563 research outputs found

    Walking with virtual humans : understanding human response to virtual humanoids' appearance and behaviour while navigating in immersive VR

    Get PDF
    In this thesis, we present a set of studies whose results have allowed us to analyze how to improve the realism, navigation, and behaviour of the avatars in an immersive virtual reality environment. In our simulations, participants must perform a series of tasks and we have analyzed perceptual and behavioural data. The results of the studies have allowed us to deduce what improvements are needed to be incorporated to the original simulations, in order to enhance the perception of realism, the navigation technique, the rendering of the avatars, their behaviour or their animations. The most reliable technique for simulating avatars’ behaviour in a virtual reality environment should be based on the study of how humans behave within the environment. For this purpose, it is necessary to build virtual environments where participants can navigate safely and comfortably with a proper metaphor and, if the environment is populated with avatars, simulate their behaviour accurately. All these aspects together will make the participants behave in a way that is closer to how they would behave in the real world. Besides, the integration of these concepts could provide an ideal platform to develop different types of applications with and without collaborative virtual reality such as emergency simulations, teaching, architecture, or designing. In the first contribution of this thesis, we carried out an experiment to study human decision making during an evacuation. We were interested to evaluate to what extent the behaviour of a virtual crowd can affect individuals' decisions. From the second contribution, in which we studied the perception of realism with bots and humans performing just locomotion or varied animations, we can conclude that the combination of having human-like avatars with animation variety can increase the overall realism of a crowd simulation, trajectories and animation. The preliminary study presented in the third contribution of this thesis showed that realistic rendering of the environment and the avatars do not appear to increase the perception of realism in the participants, which is consistent with works presented previously. The preliminary results in our walk-in-place contribution showed a seamless and natural transition between walk-in-place and normal walk. Our system provided a velocity mapping function that closely resembles natural walk. We observed through a pilot study that the system successfully reduces motion sickness and enhances immersion. Finally, the results of the contribution related to locomotion in collaborative virtual reality showed that animation synchronism and footstep sound of the avatars representing the participants do not seem to have a strong impact in terms of presence and feeling of avatar control. However, in our experiment, incorporating natural animations and footstep sound resulted in smaller clearance values in VR than previous work in the literature. The main objective of this thesis was to improve different factors related to virtual reality experiences to make the participants feel more comfortable in the virtual environment. These factors include the behaviour and appearance of the virtual avatars and the navigation through the simulated space in the experience. By increasing the realism of the avatars and facilitating navigation, high scores in presence are achieved during the simulations. This provides an ideal framework for developing collaborative virtual reality applications or emergency simulations that require participants to feel as if they were in real life.En aquesta tesi, es presenta un conjunt d'estudis els resultats dels quals ens han permès analitzar com millorar el realisme, la navegació i el comportament dels avatars en un entorn de realitat virtual immersiu. En les nostres simulacions, els participants han de realitzar una sèrie de tasques i hem analitzat dades perceptives i de comportament mentre les feien. Els resultats dels estudis ens han permès deduir quines millores són necessàries per a ser incorporades a les simulacions originals, amb la finalitat de millorar la percepció del realisme, la tècnica de navegació, la representació dels avatars, el seu comportament o les seves animacions. La tècnica més fiable per simular el comportament dels avatars en un entorn de realitat virtual hauria de basar-se en l'estudi de com es comporten els humans dins de l¿entorn virtual. Per a aquest propòsit, és necessari construir entorns virtuals on els participants poden navegar amb seguretat i comoditat amb una metàfora adequada i, si l¿entorn està poblat amb avatars, simular el seu comportament amb precisió. Tots aquests aspectes junts fan que els participants es comportin d'una manera més pròxima a com es comportarien en el món real. A més, la integració d'aquests conceptes podria proporcionar una plataforma ideal per desenvolupar diferents tipus d'aplicacions amb i sense realitat virtual col·laborativa com simulacions d'emergència, ensenyament, arquitectura o disseny. En la primera contribució d'aquesta tesi, vam realitzar un experiment per estudiar la presa de decisions durant una evacuació. Estàvem interessats a avaluar en quina mesura el comportament d'una multitud virtual pot afectar les decisions dels participants. A partir de la segona contribució, en la qual estudiem la percepció del realisme amb robots i humans que realitzen només una animació de caminar o bé realitzen diverses animacions, vam arribar a la conclusió que la combinació de tenir avatars semblants als humans amb animacions variades pot augmentar la percepció del realisme general de la simulació de la multitud, les seves trajectòries i animacions. L'estudi preliminar presentat en la tercera contribució d'aquesta tesi va demostrar que la representació realista de l¿entorn i dels avatars no semblen augmentar la percepció del realisme en els participants, que és coherent amb treballs presentats anteriorment. Els resultats preliminars de la nostra contribució de walk-in-place van mostrar una transició suau i natural entre les metàfores de walk-in-place i caminar normal. El nostre sistema va proporcionar una funció de mapatge de velocitat que s'assembla molt al caminar natural. Hem observat a través d'un estudi pilot que el sistema redueix amb èxit el motion sickness i millora la immersió. Finalment, els resultats de la contribució relacionada amb locomoció en realitat virtual col·laborativa van mostrar que el sincronisme de l'animació i el so dels avatars que representen els participants no semblen tenir un fort impacte en termes de presència i sensació de control de l'avatar. No obstant això, en el nostre experiment, la incorporació d'animacions naturals i el so de passos va donar lloc a valors de clearance més petits en RV que treballs anteriors ja publicats. L'objectiu principal d'aquesta tesi ha estat millorar els diferents factors relacionats amb experiències de realitat virtual immersiva per fer que els participants se sentin més còmodes en l'entorn virtual. Aquests factors inclouen el comportament i l'aparença dels avatars i la navegació a través de l'entorn virtual. En augmentar el realisme dels avatars i facilitar la navegació, s'aconsegueixen altes puntuacions en presència durant les simulacions. Això proporciona un marc ideal per desenvolupar aplicacions col·laboratives de realitat virtual o simulacions d'emergència que requereixen que els participants se sentin com si estiguessin en la vida realPostprint (published version

