287 research outputs found

    Minimal BRDF Sampling for Two-Shot Near-Field Reflectance Acquisition

    Get PDF
    We develop a method to acquire the BRDF of a homogeneous flat sample from only two images, taken by a near-field perspective camera, and lit by a directional light source. Our method uses the MERL BRDF database to determine the optimal set of lightview pairs for data-driven reflectance acquisition. We develop a mathematical framework to estimate error from a given set of measurements, including the use of multiple measurements in an image simultaneously, as needed for acquisition from near-field setups. The novel error metric is essential in the near-field case, where we show that using the condition-number alone performs poorly. We demonstrate practical near-field acquisition of BRDFs from only one or two input images. Our framework generalizes to configurations like a fixed camera setup, where we also develop a simple extension to spatially-varying BRDFs by clustering the materials.</jats:p

    On Practical Sampling of Bidirectional Reflectance

    Get PDF

    FROST-BRDF: A Fast and Robust Optimal Sampling Technique for BRDF Acquisition

    Full text link
    Efficient and accurate BRDF acquisition of real world materials is a challenging research problem that requires sampling millions of incident light and viewing directions. To accelerate the acquisition process, one needs to find a minimal set of sampling directions such that the recovery of the full BRDF is accurate and robust given such samples. In this paper, we formulate BRDF acquisition as a compressed sensing problem, where the sensing operator is one that performs sub-sampling of the BRDF signal according to a set of optimal sample directions. To solve this problem, we propose the Fast and Robust Optimal Sampling Technique (FROST) for designing a provably optimal sub-sampling operator that places light-view samples such that the recovery error is minimized. FROST casts the problem of designing an optimal sub-sampling operator for compressed sensing into a sparse representation formulation under the Multiple Measurement Vector (MMV) signal model. The proposed reformulation is exact, i.e. without any approximations, hence it converts an intractable combinatorial problem into one that can be solved with standard optimization techniques. As a result, FROST is accompanied by strong theoretical guarantees from the field of compressed sensing. We perform a thorough analysis of FROST-BRDF using a 10-fold cross-validation with publicly available BRDF datasets and show significant advantages compared to the state-of-the-art with respect to reconstruction quality. Finally, FROST is simple, both conceptually and in terms of implementation, it produces consistent results at each run, and it is at least two orders of magnitude faster than the prior art.Comment: Submitted to IEEE Transactions on Visualization and Computer Graphics (IEEE TVCG

    Practical SVBRDF Acquisition of 3D Objects with Unstructured Flash Photography

    Get PDF
    Capturing spatially-varying bidirectional reflectance distribution functions (SVBRDFs) of 3D objects with just a single, hand-held camera (such as an off-the-shelf smartphone or a DSLR camera) is a difficult, open problem. Previous works are either limited to planar geometry, or rely on previously scanned 3D geometry, thus limiting their practicality. There are several technical challenges that need to be overcome: First, the built-in flash of a camera is almost colocated with the lens, and at a fixed position; this severely hampers sampling procedures in the light-view space. Moreover, the near-field flash lights the object partially and unevenly. In terms of geometry, existing multiview stereo techniques assume diffuse reflectance only, which leads to overly smoothed 3D reconstructions, as we show in this paper. We present a simple yet powerful framework that removes the need for expensive, dedicated hardware, enabling practical acquisition of SVBRDF information from real-world, 3D objects with a single, off-the-shelf camera with a built-in flash. In addition, by removing the diffuse reflection assumption and leveraging instead such SVBRDF information, our method outputs high-quality 3D geometry reconstructions, including more accurate high-frequency details than state-of-the-art multiview stereo techniques. We formulate the joint reconstruction of SVBRDFs, shading normals, and 3D geometry as a multi-stage, iterative inverse-rendering reconstruction pipeline. Our method is also directly applicable to any existing multiview 3D reconstruction technique. We present results of captured objects with complex geometry and reflectance; we also validate our method numerically against other existing approaches that rely on dedicated hardware, additional sources of information, or both

    On-site example-based material appearance acquisition

    Get PDF
    We present a novel example-based material appearance modeling method suitable for rapid digital content creation. Our method only requires a single HDR photograph of a homogeneous isotropic dielectric exemplar object under known natural illumination. While conventional methods for appearance modeling require prior knowledge on the object shape, our method does not, nor does it recover the shape explicitly, greatly simplifying on-site appearance acquisition to a lightweight photography process suited for non-expert users. As our central contribution, we propose a shape-agnostic BRDF estimation procedure based on binary RGB profile matching. We also model the appearance of materials exhibiting a regular or stationary texture-like appearance, by synthesizing appropriate mesostructure from the same input HDR photograph and a mesostructure exemplar with (roughly) similar features. We believe our lightweight method for on-site shape-agnostic appearance acquisition presents a suitable alternative for a variety of applications that require plausible “rapid-appearance-modeling

    On-site surface reflectometry

    Get PDF
    The rapid development of Augmented Reality (AR) and Virtual Reality (VR) applications over the past years has created the need to quickly and accurately scan the real world to populate immersive, realistic virtual environments for the end user to enjoy. While geometry processing has already gone a long way towards that goal, with self-contained solutions commercially available for on-site acquisition of large scale 3D models, capturing the appearance of the materials that compose those models remains an open problem in general uncontrolled environments. The appearance of a material is indeed a complex function of its geometry, intrinsic physical properties and furthermore depends on the illumination conditions in which it is observed, thus traditionally limiting the scope of reflectometry to highly controlled lighting conditions in a laboratory setup. With the rapid development of digital photography, especially on mobile devices, a new trend in the appearance modelling community has emerged, that investigates novel acquisition methods and algorithms to relax the hard constraints imposed by laboratory-like setups, for easy use by digital artists. While arguably not as accurate, we demonstrate the ability of such self-contained methods to enable quick and easy solutions for on-site reflectometry, able to produce compelling, photo-realistic imagery. In particular, this dissertation investigates novel methods for on-site acquisition of surface reflectance based on off-the-shelf, commodity hardware. We successfully demonstrate how a mobile device can be utilised to capture high quality reflectance maps of spatially-varying planar surfaces in general indoor lighting conditions. We further present a novel methodology for the acquisition of highly detailed reflectance maps of permanent on-site, outdoor surfaces by exploiting polarisation from reflection under natural illumination. We demonstrate the versatility of the presented approaches by scanning various surfaces from the real world and show good qualitative and quantitative agreement with existing methods for appearance acquisition employing controlled or semi-controlled illumination setups.Open Acces
    • …
    corecore