12,156 research outputs found

    Pedestrians effects on indoor MIMO-OFDM channel capacity

    Get PDF
    Temporal variations caused by pedestrian movement can significantly affect the channel capacity of indoor MIMOOFDM wireless systems. This paper compares systematic measurements of MIMO-OFDM channel capacity in presence of pedestrians with predicted MIMO-OFDM channel capacity values using geometric optics-based ray tracing techniques. Capacity results are presented for a single room environment using 5.2 GHz with 2x2, 3x3 and 4x4 arrays as well as a 2.45 GHz narrowband 8x8 MIMO array. The analysis shows an increase of up to 2 b/s/Hz on instant channel capacity with up to 3 pedestrians. There is an increase of up to 1 b/s/Hz in the average capacity of the 4x4 MIMO-OFDM channel when the number of pedestrians goes from 1 to 3. Additionally, an increment of up to 2.5 b/s/Hz in MIMO-OFDM channel capacity was measured for a 4x4 array compared to a 2x2 array in presence of pedestrians. Channel capacity values derived from this analysis are important in terms of understanding the limitations and possibilities for MIMO-OFDM systems in indoor populated environments

    Spatial Multiplexing of QPSK Signals with a Single Radio: Antenna Design and Over-the-Air Experiments

    Full text link
    The paper describes the implementation and performance analysis of the first fully-operational beam-space MIMO antenna for the spatial multiplexing of two QPSK streams. The antenna is composed of a planar three-port radiator with two varactor diodes terminating the passive ports. Pattern reconfiguration is used to encode the MIMO information onto orthogonal virtual basis patterns in the far-field. A measurement campaign was conducted to compare the performance of the beam-space MIMO system with a conventional 2-by-?2 MIMO system under realistic propagation conditions. Propagation measurements were conducted for both systems and the mutual information and symbol error rates were estimated from Monte-Carlo simulations over the measured channel matrices. The results show the beam-space MIMO system and the conventional MIMO system exhibit similar finite-constellation capacity and error performance in NLOS scenarios when there is sufficient scattering in the channel. In comparison, in LOS channels, the capacity performance is observed to depend on the relative polarization of the receiving antennas.Comment: 31 pages, 23 figure

    The effect of receiver antenna array horizontal orientation on MIMO channel capacity

    Get PDF
    In multiple-input multiple-output (MIMO) systems the horizontal orientation of a linear array has, in some situations a large influence on the available channel capacity. In this paper, we investigate the effect of horizontal array orientation on channel capacity, eigenvalue distribution and antenna complex correlation coefficient in such systems. We present channel measurements in an office corridor environment for a 6/spl times/6 MIMO system and compare the capacity results to those of a physical and non-physical model based on the measurements. The results show that under LOS conditions the channel capacity can vary significantly depending on the receiver array orientation in the horizontal plane

    Relationship Between Capacity and Pathloss for Indoor MIMO Channels

    Get PDF
    MIMO transmission systems exploit scattering in the radio channel to achieve high capacity for a given SNR. A high pathloss is generally expected for channels with rich scattering, suggesting that a high SNR and rich multipath are competing goals. The current work investigates this issue based on measurements obtained with a 16×32 MIMO channel sounder for the 5.8 GHz band. The measurements were carried out in various indoor scenarios where different sizes of both the transmitter and receiver antenna arrays are investigated, 1×1 up to 16×32. A moderate correlation between pathloss and median capacity was found. However, the higher richness can not compensate for the decrease in capacity due to increased pathloss. Assuming a fixed Tx power, the median capacity was found to depend approximately linearly on the pathloss. The slope of the linear relation depends on the effective rank of the channel, which in turn was found to be approximately linearly dependent on the number of antennas, assuming a symmetric MIMO channel

    Channel correlation-based approach for feedback overhead reduction in massive MIMO

    Get PDF
    For frequency-division duplex multiple-input-multiple-output (MIMO) systems, the channel state information at the transmitter is usually obtained by sending pilots or reference signals from all elements of the antenna array. The channel is then estimated by the receiver and communicated back to the transmitter. However, for massive MIMO, this periodical estimation of the full transfer matrix can lead to prohibitive overhead. To reduce the amount of data, we propose to estimate the updated channel matrix from the knowledge of the full correlation matrix at the transmitter made during some initialization time and the instantaneous measured channel matrix of smaller size, characterizing the link between the user and a limited number of reference array elements. The proposed algorithm is validated with measured massive MIMO channel transfer functions at 3.5GHz between a 9×99 \times 9 uniform rectangular array and different user positions. Since measurements were made in static conditions, the criteria chosen for evaluating the performance of the algorithm are based on a comparison of the predicted channel capacity calculated from either the measured or estimated channel matrix

    Effect of propagation phenomena on MIMO capacity of wireless systems between 3 and 10GHz

    Get PDF
    International audience— Multiple Input Multiple Output (MIMO) Antenna systems promise high spectral efficiency [1] over multipath channels. But accurate wideband MIMO channels models are required to optimize these new radio access schemes. This paper focuses on the MIMO channel capacity versus different propagation channel parameters such as frequency or antenna type. This study is based on both experimental and simulated results in a residential environment. The simulations have been computed with a full 3D ray tracing tool while measurements have been performed with a UWB MIMO channel sounder
    • 

    corecore