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MODELING OF SUBSURFACE BIOBARRIER
FORMATION
1Benito Chen-Charpentier and 2Hristo V. Kojouharov
1Department of Mathematics, University of Wyoming, P.O. Box 3036, Laramie, WY
82071-3036; Phone: (307) 766-4221; Fax: (307) 766-6838; Email: bchen@uwyo.edu.
2Department of Mathematics, University of Texas at Arlington, P.O. Box 19408, Arlington,
TX 76019-0408; Phone: (817) 272-5763; Fax: (817) 272-5802; Email: hristo@uta.edu.

Biofilm-forming microbes can form biobarriers to inhibit contaminant migration in groundwater and
potentially biotransform organic contaminants to less harmful forms. Biofilm-forming microbes thereby provide
an in situ method for treatment of contaminated groundwater. A mathematical and numerical model to describe
the population distribution and growth of bacteria in porous media is presented here. The model is based on the
convection-dispersion equation with nonlinear reaction terms. Accurate numerical simulations are crucial to the
development of contaminant remediation strategies.  We use the nonstandard numerical approach that is based
on non-local treatment of nonlinear reactions and modified characteristic derivatives. This approach leads to
significant qualitative improvements in the behavior of the numerical solution. Numerical results for a simple
biobarrier formation model are presented to demonstrate the performance of the proposed new method. Compari-
sons of simulated results with experimental results obtained from the Montana State Center for Biofilm Engineer-
ing are also presented.

INTRODUCTION
Controlling pollution in underground water is a very important and difficult problem. There are

bacteria that will destroy many organic contaminants in subsurface regions (Characklis and

Marshall, 1990). But for most pollutants, including heavy metals, a more promising concept is the

creation of biobarriers for containment and remediation of contaminated soil and groundwater

(James et al., 1995). Biobarriers are in situ barriers that are formed by stimulating the growth of

biofilm-forming microbes that are either already present or introduced into the aquifer. As the

microbial biomass increases, it plugs the free-pore-space flow paths through porous media, thereby

reducing the hydraulic conductivity and mass transport properties (Cunningham et al., 1991). By

adequately choosing where to plug the porous medium, it is possible to prevent the migration of

groundwater contaminants from hazardous waste sites. An even better scenario is to have

biobarriers that will not only contain the contaminant plume but will also degrade it.

Mathematical models are needed to complement experimental work in the use of biofilms to

form biobarriers. Mathematical models help to understand the mechanisms for flow, solute trans-

port, biological and chemical reactions, biofilm accumulation, and natural biodegradation in porous

media. The equations describing the mathematical models generally lead to strongly coupled systems

of nonlinear ordinary and partial differential equations that are difficult to solve (Chen et al., 1994).

Analytical solutions for the full, coupled problem are non existent and numerical methods have

problems such as instabilities and artificial diffusion (Morton, 1996).
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In this article, we use new methods that are reliable, accurate, and  efficient for the model

describing subsurface biobarrier formation (Kojouharov and Chen, 1999). Without these methods,

results of numerical simulations are of unstable nature. We compare the results obtained from using

our numerical simulator with some of the experimental results for short cores presented in

Cunningham et al. (1991). The results compare well, which is a good validation of the model. The

simulator can now be used as a predictive tool to determine values of parameters that are difficult or

impossible to measure, and to help design experiments, field studies, and actual biobarriers.

The outline of the paper is as follows. In the next section, the governing system of differential

equations is formulated for a three-phase, four-species mixture. In Section 3, the non-standard

numerical method for solving the reactive solute transport problem in porous media is given. To

demonstrate the performance of the proposed method of solution for the model and the effective-

ness of biobarriers for reducing the hydraulic conductivity, numerical results and comparisons with

experiments are presented in Section 4. In the last section, a summary of results is presented.

GOVERNING SYSTEM OF EQUATIONS
Consider a three-phase mixture consisting of a liquid phase, a solid rock phase, and a biofilm

phase. Even though the biofilm can be considered to be part of the solid phase, it is simpler to take

it as a separate phase. The four molecular species present in the porous medium are the biofilm-

forming microbes, labeled M; the soluble contaminants or nutrients, labeled N; and the water and

rock species. We assume that interactions in the system occur only between the microbial and

nutrients species. Furthermore, we assume that the microbes are immobile, i.e., they are attached to

the rock as biofilm.

