, as shown in Fig. 

13 (e). The map of the proposed algorithm is similar 

to the one obtained by D_JFCM but slightly better 

than that of FLICM, as shown in Fig.13 (f). Table 

VII reports the quantitative results obtained by all 

algorithms on Farmland dataset, thus we can further 

evaluate performance of each algorithm. 

TABLE VII 

QUANTITATIVE RESULTS ON FARMLAND DATASET 

Criteria 

Method 
FN FP 

OE

% 
PCC KC t/s 

LR 2924 2240 5.80 0.9429 0.4613 8.0795 

FCM 583 2390 3.34 0.9666 0.7475 3.7422 

MRFFCM 505 2870 3.79 0.9621 0.7248 34.1391 

FLICM 960 611 1.76 0.9824 0.8410 6.0237 

D_JFCM 1296 690 2.23 0.9777 0.8147 148.9340 

The proposed 

algorithm 
825 779 1.80 0.9820 0.8419 54.8372 

The quantitative results in Table VII shows that 

LR gets the worst results, and FCM has close results 

to MRFFCM with low FN and high FP because they 

are both sensitive to noises. In addition, many 

unchanged pixels are misclassified as shown in Fig. 

13 (b) and (c). The quantitative results obtained by 

D_JFCM are good because the number of samples in 

different class is relatively balanced in this dataset. 

Moreover, the gap between FN and FP values is not 

very big. The results obtained by FLICM and our 

proposed algorithms are very close with high KC. 

But our proposed algorithm is a little better than 

FLICM because FN and FP are closer in our 

proposed algorithm. 

In terms of computation cost of different 

algorithms, our proposed algorithm requires more 

time than other algorithms but D_JFCM because the 

selection of the samples and the judgment of the 

difficulty on each sample are computationally 

expensive. FLICM algorithm can achieve a result 

similar to the ones by our proposed algorithm in a 

short time on Farmland dataset, as shown in Table 

VII. However, our proposed algorithm is more 

efficient in comparison with D_JFCM. 

D. Results on Shimen Reservoir dataset 

Five qualitative results obtained by six algorithms 

on Shimen Reservoir dataset are displayed in Fig. 14. 

LR falls into a local optimum and achieves a very 

bad map as shown in Fig. 14 (a). In addition, the map 

obtained by FCM, shown in Fig. 14 (b), contains a 

lot of noises because it has poor robustness. In 

addition, the map obtained by MRFFCM on this 

dataset is very bad. MRFFCM is also sensitive to 

noises and misclassifies many unchanged pixels. 

The map of FLICM, shown in Fig. 14 (d), shows that 

FLICM is effective to suppress noises but loses 

many details because there are many slimmer and 

smaller areas need to be detected in this dataset. 

   
(a)                                 (b)                                (c) 

   
(d)                               (e)                                  (f) 

Fig. 14.  Change detection maps on Shimen Reservoir dataset by: (a)LR, (b) 

FCM, (c) MRFFCM, (d) FLICM, (e) D_JFCM, and (f) The proposed 

algorithm. 

D_JFCM is not capable of detecting the changed 

regions with the samples, which are not uniform, as 

shown in Fig. 14 (e). Our proposed algorithm is not 

as good as FLICM in suppressing noises, as shown in 

Fig. 14 (f), but it can retain more details. The 

quantitative results on Shimen reservoir dataset are 

reported in Table VIII. 
TABLE VIII 

QUANTITATIVE RESULTS ON SHIMEN RESERVOIR DATASET 

Criteria 

Method 
FN FP 

OE

% 
PCC KC t/s 

LR 2911 3594 7.40 0.9260 0.3322 7.3136 

FCM 683 1474 2.45 0.9755 0.7807 3.5685 

MRFFCM 25 8003 9.13 0.9087 0.5055 27.6005 

FLICM 817 1139 2.22 0.9778 0.7923 6.8735 

D_JFCM 1748 485 2.54 0.9746 0.7212 79.6070 

The proposed 

algorithm 
436 1404 2.09 0.9791 0.8159 54.1988 

Results reported in Table VIII correspond to the 

maps in Fig. 14. This table shows that LR has worst 
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result. In addition, the result of MRFFCM is also 

very poor with a very high FP and a very low FN, 

this algorithm is good at preserving details but 

sensitive to noises. And quantitative results of FCM 

and FLICM are close. FLICM is good at suppressing 

noises but loses much information meanwhile. 

D_JFCM has a high FN due to the diversity of 

changed samples cannot be satisfied in this dataset. 

Our proposed algorithm has the highest KC, but the 

FN and FP have an obvious gap because in this 

dataset, there are some slim and small changed 

regions. The training process uses the neighborhood 

as feature of a sample, so when the neighborhood is 

large, the classifier is easy to wrongly classify pixels. 

Likewise the previous four datasets, computation 

time of the proposed algorithm is shorter than 

D_JFCM on this dataset with the best KC. 

E. Time complexity of the proposed algorithm 

In this part, we will talk about the time complexity 

of the proposed algorithm. As illustrated in section 

II, the proposed algorithm includes DI’ generation, 

initial FCM clustering, samples’ selection, the 

classifier’s training, and final smooth. So the time 

complexity of the proposed algorithm is the sum of 

time complexities of these different processes. Let N 

represent the number of the total pixels in ground 

truth map, n is the number of features of a sample, 

c=2 is class number of FCM. ws and wf are the sizes 

of neighborhood window and smooth window 

respectively, and Hf, Hs, and Hg are the numbers of 

FCM iteration, self-paced iteration, and the gradient 

descent iteration respectively The time complexity 

of each process in the proposed algorithm is shown 

in Table IX. 
TABLE IX 

COMPLEXITY OF EACH PROCESS 

Process Complexity Process Complexity 

DI’s generation O(N) FCM clustering O(c2HfN) 

Samples’ selection O(ws
2N) Classifier’s training O(n2HsHgN) 

Smooth O(wf
2N)  Proposed algorithm O(n2HsHgN) 

Considering that the number of a sample's features 

n is larger than ws and wf, so the proposed algorithm 

has the same time complexity as the classifier's 

training which is O(n
2
HsHgN) as shown in Table IX. 

V. CONCLUSION 

In this paper, we presented a novel algorithm to 

detect the changes in SAR images using self-paced 

learning. First, we utilize FCM to pre-classify the 

difference image (DI). Then, we select some pixels 

with a uniform-selecting strategy across the DI 

resulting in a high-quality training set. Next, 

self-paced learning is used to train a classifier. 

Finally, local spatial information is adopted to 

smooth the classification result. We demonstrate the 

effectiveness of the proposed algorithm by some 

experiments using five real SAR images datasets. 

We analyze and study the effect of different 

parameters used in our proposed algorithm on the 

final results, namely threshold  and parameter . 

Furthermore, to validate the results we compare the 

results obtained by our algorithm with Logistic 

Regression, FCM, MRFFCM, FLICM and 

D_JFCM. In addition, all the results are compared 

with the ground truth maps showing that our 

proposed algorithm outperforms other state-of-art 

algorithms both qualitatively and quantitatively.  
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