12 research outputs found

    Occam's hammer: a link between randomized learning and multiple testing FDR control

    Full text link
    We establish a generic theoretical tool to construct probabilistic bounds for algorithms where the output is a subset of objects from an initial pool of candidates (or more generally, a probability distribution on said pool). This general device, dubbed "Occam's hammer'', acts as a meta layer when a probabilistic bound is already known on the objects of the pool taken individually, and aims at controlling the proportion of the objects in the set output not satisfying their individual bound. In this regard, it can be seen as a non-trivial generalization of the "union bound with a prior'' ("Occam's razor''), a familiar tool in learning theory. We give applications of this principle to randomized classifiers (providing an interesting alternative approach to PAC-Bayes bounds) and multiple testing (where it allows to retrieve exactly and extend the so-called Benjamini-Yekutieli testing procedure).Comment: 13 pages -- conference communication type forma

    PAC-Bayes bounds for stable algorithms with instance-dependent priors

    Full text link
    PAC-Bayes bounds have been proposed to get risk estimates based on a training sample. In this paper the PAC-Bayes approach is combined with stability of the hypothesis learned by a Hilbert space valued algorithm. The PAC-Bayes setting is used with a Gaussian prior centered at the expected output. Thus a novelty of our paper is using priors defined in terms of the data-generating distribution. Our main result estimates the risk of the randomized algorithm in terms of the hypothesis stability coefficients. We also provide a new bound for the SVM classifier, which is compared to other known bounds experimentally. Ours appears to be the first stability-based bound that evaluates to non-trivial values.Comment: 16 pages, discussion of theory and experiments in the main body, detailed proofs and experimental details in the appendice

    Tighter risk certificates for neural networks

    Get PDF
    This paper presents an empirical study regarding training probabilistic neural networks using training objectives derived from PAC-Bayes bounds. In the context of probabilistic neural networks, the output of training is a probability distribution over network weights. We present two training objectives, used here for the first time in connection with training neural networks. These two training objectives are derived from tight PAC-Bayes bounds. We also re-implement a previously used training objective based on a classical PAC-Bayes bound, to compare the properties of the predictors learned using the different training objectives. We compute risk certificates that are valid on any unseen examples for the learnt predictors. We further experiment with different types of priors on the weights (both data-free and data-dependent priors) and neural network architectures. Our experiments on MNIST and CIFAR-10 show that our training methods produce competitive test set errors and non-vacuous risk bounds with much tighter values than previous results in the literature, showing promise not only to guide the learning algorithm through bounding the risk but also for model selection. These observations suggest that the methods studied here might be good candidates for self-certified learning, in the sense of certifying the risk on any unseen data without the need for data-splitting protocols.Comment: Preprint under revie

    Bayesian Networks: a Non-Frequentist Approach for Parametrization, and a more Accurate Structural Complexity Measure

    Get PDF
    The problem of calibrating relations from examples is a classical problem in learning theory. This problem has in particular been studied in the theory of empirical processes (providing asymptotic results), and through statistical learning theory. The application of learning theory to bayesian networks is still uncomplete and we propose a contribution, especially through the use of covering numbers. We deduce multiple corollaries, among which a non-frequentist approach for parameters learning and a score taking into account a measure of structural entropy that has never been taken into account before. We then investigate the algorithmic aspects of our theoretical solution, based on BFGS and adaptive refining of gradient calculus. Empirical results show the relevance of both the statistical results and the algorithmic solution

    Tighter risk certificates for neural networks

    Get PDF
    This paper presents an empirical study regarding training probabilistic neural networks using training objectives derived from PAC-Bayes bounds. In the context of probabilistic neural networks, the output of training is a probability distribution over network weights. We present two training objectives, used here for the first time in connection with training neural networks. These two training objectives are derived from tight PAC-Bayes bounds. We also re-implement a previously used training objective based on a classical PAC-Bayes bound, to compare the properties of the predictors learned using the different training objectives. We compute risk certificates for the learnt predictors, based on part of the data used to learn the predictors. We further experiment with different types of priors on the weights (both data-free and data-dependent priors) and neural network architectures. Our experiments on MNIST and CIFAR-10 show that our training methods produce competitive test set errors and non-vacuous risk bounds with much tighter values than previous results in the literature, showing promise not only to guide the learning algorithm through bounding the risk but also for model selection. These observations suggest that the methods studied here might be good candidates for self-certified learning, in the sense of using the whole data set for learning a predictor and certifying its risk on any unseen data (from the same distribution as the training data) potentially without the need for holding out test data

    PAC-Bayesian Computation

    Get PDF
    Risk bounds, which are also called generalisation bounds in the statistical learning literature, are important objects of study because they give some information on the expected error that a predictor may incur on randomly chosen data points. In classical statistical learning, the analyses focus on individual hypotheses, and the aim is deriving risk bounds that are valid for the data-dependent hypothesis output by some learning method. Often, however, such risk bounds are valid uniformly over a hypothesis class, which is a consequence of the methods used to derive them, namely the theory of uniform convergence of empirical processes. This is a source of looseness of these classical kinds of bounds which has lead to debates and criticisms, and motivated the search of alternative methods to derive tighter bounds. The PAC-Bayes analysis focuses on distributions over hypotheses and randomised predictors defined by such distributions. Other prediction schemes can be devised based on a distribution over hypotheses, however, the randomised predictor is a typical starting point. Lifting the analysis to distributions over hypotheses, rather than individual hypotheses, makes available sharp analysis tools, which arguably account for the tightness of PAC-Bayes bounds. Two main uses of PAC-Bayes bounds are (1) risk certification, and (2) cost function derivation. The first consists of evaluating numerical risk certificates for the distributions over hypotheses learned by some method, while the second consists of turning a PAC-Bayes bound into a training objective, to learn a distribution by minimising the bound. This thesis revisits both kinds of uses of PAC-Bayes bounds. We contribute results on certifying the risk of randomised kernel and neural network classifiers, adding evidence to the success of PAC-Bayes bounds at delivering tight certificates. This thesis proposes the name “PAC-Bayesian Computation” as a generic name to encompass the class of methods that learn a distribution over hypotheses by minimising a PAC-Bayes bound (i.e. the second use case described above: cost function derivation), and reports an interesting case of PAC-Bayesian Computation leading to self-certified learning: we develop a learning and certification strategy that uses all the available data to produce a predictor together with a tight risk certificate, as demonstrated with randomised neural network classifiers on two benchmark data sets (MNIST, CIFAR-10)

    Nuevos enfoques en aprendizaje incremental

    Get PDF
    Actualmente el volumen de datos que se genera en diferentes ámbitos es muy elevado, llegando incluso a ser difícil de almacenar. Realizar tareas de aprendizaje automático ante tal cantidad de información está provocando que sean necesarios nuevos algoritmos. En esta tesis se presentan distintas aportaciones en el ámbito del aprendizaje incremental, las cuales, fundamentalmente, están dirigidas a mejorarlo usando algoritmos basados en cotas de concentración y sistemas multiclasificadores
    corecore