The fundamental equation for saturated transient groundwater flow of constant density, in

horizontal direction, can be written in the form (Allen, 1988):

The single fluid-flow equation (1) arises from the mass balance law

when we substitute for the specific discharge vector v using the Darcy’s law

.S

h h
S K f

t x x

∂ ∂ ∂ − = ∂ ∂ ∂ 
(fluid flow) (1)

(2)

(3)

,S

h
S f

t x

∂ ∂+ =
∂ ∂

.
h

v K
x

∂= −
∂
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Here h denotes the hydraulic head, S
s
 is the specific storage, K is the saturated hydraulic conductiv-

ity, and f represent sources or sinks. The specific discharge vector v, called Darcy velocity, repre-

sents the speed of the water.

The transport and reaction of nutrients and the growth of microbes are governed by a system

of partial differential equations (Allen, 1988). Since the rock phase doesn’t change, we assume that

the solid rock matrix is stationary and that the diffusion of microbial and nutrient species in the solid

phase is negligible.  Therefore, we can work only with the liquid and biofilm phases:

Here  ρ
i
 (i = M, N)  represents the intrinsic mass density of microbes and nutrients, respectively.

For a single-fluid flow, the quantity  φL = V
L 
/ ( V

L
 + V

B 
)  and the quantity  φB = V

B 
 / ( V

L
 + V

B 
)

where V
L
 and V

B 
 represent the volumes occupied by the liquid and by the biofilmk, repectively, D

N

is the hydrodynamic dispersion coefficient for the nutrients, and  r
i 
  represents the total rate at which

species i is produced via reactions and sources.

The microbial death rate is assumed to be proportional to the size of the biofilm population.

The rate of biofilm growth is given by the Monod model

where  µ max  is the maximum specific growth rate, and K
S 
 is the value of the concentration of

nutrients S where the specific growth rate µ(S) has half its maximum value (Bailey and Ollis, 1986).

We assume that only the growth and accumulation of biofilm in the pore spaces cause changes in the

porous media properties.  Let X
f
 be the current biofilm concentration, then                               is the

normalized biofilm concentrations (Clement et al., 1996), is given by

where φ 0  is the clean surface porosity.  For the saturated hydraulic donductivity K, we assume the

following form

where K
0
 is the initial hydraulic conductivity and n

k
 is an experimentally determined parameter

titiwhich takes values around 3 (Clement et al., 1996).  For simplicity, from now on we will drop the

( ) ( ),
B

M M M Nr
t

∂
φ ρ = ρ ρ

∂
(microbes)

(nurtients)( ) ( ) ( ), .L N
N N N N M Nv D r

t x x x

∂ρ∂ ∂ ∂  φ ρ + ρ − = ρ ρ ∂ ∂ ∂ ∂ 

(4)

( ) max ,
S

S
S

K S

µµ =
+

(5)

(6)

( )0 1 ,
kn

fK K X= − % (7)

( )0 1 ,fXφ = φ − %

f
f

M

X
X ρ=%
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tilde from the normalized biofilm concentration.  We assume there are no sources and sinks for the

fluid, therefore f=0 in Equation (1).  We also assume a piecewise steady, state fluid flow, due to the

relatively slow changes in the porous media properties (Cunningham et al., 1991).  Also, we are

modeling very short cores with uniform biofilm distribution so we can take the velocity to be inde-

pendent of x (Cunningham et al., 1991).

Invoking all simplifying assumptions to Equations (1) and (4) and using concentrations as the

unknows gives the final form of the governing system of differential equations:

where k
r
 is the first-order endogenous decay rate and Y is the yield rate coefficient (Bailey and

Ollis, 1986).

NUMERICAL METHODS FOR BIOFILM GROWTH
Equation (8) represents a coupled system of nonlinear, time-dependent partial differential

equations and ordinary differential equations that is very difficult to solve numerically. A key objec-

tive of the numerical simulation is to develop time-stepping procedures that are accurate and

computationally stable. Different time-stepping ideas can be applied to solve the governing system

of equations (Russell and Wheeler, 1983). One possible time-stepping approach is the sequential

solution technique (see Figure 1).

