5 research outputs found

    Modeling of Subsurface Biobarrier Formation

    Get PDF
    Biofilm-forming microbes can form biobarriers to inhibit contaminant migration in groundwater and potentially biotransform organic contaminants to less harmful forms. Biofilm-forming microbes thereby provide an in situ method for treatment of contaminated groundwater. A mathematical and numerical model to describe the population distribution and growth of bacteria in porous media is presented here. The model is based on the convection-dispersion equation with nonlinear reaction terms. Accurate numerical simulations are crucial to the development of contaminant remediation strategies. We use the nonstandard numerical approach that is based on non-local treatment of nonlinear reactions and modified characteristic derivatives. This approach leads to significant qualitative improvements in the behavior of the numerical solution. Numerical results for a simple biobarrier formation model are presented to demonstrate the performance of the proposed new method. Comparisons of simulated results with experimental results obtained from the Montana State Center for Biofilm Engineering are also presented

    Mathematical modeling of bioremediation of trichloroethylene in aquifers

    Get PDF
    AbstractTrichloroethylene (TCE) is a very common contaminant of groundwater. It is used as an industrial solvent and is frequently poured into the soil. There exist bacteria that can degrade TCE. In contrast with most cases of bioremediation, the bacteria that degrade TCE do not use it as a carbon source. Instead the bacteria produce an enzyme to metabolize methane. This enzyme can degrade other organics including TCE. In this paper we model in situ bioremediation of TCE in an aquifer by using two species of bacteria: one that forms biobarriers to restrict the movement of TCE and the second one to reduce TCE. The model includes flow of water, transport of TCE and the nutrients, bacterial growth and degradation of TCE. Nonstandard numerical methods are used to discretize the equations. Some results are presented

    Extensions of the chemostat model with flocculation

    Get PDF
    In this work, we study a model of the chemostat where the species are present in two forms, isolated bacteria and under an aggregated form like attached bacteria or bacteria in flocks. We show that our general model contains a lot of models which were previously considered in the literature. Assuming that flocculation and deflocculation dynamics are fast with respect to the growth of the species, we construct a reduced chemostat-like model in which both the growth functions and the apparent dilution rate depend on the density of the species. We also show that such a model involving monotonic growth rates may exhibit bistability, while it may only occur in the classical chemostat model when the growth rate in non monotonic

    Extension of the chemostat model with flocculation

    Get PDF
    International audienceIn this work, we study a model of the chemostat where the species are present in two forms, isolated and aggregated individuals, such as attached bacteria or bacteria in flocks. We show that our general model contains a lot of models that were previously considered in the literature. Assuming that flocculation and deflocculation dynamics is fast compared to the growth of the species, we construct a reduced chemostat-like model in which both the growth functions and the apparent dilution rate depend on the density of the species. We also show that such a model involving monotonic growth rates may exhibit bi-stability, while it may occur in the classical chemostat model, but when the growth rate is non-monotonic

    On human gut microbial ecosystem: In vitro experiment, in vivo study and mathematical modelling.

    Get PDF
    The human gut microbiota is considered to be a highly specialized organ providing nourishment, regulating epithelial cell development, modulating innate immune responses and colonization resistances, and it significantly impacts human health and disease. Dispite of being extensively studied for several decades, the functionality of the microbiota colonization in the human gastrointestinal tract and the mechanisms of the interactions between the host and bacteria are still poorly understood. This research follows a novel and unique approach, which combines the complementary strengths of in vitro experiment, in vivo study and mathematical modelling. The work undertaken has three emphases: 1) probiotic strains and their impact on human health; 2) the development of gut microbiota in infants; 3) quantification of human gut microbial ecosystem at both the species level and the system level. In the first part of this research, a versatile anaerobic continuous culture platform was implemented following a novel and unique design, which allows easy and continuous sampling and monitoring of microbial growth. A number of carefully planned in vitro experiments have been conducted to investigate the growth and competition of probiotic strains under different culture conditions. These in vitro experiments improve the understanding for the growth behaviour of the specific probiotic strains. The second part of this project analyzed 50 faecal samples collected from 9 healthy infants with administration of probiotic strains and placebo. The analysis is based on the 454-pyrosequencing technology, which reveals the complete profiles of gut microbiota in these infants and confirmed the modulation effect of the specific probiotic strains. The last part of this research focused on the development of mathematical and computational models of human gut microbial ecosystem. The outcome from this part of the research includes: a) a new bacterial growth model that overcomes the parodox of competitative exclusion caused by previous models; b) a versatile computational framework to simulate in vitro fermentation experiments; and c) a comprehensive mathematical model for human gut and gut microbiota that is the first model for its nature
    corecore