    Example Based Caricature Synthesis

    Get PDF
    The likeness of a caricature to the original face image is an essential and often overlooked part of caricature production. In this paper we present an example based caricature synthesis technique, consisting of shape exaggeration, relationship exaggeration, and optimization for likeness. Rather than relying on a large training set of caricature face pairs, our shape exaggeration step is based on only one or a small number of examples of facial features. The relationship exaggeration step introduces two definitions which facilitate global facial feature synthesis. The first is the T-Shape rule, which describes the relative relationship between the facial elements in an intuitive manner. The second is the so called proportions, which characterizes the facial features in a proportion form. Finally we introduce a similarity metric as the likeness metric based on the Modified Hausdorff Distance (MHD) which allows us to optimize the configuration of facial elements, maximizing likeness while satisfying a number of constraints. The effectiveness of our algorithm is demonstrated with experimental results

    What is the Avatar? Fiction and Embodiment in Avatar-Based Singleplayer Computer Games: Revised and Commented Edition

    Get PDF
    What are the characteristic features of avatar-based singleplayer videogames, from Super Mario Bros. to Grand Theft Auto? The author examines this question with a particular focus on issues of fictionality and realism, and their relation to cinema and Virtual Reality. Through close-up analysis and philosophical discussion, the author argues that avatar-based gaming is a distinctive and dominant form of virtual self-embodiment in digital culture. This book is a revised edition of Rune Klevjer's pioneering work from 2007, featuring a new introduction by the author and afterword by Stephan Günzel, Jörg Sternagel, and Dieter Mersch

    Should machines be tools or tool-users? Clarifying motivations and assumptions in the quest for superintelligence

    Get PDF
    Much of the basic non-technical vocabulary of artificial intelligence is surprisingly ambiguous. Some key terms with unclear meanings include intelligence, embodiment, simulation, mind, consciousness, perception, value, goal, agent, knowledge, belief, optimality, friendliness, containment, machine and thinking. Much of this vocabulary is naively borrowed from the realm of conscious human experience to apply to a theoretical notion of “mind-in-general” based on computation. However, if there is indeed a threshold between mechanical tool and autonomous agent (and a tipping point for singularity), projecting human conscious-level notions into the operations of computers creates confusion and makes it harder to identify the nature and location of that threshold. There is confusion, in particular, about how—and even whether—various capabilities deemed intelligent relate to human consciousness. This suggests that insufficient thought has been given to very fundamental concepts—a dangerous state of affairs, given the intrinsic power of the technology. It also suggests that research in the area of artificial general intelligence may unwittingly be (mis)guided by unconscious motivations and assumptions. While it might be inconsequential if philosophers get it wrong (or fail to agree on what is right), it could be devastating if AI developers, corporations, and governments follow suit. It therefore seems worthwhile to try to clarify some fundamental notions

