399 research outputs found

    Antenna-coupled TES bolometer arrays for CMB polarimetry

    Get PDF
    We describe the design and performance of polarization selective antenna-coupled TES arrays that will be used in several upcoming Cosmic Microwave Background (CMB) experiments: SPIDER, BICEP-2/SPUD. The fully lithographic polarimeter arrays utilize planar phased-antennas for collimation (F/4 beam) and microstrip filters for band definition (25% bandwidth). These devices demonstrate high optical efficiency, excellent beam shapes, and well-defined spectral bands. The dual-polarization antennas provide well-matched beams and low cross polarization response, both important for high-fidelity polarization measurements. These devices have so far been developed for the 100 GHz and 150 GHz bands, two premier millimeter-wave atmospheric windows for CMB observations. In the near future, the flexible microstrip-coupled architecture can provide photon noise-limited detection for the entire frequency range of the CMBPOL mission. This paper is a summary of the progress we have made since the 2006 SPIE meeting in Orlando, FL

    Antenna-coupled TES bolometer arrays for CMB polarimetry

    Full text link
    We describe the design and performance of polarization selective antenna-coupled TES arrays that will be used in several upcoming Cosmic Microwave Background (CMB) experiments: SPIDER, BICEP-2/SPUD. The fully lithographic polarimeter arrays utilize planar phased-antennas for collimation (F/4 beam) and microstrip filters for band definition (25% bandwidth). These devices demonstrate high optical efficiency, excellent beam shapes, and well-defined spectral bands. The dual-polarization antennas provide well-matched beams and low cross polarization response, both important for high-fidelity polarization measurements. These devices have so far been developed for the 100 GHz and 150 GHz bands, two premier millimeter-wave atmospheric windows for CMB observations. In the near future, the flexible microstrip-coupled architecture can provide photon noise-limited detection for the entire frequency range of the CMBPOL mission. This paper is a summary of the progress we have made since the 2006 SPIE meeting in Orlando, FL

    Recent Advances in Antenna Design for 5G Heterogeneous Networks

    Get PDF
    The aim of this book is to highlight up to date exploited technologies and approaches in terms of antenna designs and requirements. In this regard, this book targets a broad range of subjects, including the microstrip antenna and the dipole and printed monopole antenna. The varieties of antenna designs, along with several different approaches to improve their overall performance, have given this book a great value, in which makes this book is deemed as a good reference for practicing engineers and under/postgraduate students working in this field. The key technology trends in antenna design as part of the mobile communication evolution have mainly focused on multiband, wideband, and MIMO antennas, and all have been clearly presented, studied and implemented within this book. The forthcoming 5G systems consider a truly mobile multimedia platform that constitutes a converged networking arena that not only includes legacy heterogeneous mobile networks but advanced radio interfaces and the possibility to operate at mm wave frequencies to capitalize on the large swathes of available bandwidth. This provides the impetus for a new breed of antenna design that, in principle, should be multimode in nature, energy efficient, and, above all, able to operate at the mm wave band, placing new design drivers on the antenna design. Thus, this book proposes to investigate advanced 5G antennas for heterogeneous applications that can operate in the range of 5G spectrums and to meet the essential requirements of 5G systems such as low latency, large bandwidth, and high gains and efficiencies

    Ultra-Wideband Array Antennas

    Get PDF
    Wireless communication has become an indispensable part of modern life. One of the mostimportant components of wireless communication systems are antennas, termed as "eyes" and "ears" of communication systems. A printed antenna, one of the most commercial antennas, is widely used for civil and military applications, i.e., for communication systems, radar systems, satellite and transportation systems since the printed antenna provides some benefits such as light weight, compact structure and low manufacturing cost. A printed antenna design for a communication technology called Ultra-Wide Band (UWB) is discussed in this dissertation. Ultra-Wide Band communication has undergone intensive investigation in the past decade since the Federal Communications Commission (FCC) released the free license spectral mask operation of the UWB radio over 7.5 GHz bandwidth from 3.1 to 10.6 GHz (UWB frequency range), a technology promising high-rate data transmission over a short range. On the other hand, a UWB communication system requires extremely low radiation power to avoid interferences to other communication systems. As an answer for this challenge, three strategies based on antenna aspects are proposed in the frame of this work. The first strategy is to design a compact and directive single radiator. The printed monopole antenna was selected as the radiator, in particular the printed circular monopole antenna (PCMA), was reinvestigated and modified as a directive PCMA. Secondly, a UWB array antenna employing the directive PCMA element was designed to focus the radiation toward a certain direction. Some matching techniques were combined in the design to achieve impedance matching over the UWB frequency range. The measurement result of the antenna under test showed a focused radiation pattern and the impedance matching better than -10 dB was achieved for the whole frequency band. The concept of frequency invariant beam pattern antenna arrays is applied as the third strategy. The concept, adopted from the broadband sensor’s theory for acoustic purpose, is applied to the microwave frame. Based on this concept, a prototype of the PCMA array fed by a set of low pass filters was realized in planar technology at the first time to achieve frequency invariant beam patterns. The measurement of the fabricated antenna showed that the beamwidth can be kept constant over the whole frequency band

