33,073 research outputs found

    Advice Complexity of the Online Induced Subgraph Problem

    Get PDF
    Several well-studied graph problems aim to select a largest (or smallest) induced subgraph with a given property of the input graph. Examples of such problems include maximum independent set, maximum planar graph, and many others. We consider these problems, where the vertices are presented online. With each vertex, the online algorithm must decide whether to include it into the constructed subgraph, based only on the subgraph induced by the vertices presented so far. We study the properties that are common to all these problems by investigating the generalized problem: for a hereditary property \pty, find some maximal induced subgraph having \pty. We study this problem from the point of view of advice complexity. Using a result from Boyar et al. [STACS 2015], we give a tight trade-off relationship stating that for inputs of length n roughly n/c bits of advice are both needed and sufficient to obtain a solution with competitive ratio c, regardless of the choice of \pty, for any c (possibly a function of n). Surprisingly, a similar result cannot be obtained for the symmetric problem: for a given cohereditary property \pty, find a minimum subgraph having \pty. We show that the advice complexity of this problem varies significantly with the choice of \pty. We also consider preemptive online model, where the decision of the algorithm is not completely irreversible. In particular, the algorithm may discard some vertices previously assigned to the constructed set, but discarded vertices cannot be reinserted into the set again. We show that, for the maximum induced subgraph problem, preemption cannot help much, giving a lower bound of Ω(n/(c2logc))\Omega(n/(c^2\log c)) bits of advice needed to obtain competitive ratio cc, where cc is any increasing function bounded by \sqrt{n/log n}. We also give a linear lower bound for c close to 1

    A note on 2--bisections of claw--free cubic graphs

    Full text link
    A \emph{kk--bisection} of a bridgeless cubic graph GG is a 22--colouring of its vertex set such that the colour classes have the same cardinality and all connected components in the two subgraphs induced by the colour classes have order at most kk. Ban and Linial conjectured that {\em every bridgeless cubic graph admits a 22--bisection except for the Petersen graph}. In this note, we prove Ban--Linial's conjecture for claw--free cubic graphs

    Automorphism Groups of Geometrically Represented Graphs

    Full text link
    We describe a technique to determine the automorphism group of a geometrically represented graph, by understanding the structure of the induced action on all geometric representations. Using this, we characterize automorphism groups of interval, permutation and circle graphs. We combine techniques from group theory (products, homomorphisms, actions) with data structures from computer science (PQ-trees, split trees, modular trees) that encode all geometric representations. We prove that interval graphs have the same automorphism groups as trees, and for a given interval graph, we construct a tree with the same automorphism group which answers a question of Hanlon [Trans. Amer. Math. Soc 272(2), 1982]. For permutation and circle graphs, we give an inductive characterization by semidirect and wreath products. We also prove that every abstract group can be realized by the automorphism group of a comparability graph/poset of the dimension at most four

    Connection Matrices and the Definability of Graph Parameters

    Full text link
    In this paper we extend and prove in detail the Finite Rank Theorem for connection matrices of graph parameters definable in Monadic Second Order Logic with counting (CMSOL) from B. Godlin, T. Kotek and J.A. Makowsky (2008) and J.A. Makowsky (2009). We demonstrate its vast applicability in simplifying known and new non-definability results of graph properties and finding new non-definability results for graph parameters. We also prove a Feferman-Vaught Theorem for the logic CFOL, First Order Logic with the modular counting quantifiers
    corecore