11 research outputs found

    Subdivision schemes for curve design and image analysis

    Get PDF
    Subdivision schemes are able to produce functions, which are smooth up to pixel accuracy, in a few steps through an iterative process. They take as input a coarse control polygon and iteratively generate new points using some algebraic or geometric rules. Therefore, they are a powerful tool for creating and displaying functions, in particular in computer graphics, computer-aided design, and signal analysis. A lot of research on univariate subdivision schemes is concerned with the convergence and the smoothness of the limit curve, especially for schemes where the new points are a linear combination of points from the previous iteration. Much less is known for non-linear schemes: in many cases there are only ad hoc proofs or numerical evidence about the regularity of these schemes. For schemes that use a geometric construction, it could be interesting to study the continuity of geometric entities. Dyn and Hormann propose sufficient conditions such that the subdivision process converges and the limit curve is tangent continuous. These conditions can be satisfied by any interpolatory scheme and they depend only on edge lengths and angles. The goal of my work is to generalize these conditions and to find a sufficient constraint, which guarantees that a generic interpolatory subdivision scheme gives limit curves with continuous curvature. To require the continuity of the curvature it seems natural to come up with a condition that depends on the difference of curvatures of neighbouring circles. The proof of the proposed condition is not completed, but we give a numerical evidence of it. A key feature of subdivision schemes is that they can be used in different fields of approximation theory. Due to their well-known relation with multiresolution analysis they can be exploited also in image analysis. In fact, subdivision schemes allow for an efficient computation of the wavelet transform using the filterbank. One current issue in signal processing is the analysis of anisotropic signals. Shearlet transforms allow to do it using the concept of multiple subdivision schemes. One drawback, however, is the big number of filters needed for analysing the signal given. The number of filters is related to the determinant of the expanding matrix considered. Therefore, a part of my work is devoted to find expanding matrices that give a smaller number of filters compared to the shearlet case. We present a family of anisotropic matrices for any dimension d with smaller determinant than shearlets. At the same time, these matrices allow for the definition of a valid directional transform and associated multiple subdivision schemes

    Introductory Lectures on Turbulence: Physics, Mathematics and Modeling

    Get PDF
    From Chapter 1: The understanding of turbulent behavior in flowing fluids is one of the most intriguing, frustrating— and important—problems in all of classical physics. The problem of turbulence has been studied by many of the greatest physicists and engineers of the 19th and 20th Centuries, and yet we do not understand in complete detail how or why turbulence occurs, nor can we predict turbulent behavior with any degree of reliability, even in very simple (from an engineering perspective) flow situations. Thus, study of turbulence is motivated both by its inherent intellectual challenge and by the practical utility of a thorough understanding of its nature.https://uknowledge.uky.edu/me_textbooks/1001/thumbnail.jp

    Generalized averaged Gaussian quadrature and applications

    Get PDF
    A simple numerical method for constructing the optimal generalized averaged Gaussian quadrature formulas will be presented. These formulas exist in many cases in which real positive GaussKronrod formulas do not exist, and can be used as an adequate alternative in order to estimate the error of a Gaussian rule. We also investigate the conditions under which the optimal averaged Gaussian quadrature formulas and their truncated variants are internal

    MS FT-2-2 7 Orthogonal polynomials and quadrature: Theory, computation, and applications

    Get PDF
    Quadrature rules find many applications in science and engineering. Their analysis is a classical area of applied mathematics and continues to attract considerable attention. This seminar brings together speakers with expertise in a large variety of quadrature rules. It is the aim of the seminar to provide an overview of recent developments in the analysis of quadrature rules. The computation of error estimates and novel applications also are described

    Microlocal analysis of edge flatness through directional multiscale representations

    No full text
    Edges and surface boundaries are often the most relevant features in images and multidimensional data. It is well known that multiscale methods including wavelets and their more sophisticated multidimensional siblings offer a powerful tool for the analysis and detection of such sets. Among such methods, the continuous shearlet transform has been especially successful. This method combines anisotropic scaling and directional sensitivity controlled by shear transformations in order to precisely identify not only the location of edges and boundary points but also edge orientation and corner points. In this paper, we show that this framework can be made even more flexible by controlling the scaling parameter of the anisotropic dilation matrix and considering non-parabolic scaling. We prove that, using ‘higher-than-parabolic\u27 scaling, the modified shearlet transform is also able to estimate the degree of local flatness of an edge or surface boundary, providing more detailed information about the geometry of edge and boundary points
    corecore