8,261 research outputs found

    On the Enumeration of Minimal Dominating Sets and Related Notions

    Full text link
    A dominating set DD in a graph is a subset of its vertex set such that each vertex is either in DD or has a neighbour in DD. In this paper, we are interested in the enumeration of (inclusion-wise) minimal dominating sets in graphs, called the Dom-Enum problem. It is well known that this problem can be polynomially reduced to the Trans-Enum problem in hypergraphs, i.e., the problem of enumerating all minimal transversals in a hypergraph. Firstly we show that the Trans-Enum problem can be polynomially reduced to the Dom-Enum problem. As a consequence there exists an output-polynomial time algorithm for the Trans-Enum problem if and only if there exists one for the Dom-Enum problem. Secondly, we study the Dom-Enum problem in some graph classes. We give an output-polynomial time algorithm for the Dom-Enum problem in split graphs, and introduce the completion of a graph to obtain an output-polynomial time algorithm for the Dom-Enum problem in P6P_6-free chordal graphs, a proper superclass of split graphs. Finally, we investigate the complexity of the enumeration of (inclusion-wise) minimal connected dominating sets and minimal total dominating sets of graphs. We show that there exists an output-polynomial time algorithm for the Dom-Enum problem (or equivalently Trans-Enum problem) if and only if there exists one for the following enumeration problems: minimal total dominating sets, minimal total dominating sets in split graphs, minimal connected dominating sets in split graphs, minimal dominating sets in co-bipartite graphs.Comment: 15 pages, 3 figures, In revisio

    Polynomial Delay Algorithm for Listing Minimal Edge Dominating sets in Graphs

    Full text link
    The Transversal problem, i.e, the enumeration of all the minimal transversals of a hypergraph in output-polynomial time, i.e, in time polynomial in its size and the cumulated size of all its minimal transversals, is a fifty years old open problem, and up to now there are few examples of hypergraph classes where the problem is solved. A minimal dominating set in a graph is a subset of its vertex set that has a non empty intersection with the closed neighborhood of every vertex. It is proved in [M. M. Kant\'e, V. Limouzy, A. Mary, L. Nourine, On the Enumeration of Minimal Dominating Sets and Related Notions, In Revision 2014] that the enumeration of minimal dominating sets in graphs and the enumeration of minimal transversals in hypergraphs are two equivalent problems. Hoping this equivalence can help to get new insights in the Transversal problem, it is natural to look inside graph classes. It is proved independently and with different techniques in [Golovach et al. - ICALP 2013] and [Kant\'e et al. - ISAAC 2012] that minimal edge dominating sets in graphs (i.e, minimal dominating sets in line graphs) can be enumerated in incremental output-polynomial time. We provide the first polynomial delay and polynomial space algorithm that lists all the minimal edge dominating sets in graphs, answering an open problem of [Golovach et al. - ICALP 2013]. Besides the result, we hope the used techniques that are a mix of a modification of the well-known Berge's algorithm and a strong use of the structure of line graphs, are of great interest and could be used to get new output-polynomial time algorithms.Comment: proofs simplified from previous version, 12 pages, 2 figure

    Efficient Enumeration of Dominating Sets for Sparse Graphs

    Get PDF
    A dominating set D of a graph G is a set of vertices such that any vertex in G is in D or its neighbor is in D. Enumeration of minimal dominating sets in a graph is one of central problems in enumeration study since enumeration of minimal dominating sets corresponds to enumeration of minimal hypergraph transversal. However, enumeration of dominating sets including non-minimal ones has not been received much attention. In this paper, we address enumeration problems for dominating sets from sparse graphs which are degenerate graphs and graphs with large girth, and we propose two algorithms for solving the problems. The first algorithm enumerates all the dominating sets for a k-degenerate graph in O(k) time per solution using O(n + m) space, where n and m are respectively the number of vertices and edges in an input graph. That is, the algorithm is optimal for graphs with constant degeneracy such as trees, planar graphs, H-minor free graphs with some fixed H. The second algorithm enumerates all the dominating sets in constant time per solution for input graphs with girth at least nine

    Enumerating Minimal Connected Dominating Sets

    Get PDF
    The question to enumerate all (inclusion-wise) minimal connected dominating sets in a graph of order n in time significantly less than 2? is an open question that was asked in many places. We answer this question affirmatively, by providing an enumeration algorithm that runs in time ?(1.9896?), using polynomial space only. The key to this result is the consideration of this enumeration problem on 2-degenerate graphs, which is proven to be possible in time ?(1.9767?). Apart from solving this old open question, we also show new lower bound results. More precisely, we construct a family of graphs of order n with ?(1.4890?) many minimal connected dominating sets, while previous examples achieved ?(1.4422?). Our example happens to yield 4-degenerate graphs. Additionally, we give lower bounds for the previously not considered classes of 2-degenerate and of 3-degenerate graphs, which are ?(1.3195?) and ?(1.4723?), respectively. We also address essential questions concerning output-sensitive enumeration. Namely, we give reasons why our algorithm cannot be turned into an enumeration algorithm that guarantees polynomial delay without much efforts. More precisely, we prove that it is NP-complete to decide, given a graph G and a vertex set U, if there exists a minimal connected dominating set D with U ? D, even if G is known to be 2-degenerate. Our reduction also shows that even any subexponential delay is not easy to achieve for enumerating minimal connected dominating sets. Another reduction shows that no FPT-algorithms can be expected for this extension problem concerning minimal connected dominating sets, parameterized by |U|. This also adds one more problem to the still rather few natural parameterized problems that are complete for the class W[3]. We also relate our enumeration problem to the famous open Hitting Set Transversal problem, which can be phrased in our context as the question to enumerate all minimal dominating sets of a graph with polynomial delay by showing that a polynomial-delay enumeration algorithm for minimal connected dominating sets implies an affirmative algorithmic solution to the Hitting Set Transversal problem

    A Polynomial Delay Algorithm for Enumerating Minimal Dominating Sets in Chordal Graphs

    Full text link
    An output-polynomial algorithm for the listing of minimal dominating sets in graphs is a challenging open problem and is known to be equivalent to the well-known Transversal problem which asks for an output-polynomial algorithm for listing the set of minimal hitting sets in hypergraphs. We give a polynomial delay algorithm to list the set of minimal dominating sets in chordal graphs, an important and well-studied graph class where such an algorithm was open for a while.Comment: 13 pages, 1 figure, submitte

    Connecting Terminals and 2-Disjoint Connected Subgraphs

    Full text link
    Given a graph G=(V,E)G=(V,E) and a set of terminal vertices TT we say that a superset SS of TT is TT-connecting if SS induces a connected graph, and SS is minimal if no strict subset of SS is TT-connecting. In this paper we prove that there are at most (∣V∖T∣∣T∣−2)⋅3∣V∖T∣3{|V \setminus T| \choose |T|-2} \cdot 3^{\frac{|V \setminus T|}{3}} minimal TT-connecting sets when ∣T∣≤n/3|T| \leq n/3 and that these can be enumerated within a polynomial factor of this bound. This generalizes the algorithm for enumerating all induced paths between a pair of vertices, corresponding to the case ∣T∣=2|T|=2. We apply our enumeration algorithm to solve the {\sc 2-Disjoint Connected Subgraphs} problem in time O∗(1.7804n)O^*(1.7804^n), improving on the recent O∗(1.933n)O^*(1.933^n) algorithm of Cygan et al. 2012 LATIN paper.Comment: 13 pages, 1 figur
    • …
    corecore