    1-D broadside-radiating leaky-wave antenna based on a numerically synthesized impedance surface

    Get PDF
    A newly-developed deterministic numerical technique for the automated design of metasurface antennas is applied here for the first time to the design of a 1-D printed Leaky-Wave Antenna (LWA) for broadside radiation. The surface impedance synthesis process does not require any a priori knowledge on the impedance pattern, and starts from a mask constraint on the desired far-field and practical bounds on the unit cell impedance values. The designed reactance surface for broadside radiation exhibits a non conventional patterning; this highlights the merit of using an automated design process for a design well known to be challenging for analytical methods. The antenna is physically implemented with an array of metal strips with varying gap widths and simulation results show very good agreement with the predicted performance

    Beam scanning by liquid-crystal biasing in a modified SIW structure

    Get PDF
    A fixed-frequency beam-scanning 1D antenna based on Liquid Crystals (LCs) is designed for application in 2D scanning with lateral alignment. The 2D array environment imposes full decoupling of adjacent 1D antennas, which often conflicts with the LC requirement of DC biasing: the proposed design accommodates both. The LC medium is placed inside a Substrate Integrated Waveguide (SIW) modified to work as a Groove Gap Waveguide, with radiating slots etched on the upper broad wall, that radiates as a Leaky-Wave Antenna (LWA). This allows effective application of the DC bias voltage needed for tuning the LCs. At the same time, the RF field remains laterally confined, enabling the possibility to lay several antennas in parallel and achieve 2D beam scanning. The design is validated by simulation employing the actual properties of a commercial LC medium

    Systematic design of antennas using the theory of characteristic modes

    Full text link
    El principal objetivo de esta tesis es demostrar que la Teoría de los Modos Característicos puede ser empleada de forma sistemática para diseñar antenas de hilo y antena planas. La gran ventaja de los modos característicos, frente a otros métodos de diseño, es la clara visión física que proporcionan de los fenómenos que contribuyen a la radiación de la antena. A través de numerosos ejemplos se demostrará como los modos característicos permiten comprender mejor el funcionamiento de una antena, de forma que el diseño de la misma se puede realizar de forma justificada y coherente. También se mostrará como la información proporcionada por los modos característicos puede ser aprovechada para seleccionar la forma más apropiada para el elemento radiante, al igual que para elegir una configuración de alimentación óptima que maximice el ancho de banda de impedancia. La Teoría de los Modos Característicos fue inicialmente formulada por Garbacz en 1968, y posteriormente refinada por Harrington y Mautz en 1971. Tradicionalmente, los modos característicos han sido empleados para sintetizar formas de antena, y para controlar la difracción de objetos mediante carga reactiva. Sin embargo, en la actualidad, la Teoría de los Modos Característicos ha caído prácticamente en el olvido, a pesar de que permite obtener una solución modal para la corriente, que es de gran utilidad a la hora de analizar problemas de análisis, síntesis y optimización de antenas y difractores. La Teoría de los Modos Característicos parte de la definición de un problema de autovalores que involucra la matriz de impedancia generalizada de la estructura, y que tras ser resuelto proporciona un conjunto de modos de corriente reales, que son los denominados modos característicos. Estos modos se corresponden con las resonancias naturales de la estructura y pueden ser obtenidos numéricamente para cuerpos conductores de forma arbitraria. Por otra parte, los modos característicos forman un conjunto de funciones cerCabedo Fabrés, M. (2007). Systematic design of antennas using the theory of characteristic modes [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/1883Palanci
    • …
    corecore