    CASA 2009:International Conference on Computer Animation and Social Agents

    Get PDF

    Applications of Virtual Reality

    Get PDF
    Information Technology is growing rapidly. With the birth of high-resolution graphics, high-speed computing and user interaction devices Virtual Reality has emerged as a major new technology in the mid 90es, last century. Virtual Reality technology is currently used in a broad range of applications. The best known are games, movies, simulations, therapy. From a manufacturing standpoint, there are some attractive applications including training, education, collaborative work and learning. This book provides an up-to-date discussion of the current research in Virtual Reality and its applications. It describes the current Virtual Reality state-of-the-art and points out many areas where there is still work to be done. We have chosen certain areas to cover in this book, which we believe will have potential significant impact on Virtual Reality and its applications. This book provides a definitive resource for wide variety of people including academicians, designers, developers, educators, engineers, practitioners, researchers, and graduate students

    Virtual Reality and Its Application in Education

    Get PDF
    Virtual reality is a set of technologies that enables two-way communication, from computer to user and vice versa. In one direction, technologies are used to synthesize visual, auditory, tactile, and sometimes other sensory experiences in order to provide the illusion that practically non-existent things can be seen, heard, touched, or otherwise felt. In the other direction, technologies are used to adequately record human movements, sounds, or other potential input data that computers can process and use. This book contains six chapters that cover topics including definitions and principles of VR, devices, educational design principles for effective use of VR, technology education, and use of VR in technical and natural sciences

    Gameworlds

    Get PDF
    Game studies is a rapidly developing field across the world, with a growing number of dedicated courses addressing video games and digital play as significant phenomena in contemporary everyday life and media cultures. Seth Giddings looks to fill a gap by focusing on the relationship between the actual and virtual worlds of play in everyday life. He addresses both the continuities and differences between digital play and longer-established modes of play. The 'gameworlds' title indicates both the virtual world designed into the videogame and the wider environments in which play is manifested: social relationships between players; hardware and software; between the virtual worlds of the game and the media universes they extend (e.g. Pokémon, Harry Potter, Lego, Star Wars); and the gameworlds generated by children's imaginations and creativity (through talk and role-play, drawings and outdoor play). The gameworld raises questions about who, and what, is in play. Drawing on recent theoretical work in science and technology studies, games studies and new media studies, a key theme is the material and embodied character of these gameworlds and their components (players' bodies, computer hardware, toys, virtual physics, and the physical environment). Building on detailed small-scale ethnographic case studies, Gameworlds is the first book to explore the nature of play in the virtual worlds of video games and how this play relates to, and crosses over into, everyday play in the actual world

    Interactive Motion Planning for Multi-agent Systems with Physics-based and Behavior Constraints

    Get PDF
    Man-made entities and humans rely on movement as an essential form of interaction with the world. Whether it is an autonomous vehicle navigating crowded roadways or a simulated pedestrian traversing a virtual world, each entity must compute safe, effective paths to achieve their goals. In addition, these entities, termed agents, are subject to unique physical and behavioral limitations within their environment. For example, vehicles have a finite physical turning radius and must obey behavioral constraints such as traffic signals and rules of the road. Effective motion planning algorithms for diverse agents must account for these physics-based and behavior constraints. In this dissertation, we present novel motion planning algorithms that account for constraints which physically limit the agent and impose behavioral limitations on the virtual agents. We describe representational approaches to capture specific physical constraints on the various agents and propose abstractions to model behavior constraints affecting them. We then describe algorithms to plan motions for agents who are subject to the modeled constraints. First, we describe a biomechanically accurate elliptical representation for virtual pedestrians; we also describe human-like movement constraints corresponding to shoulder-turning and side-stepping in dense environments. We detail a novel motion planning algorithm extending velocity obstacles to generate collisionfree paths for hundreds of elliptical agents at interactive rates. Next, we describe an algorithm to encode dynamics and traffic-like behavior constraints for autonomous vehicles in urban and highway environments. We describe a motion planning algorithm to generate safe, high-speed avoidance maneuvers using a novel optimization function and modified control obstacle formulation, and we also present a simulation framework to evaluate driving strategies. Next, we present an approach to incorporate high-level reasoning to model the motions and behaviors of virtual agents in terms of verbal interactions with other agents or avatars. Our approach leverages natural-language interaction to reduce uncertainty and generate effective plans. Finally, we describe an application of our techniques to simulate pedestrian behaviors for gathering simulated data about loading, unloading, and evacuating an aircraft.Doctor of Philosoph
    corecore