4,897 research outputs found

    On upper bounds on the smallest size of a saturating set in a projective plane

    Full text link
    In a projective plane Πq\Pi _{q} (not necessarily Desarguesian) of order q,q, a point subset SS is saturating (or dense) if any point of ΠqS\Pi _{q}\setminus S is collinear with two points in S~S. Using probabilistic methods, the following upper bound on the smallest size s(2,q) s(2,q) of a saturating set in Πq\Pi _{q} is proved: \begin{equation*} s(2,q)\leq 2\sqrt{(q+1)\ln (q+1)}+2\thicksim 2\sqrt{q\ln q}. \end{equation*} We also show that for any constant c1c\ge 1 a random point set of size kk in Πq\Pi _{q} with 2c(q+1)ln(q+1)+2k<q21q+2q 2c\sqrt{(q+1)\ln(q+1)}+2\le k<\frac{q^{2}-1}{q+2}\thicksim q is a saturating set with probability greater than 11/(q+1)2c22.1-1/(q+1)^{2c^{2}-2}. Our probabilistic approach is also applied to multiple saturating sets. A point set SΠqS\subset \Pi_{q} is (1,μ)(1,\mu)-saturating if for every point QQ of ΠqS\Pi _{q}\setminus S the number of secants of SS through QQ is at least μ\mu , counted with multiplicity. The multiplicity of a secant \ell is computed as (#(S)2).{\binom{{\#(\ell \,\cap S)}}{{2}}}. The following upper bound on the smallest size sμ(2,q)s_{\mu }(2,q) of a (1,μ)(1,\mu)-saturating set in Πq\Pi_{q} is proved: \begin{equation*} s_{\mu }(2,q)\leq 2(\mu +1)\sqrt{(q+1)\ln (q+1)}+2\thicksim 2(\mu +1)\sqrt{ q\ln q}\,\text{ for }\,2\leq \mu \leq \sqrt{q}. \end{equation*} By using inductive constructions, upper bounds on the smallest size of a saturating set (as well as on a (1,μ)(1,\mu)-saturating set) in the projective space PG(N,q)PG(N,q) are obtained. All the results are also stated in terms of linear covering codes.Comment: 15 pages, 24 references, misprints are corrected, Sections 3-5 and some references are adde

    Applications of finite geometry in coding theory and cryptography

    Get PDF
    We present in this article the basic properties of projective geometry, coding theory, and cryptography, and show how finite geometry can contribute to coding theory and cryptography. In this way, we show links between three research areas, and in particular, show that finite geometry is not only interesting from a pure mathematical point of view, but also of interest for applications. We concentrate on introducing the basic concepts of these three research areas and give standard references for all these three research areas. We also mention particular results involving ideas from finite geometry, and particular results in cryptography involving ideas from coding theory

    Binary and Ternary Quasi-perfect Codes with Small Dimensions

    Full text link
    The aim of this work is a systematic investigation of the possible parameters of quasi-perfect (QP) binary and ternary linear codes of small dimensions and preparing a complete classification of all such codes. First we give a list of infinite families of QP codes which includes all binary, ternary and quaternary codes known to is. We continue further with a list of sporadic examples of binary and ternary QP codes. Later we present the results of our investigation where binary QP codes of dimensions up to 14 and ternary QP codes of dimensions up to 13 are classified.Comment: 4 page

    Small Strong Blocking Sets by Concatenation

    Full text link
    Strong blocking sets and their counterparts, minimal codes, attracted lots of attention in the last years. Combining the concatenating construction of codes with a geometric insight into the minimality condition, we explicitly provide infinite families of small strong blocking sets, whose size is linear in the dimension of the ambient projective spaces. As a byproduct, small saturating sets are obtained.Comment: 16 page
    corecore