5 research outputs found

    Mind change efficient learning

    Get PDF
    This paper studies efficient learning with respect to mind changes. Our starting point is the idea that a learner that is efficient with respect to mind changes minimizes mind changes not only globally in the entire learning problem, but also locally in subproblems after receiving some evidence. Formalizing this idea leads to the notion of uniform mind change optimality. We characterize the structure of language classes that can be identified with at most α mind changes by some learner (not necessarily effective): A language class L is identifiable with α mind changes iff the accumulation order of L is at most α. Accumulation order is a classic concept from point-set topology. To aid the construction of learning algorithms, we show that the characteristic property of uniformly mind change optimal learners is that they output conjectures (languages) with maximal accumulation order. We illustrate the theory by describing mind change optimal learners for various problems such as identifying linear subspaces and one-variable patterns

    Master index

    Get PDF

    Mind change complexity of learning logic programs

    Get PDF
    The present paper motivates the study of mind change complexity for learning minimal models of length-bounded logic programs. It establishes ordinal mind change complexity bounds for learnability of these classes both from positive facts and from positive and negative facts. Building on Angluin’s notion of finite thickness and Wright’s work on finite elasticity, Shinohara defined the property of bounded finite thickness to give a sufficient condition for learnability of indexed families of computable languages from positive data. This paper shows that an effective version of Shinohara’s notion of bounded finite thickness gives sufficient conditions for learnability with ordinal mind change bound, both in the context of learnability from positive data and for learnability from complete (both positive and negative) data. Let Omega be a notation for the first limit ordinal. Then, it is shown that if a language defining framework yields a uniformly decidable family of languages and has effective bounded finite thickness, then for each natural number m >0, the class of languages defined by formal systems of length <= m: • is identifiable in the limit from positive data with a mind change bound of Omega (power)m; • is identifiable in the limit from both positive and negative data with an ordinal mind change bound of Omega × m. The above sufficient conditions are employed to give an ordinal mind change bound for learnability of minimal models of various classes of length-bounded Prolog programs, including Shapiro’s linear programs, Arimura and Shinohara’s depth-bounded linearly covering programs, and Krishna Rao’s depth-bounded linearly moded programs. It is also noted that the bound for learning from positive data is tight for the example classes considered
    corecore