The sequential method first solves implicitly for the Darcy velocity v at the current time level by

solving the fluid-flow equation (1). Then the species transport system (4) is solved implicitly for the

concentrations S and X
f 
 , in a decoupled fashion  (Ewing and Russell, 1982). New values of poros-

ity and permeability are then calculated and the cycle is repeated by calculating the new velocities.

For the solution of the ordinary differential equation in System (8), modeling the fluid flow, we

use a standard finite-difference method to calculate h. Then we numerically differentiate using

Equation (3) to get the velocity field v.

Unfortunately, there are only few cases for which analytic solutions to the solute transport

equation in System (8) exist. The form of the convection-dispersion-reaction equation ranges from

( ) 0,f

h
K X

x x

∂ ∂ − = ∂ ∂ 

max ,f
f r f

S

X S
X k X

t K S

∂ µ= −
∂ +

max1
,N f

S

SS S S
v D X

t x x x Y K S
µ∂ ∂ ∂ ∂ + − = − ∂ ∂ ∂ ∂ + 

(8)
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parabolic to almost hyperbolic, depending on the ratio of convection to dispersion (Chiang et al.,

1989). One can measure the degree of convection dominance via the dimensionless Peclet number

Pe = vL/D
N 
 , where L is the length of the domain (Liu et al., 1996). When Pe<<1, the equation

resembles the heat equation, which rapidly smooths sharp fronts. When Pe>>1, sharp fronts and

plumes remain sharp and cause numerical difficulties. Typically, the criterion for oscillation-free

solution requires that the grid Peclet number  Pe = Pe∆x/L = O(1)  (Jensen and Finlayson, 1980).

However, in underground flows with field-scale pressure gradients applied by pumping wells, Peclet

numbers greater than 102 are common (Lake and Hirasaki, 1981), so the near-hyperbolic regime is

important in engineering applications. While classical numerical techniques, such as the standard

finite-differences or Galerkin finite-elements, work well for problems of solute transport that are

dominated by dispersive movement, they suffer from severe nonphysical oscillations and excessive

numerical dispersion when convection dominates the dispersive effects (Morton, 1996). Solutions of

hyperbolic-type equations can be represented from the initial data propagating over characteristic

paths in the surface and can be viewed as dispersing away from these paths, along which the

concentration is a smooth function (Douglas and Russell, 1982). Therefore, it is logical to design

numerical procedures that recognize the hyperbolic nature of the convection-dominated solute

transport problems, such as the Eulerian-Lagrangian methods (Celia et al., 1990). In recent years,

many such schemes have been developed (Healy and Russell, 1993; Allen and Liu, 1995), but still

little has been done to improve the numerical solutions of problems in which nonlinear reactions are

present. Nonlinear reaction terms play a significant role in applications involving bacterial growth

and contaminant biodegradation in subsurface regions (Chiang et al., 1991; Liu et al., 1996).

Figure 1.  Sequential time-stepping procedure.
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In Kojouharov and Chen (1999), we proposed a new Eulerian-Lagrangian numerical method

for solving the reactive solute transport equation that works very well for Peclet numbers large and

small. The numerical solution of the convection-reaction part is defined using an “exact”

time-stepping scheme (Kojouharov and Chen, 1998). This enables us to follow the transport and

track sharp fronts much more accurately than with the standard numerical schemes. Having dealt

with the most difficult part of the transport problem, only the smoothing property of the dispersion

term remains. Then, standard finite differences or finite elements are well suited for solving the

dispersion part.

 We now apply the new method to the following dispersion-free system of differential equations:

The microbes’ equation is a linear, first-order ordinary differential equation whose “exact

solution” is given by

where                                                and the bactrack point          has the expression

for constant in space, time-dependent velocity fields: v(t) = P
n-1

(t).

