238 research outputs found

    Fast minimal triangulation algorithm using minimum degree criterion

    Get PDF
    AbstractWe propose an algorithm for minimal triangulation which, using simple and efficient strategy, subdivides the input graph in different, almost non-overlapping, subgraphs. Using the technique of matrix multiplication for saturating the minimal separators, we show that the partition of the graph can be computed in time O(nα) where nα is the time required by the binary matrix multiplication. After saturating the minimal separators, the same procedure is recursively applied on each subgraphs. We also present a variant of the algorithm in which the minimum degree criterion is used. In this way, we obtain an algorithm that uses minimum degree criterion and at the same time produces a minimal triangulation, thus shedding new light on the effectiveness of the minimum degree heuristics

    Organizing the atoms of the clique separator decomposition into an atom tree

    Get PDF
    International audienceWe define an atom tree of a graph as a generalization of a clique tree: its nodes are the atoms obtained by clique minimal separator decomposition, and its edges correspond to the clique minimal separators of the graph.Given a graph GG, we compute an atom tree by using a clique tree of a minimal triangulation HH of GG. Computing an atom tree with such a clique tree as input can be done in O(min(nm,m+nf))O(min(nm,m+nf)), where ff is the number of fill edges added by the triangulation. When both a minimal triangulation and the clique minimal separators of GG are provided, we compute an atom tree of GG in O(m+f)O(m+f) time, which is in O(n2)O(n2) time.We give an O(nm)O(nm) time algorithm, based on MCS, which combines in a single pass the 3 steps involved in building an atom tree: computing a minimal triangulation, constructing a clique tree, and constructing the corresponding atom tree.Finally, we present a process which uses a traversal of a clique tree of a minimal triangulation to determine the clique minimal separators and build the corresponding atom tree in O(n(n+t))O(n(n+t)) time, where tt is the number of 2-pairs of HH (tt is at most View the MathML sourcem¯−f, where View the MathML sourcem¯ is the number of edges of the complement graph); to complete this, we also give an algorithm which computes a minimal triangulation in View the MathML sourceO(n(n+m¯)) time, thus providing an approach to compute the decomposition in View the MathML sourceO(n(n+m¯)) time

    Large induced subgraphs via triangulations and CMSO

    Full text link
    We obtain an algorithmic meta-theorem for the following optimization problem. Let \phi\ be a Counting Monadic Second Order Logic (CMSO) formula and t be an integer. For a given graph G, the task is to maximize |X| subject to the following: there is a set of vertices F of G, containing X, such that the subgraph G[F] induced by F is of treewidth at most t, and structure (G[F],X) models \phi. Some special cases of this optimization problem are the following generic examples. Each of these cases contains various problems as a special subcase: 1) "Maximum induced subgraph with at most l copies of cycles of length 0 modulo m", where for fixed nonnegative integers m and l, the task is to find a maximum induced subgraph of a given graph with at most l vertex-disjoint cycles of length 0 modulo m. 2) "Minimum \Gamma-deletion", where for a fixed finite set of graphs \Gamma\ containing a planar graph, the task is to find a maximum induced subgraph of a given graph containing no graph from \Gamma\ as a minor. 3) "Independent \Pi-packing", where for a fixed finite set of connected graphs \Pi, the task is to find an induced subgraph G[F] of a given graph G with the maximum number of connected components, such that each connected component of G[F] is isomorphic to some graph from \Pi. We give an algorithm solving the optimization problem on an n-vertex graph G in time O(#pmc n^{t+4} f(t,\phi)), where #pmc is the number of all potential maximal cliques in G and f is a function depending of t and \phi\ only. We also show how a similar running time can be obtained for the weighted version of the problem. Pipelined with known bounds on the number of potential maximal cliques, we deduce that our optimization problem can be solved in time O(1.7347^n) for arbitrary graphs, and in polynomial time for graph classes with polynomial number of minimal separators

    A polynomial bound on the number of minimal separators and potential maximal cliques in P6P_6-free graphs of bounded clique number

    Full text link
    In this note we show a polynomial bound on the number of minimal separators and potential maximal cliques in P6P_6-free graphs of bounded clique number

    A structural Markov property for decomposable graph laws that allows control of clique intersections

    Full text link
    We present a new kind of structural Markov property for probabilistic laws on decomposable graphs, which allows the explicit control of interactions between cliques, so is capable of encoding some interesting structure. We prove the equivalence of this property to an exponential family assumption, and discuss identifiability, modelling, inferential and computational implications.Comment: 10 pages, 3 figures; updated from V1 following journal review, new more explicit title and added section on inferenc

    Sequential and parallel triangulating algorithms for Elimination Game and new insights on Minimum Degree

    Get PDF
    Elimination Game is a well known algorithm that simulates Gaussian elimination of matrices on graphs, and it computes a triangulation of the input graph. The number of fill edges in the computed triangulation is highly dependent on the order in which Elimination Game processes the vertices, and in general the produced triangulations are neither minimum nor minimal. In order to obtain a triangulation which is close to minimum, the Minimum Degree heuristic is widely used in practice, but until now little was known on the theoretical mechanisms involved. In this paper we show some interesting properties of Elimination Game; in particular that it is able to compute a partial minimal triangulation of the input graph regardless of the order in which the vertices are processed. This results in a new algorithm to compute minimal triangulations that are sandwiched between the input graph and the triangulation resulting from Elimination Game. One of the strengths of the new approach is that is is easily parallelizable, and thus we are able to present the first parallel algorithm to compute such sandwiched minimal triangulations. In addition, the insight that we gain through Elimination Game is used to partly explain the good behavior of the Minimum Degree algorithm. We also give a new algorithm for producing minimal triangulations that is able to use the minimum degree idea to a wider extent
    • …
    corecore