5,080 research outputs found

    Monolithic Integration of a Plasmonic Sensor with CMOS Technology

    Get PDF
    Monolithic integration of nanophotonic sensors with CMOS detectors can transform the laboratory based nanophotonic sensors into practical devices with a range of applications in everyday life. In this work, by monolithically integrating an array of gold nanodiscs with the CMOS photodiode we have developed a compact and miniaturized nanophotonic sensor system having direct electrical read out. Doing so eliminates the need of expensive and bulky laboratory based optical spectrum analyzers used currently for measurements of nanophotonic sensor chips. The experimental optical sensitivity of the gold nanodiscs is measured to be 275 nm/RIU which translates to an electrical sensitivity of 5.4 V/RIU. This integration of nanophotonic sensors with the CMOS electronics has the potential to revolutionize personalized medical diagnostics similar to the way in which the CMOS technology has revolutionized the electronics industry

    Microfluidic platforms for cell cultures and investigations

    Get PDF
    This review covers several aspects of microfluidic devices used for culturing and monitoring of both adherent and non-adherent cells, including a multitude of applications. A comparison of available platforms with high throughput analysis, automation capability, interface to sensors and integration, is reported. Aspects, such as operational versatility of the devices, are scrutinized in terms of their analytical efficacy. It is found that due to multi-functionality capability of modern microfluidics, there is big amount of experimental data obtainable from a single device, allowing complex experimental control and efficient data correlation, particularly important when biomedical studies are considered. Hence several examples on cell culture and monitoring are given in this review, including details on design of microfluidic devices with their distinctive technological peculiarities

    A direct-sequence spread-spectrum communication system for integrated sensor microsystems

    Get PDF
    Some of the most important challenges in health-care technologies have been identified to be development of noninvasive systems and miniaturization. In developing the core technologies, progress is required in pushing the limits of miniaturization, minimizing the costs and power consumption of microsystems components, developing mobile/wireless communication infrastructures and computing technologies that are reliable. The implementation of such miniaturized systems has become feasible by the advent of system-on-chip technology, which enables us to integrate most of the components of a system on to a single chip. One of the most important tasks in such a system is to convey information reliably on a multiple-access-based environment. When considering the design of telecommunication system for such a network, the receiver is the key performance critical block. The paper describes the application environment, the choice of the communication protocol, the implementation of the transmitter and receiver circuitry, and research work carried out on studying the impact of input data characteristics and internal data path complexity on area and power performance of the receiver. We provide results using a test data recorded from a pH sensor. The results demonstrate satisfying functionality, area, and power constraints even when a degree of programmability is incorporated in the system

    Low-temperature Fabrication Process for Integrated High-Aspect Ratio Metal Oxide Nanostructure Semiconductor Gas Sensors

    Get PDF
    This work presents a new low-temperature fabrication process of metal oxide nanostructures that allows high-aspect ratio zinc oxide (ZnO) and titanium dioxide (TiO2) nanowires and nanotubes to be readily integrated with microelectronic devices for sensor applications. This process relies on a new method of forming a close-packed array of self-assembled high-aspect-ratio nanopores in an anodized aluminum oxide (AAO) template in a thin (2.5 ”m) aluminum film deposited on a silicon and lithium niobate substrate (LiNbO3). This technique is in sharp contrast to traditional free-standing thick film methods and the use of an integrated thin aluminum film greatly enhances the utility of such methods. We have demonstrated the method by integrating ZnO nanowires, TiO2 nanowires, and multiwall TiO2 nanotubes onto the metal gate of a MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor), and the delay line of a surface acoustic wave (SAW) device to form an integrated ChemFET (Chemical Field-Effect Transistor) and a orthogonal frequency coded (OFC) SAW gas sensor. The resulting metal oxide nanostructures of 1-1.7 ”m in height and 40-100 nm in diameter offer an increase of up to 220X the surface area over a standard flat metal oxide film for sensing applications. The metal oxide nanostructures were characterized by SEM, EDX, TEM and Hall measurements to verify stoichiometry, crystal structure and electrical properties. Additionally, the electrical response of ChemFETs and OFC SAW gas sensors with ZnO nanowires, TiO2 nanowires, and multiwall TiO2 nanotubes were measured using 5-200 ppm ammonia as a target gas at room temperature (24ÂșC) showing high sensitivity and reproducible testing results

    A correlation noise spectrometer for flicker noise measurement in graphene samples

    Get PDF
    We present a high-resolution digital correlation spectrum analyzer for the measurement of low frequency resistance fluctuations in graphene samples. The system exploits the cross-correlation method to reject the amplifiers' noise. The graphene sample is excited with a low-noise DC current. The output voltage is fed to two two-stage low-noise amplifiers connected in parallel; the DC signal component is filtered by a high-pass filter with a cutoff frequency of 34 mHz. The amplified signals are digitized by a two-channel synchronous ADC board; the cross-periodogram, which rejects uncorrelated amplifiers' noise components, is computed in real time. As a practical example, we measured the noise cross-spectrum of graphene samples in the frequency range from 0.153 Hz to 10 kHz, both in two- and four-wire configurations, and for different bias currents. We report here the measurement setup, the data analysis and the error sources

    Implementations guidelines, airborne evaluation equipment, advanced system checkout design, phase B Final report, 29 Jun. 1965 - 29 Jul. 1966

    Get PDF
    Airborne checkout equipment functions and implementation for Saturn IVB stage and instrument uni
    • 

    corecore