The “exact” time-stepping scheme for solving the nutrients transport equation from System (9)

is given by the expression

where

max ,f
f r f

S

X S
X k X

t K S

∂ µ
= −

∂ +

max1
.f

S

SS S
v X

t x Y K S
µ∂ ∂+ = −

∂ ∂ +

(microbes)

(nutrients)

(9)

1( ) ( )
( ) ,

1
m

m m m
f f m m m

ft

m

X x X x
X x

e

+

λ ∆

−
= λ

−
λ

(10)

max ( )
,

( ( ))

m
m

rm
s

S x
k

K S x

µ
λ = −

+

mx

[ ](( 1) ) ( ) ,m
n nx x P m t P m t= − + ∆ − ∆

( ) ( )
( )

1 1( )
ln ,

m m m m
m s

m m

S x S x K S x

t t S x

+ + −
 = λ −
 ∆ ∆  

(11)

1
max ( )

.
m
fm

X x

Y

+µ
λ = −
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Applying the “exact” time-stepping scheme (11) to the dispersive nutrients transport equation

from System (8) yields the following implicit-in-nature, semi-discrete procedure

To complete the construction of the new Eulerian-Lagrangian method we need to introduce an

approximation technique for discretizing the spatial derivatives involved in the dispersion term from

Equation (12).  Let us consider the centered, weighted second difference approximation (Huyakorn

and Pinder, 1983):

where

is the hydrodynamic dispersion coefficient located at the center of a space increment.

Combining the semi-discrete procedure (12) with the above spatial approximation of the disper-

sion term yields the non-standard difference method for solving the nutrients transport equation:

where                                 and the backtrack point         has the expression

Remark.  In general, the “backtrack” point       does not lie at a grid point.  If the approximates

solution S is being determined by a finite-difference procedure, the convective concentration

must be evaluated by an interpolation of the approximate solution values           at the grid points x
i
.

NUMERICAL RESULTS
We now turn to a set of numerical experiments to demonstrate the performance of the pro-

posed new method and the effectiveness of microbial barriers for reducing the hydraulic conductivity

property of porous media. The governing system of equations examined here has the following form:

( )
( ) ( )

1 1

2 2

1 1 1 1 1 1
1 11

1 1 1

2

( )
,

i i

m m m m m m
M i i M i im

m m m
M N xx

i

D S S D S S
S x

D D S
x x x

+ −

+ + + + + +
+ −+

+ + +
− − −

 ∂ ∂
≈ δ δ = ∂ ∂ ∆ 

(13)

1

2

1 1 , ( 1)
2i

m i i
M M

x x
D D m t

+

+ + + = + ∆    
(14)

( )
( )

1 1
1 1( ) ln ,

m m m m
i i m m m S i

x N x i i m m
i

S S x K S
D S

t t S x

+ +
+ +

 −
 −δ δ = λ −
 ∆ ∆  

(15)

m
ix

m
ix

1
max

m
fim

i

X

Y

+µ
λ = −

( )( ) ( )1 .m
i i n nx x P m t P m t = − + ∆ − ∆ 

( )m m
iS x

{ }m
iS

( ) ( )
( )

1 1 1
1 ( ) ( )

ln .
m m m m m

m m S
M m m

S x S x KS x S x
D

t x x t S x

+ + +
+

 −  ∂ ∂  − = λ −   ∆ ∂ ∂ ∆   
(12)
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where

with γ  typically small, is introduced to restrict the growth of the microbes as the pores are being

plugged (Freter et al., 1986; Jones and Smith, 2000); h is the hydraulic head; X
f
 is the normalized

biofilm concentration; and S is the nutrients concentration.  Assumptions made in the above math-

ematical model (16) are that all bacteria are attached to the solid rock surface, as a part of the

biofilm structure, and that the concentration of nutrients present in the solid phase is negligible.

Changes in the hydraulic conductivity K are caused by the accumulation of soild-phase biomass in

the pore spaces.  The biofilm concentration-porosity relation used is given by Equation (6).  The

conductivity-reduction relationship examined here is given by Equation (7) with  n
k
=3.

1
( ) ,

1
f

f
f

X
G X

X

−
=

− + γ

Table 1. Parameters used in the mathematical model.

S

x

∂
∂

0,
h

K
x x

∂ ∂ − = ∂ ∂ 

h
v K

x

∂= −
∂

max ( ) ,f
f f r f

S

x S
G X X k X

t K S

∂ µ= −
∂ +

2
max

2

1
( ) ,N f f

S

SS S S
v D G X X

t x x Y K S

µ∂ ∂ ∂+ − = −
∂ ∂ ∂ +

(fluid flow)

(microbes)

(nutrients)

(16)

P a r a m e t e r s

C o l u m n s

0 . 7 0  m m  s a n d 0 . 5 4  m m  s a n d

Ini t ial  (clean surface) permeabil i ty,  k
0

Hydraul ic  conduct ivi ty ,  K
0  ,  

f o r  w a t e r  a t  1 5 o C
Initial porosity, φ

0

Maximum spec i f i c  g rowth  r a t e ,  µ
m a x

Sa tu ra t ion  cons tan t ,  K
S

Yield coefficient,  Y
Endogenous  decay  coe f f i c i en t ,  k

r

Dispers ion coeff ic ient ,  D
N

G a m m a ,  γ

3 . 1 9 x 1 0 - 6 c m 2

0 . 2 4 0 4  c m / s
0 . 3 5

1 . 0 4 1 x 1 0 - 4  /s
0 . 7 9 9  m g / L

0 . 0 9 7 5
7 . 1 6 1 x 1 0 - 5  /s
5 x 1 0 - 4 c m 2 /s

0 .1

2 . 1 7 x 1 0 - 6 c m 2

0 . 1 6 3 5  c m / s
0 . 3 5

1 . 0 4 1 x 1 0 - 4  /s
0 . 7 9 9  m g / L

0 . 0 9 7 5
7 . 1 6 1 x 1 0 - 5  /s
5 x 1 0 - 4 c m 2 /s

0 .1

I n i t i a l  c o n d i t i o n s  a t  t = 0

Nutr ien t s  concen t ra t ion ,  S ( x , 0 )
Normal ized  b io f i lm concen t ra t ion ,  X

f
 ( x , 0 )

0 .5  mg/L
0 . 0 2

0 .5  mg/L
0 . 0 2

B o u n d a r y  c o n d i t i o n s

Hydrau l i c  head  a t  x = 0 ,  h ( 0 , t )
H y d r a u l i c  h e a d  a t  x = 1 ,  h ( 1 , t )
Nutr ien t s  concen t ra t ion  a t  x = 0 ,  S ( 0 , t )

Nutr ien t s  concen t ra t ion  g rad ien t  a t  x = 1 ,        ( 1 , t )

0 . 5  c m
0  c m

0.5  mg/L

0 mg/LT

0 . 5  c m
0  c m

0.5  mg/L

0 mg/LT
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We stimulate two of the experiments done by Cunningham et al. (1991) for a 5-cm-long

reactor packed with 0.70 mm and 0.54 mm (in diameter) sands.  For ease of calculations, the

reactor’s lenght was scaled to 1, i.e., spatial domain Ω=[0,1], and the nutrients concentration was

scaled by a factor of 50 for graphing purposes.  The parameters used in the mathematical model, for

both types of porous media, are summarized in Table 1 on the previous page.

The boundary and initial conditions considered in the model are in agreement with Cunningham

et al. (1991); the reaction parameters are taken from Taylor and Jaffe, (1990); and the gamma

parameter in the function G is taken from Jones and Smith, (2000).

The figures present the results of our calculation, together with some of the experimental values

shown in Figures 5 and 8 from Cunningham et al. (1991). We use concentrations instead of biofilm

thickness since we cannot calculate the thickness without making assumptions on the distribution of

microbes. But, it is reasonable to assume that there is a linear relation between biofilm thickness and

microbial concentration.

Figure 2 shows the variation of the normalized porosity with the normalized biofilm concentra-

tion. X
fmax

 is the maximum value of the microbial concentration and symbols represent some experi-

mental results.

Figure 3 is a plot of the permeability decrease and the increase in the microbial concentration

with time. In our results the normalized biomass goes to 1 in about two days, the same time it takes

the normalized permeability to decrease to about 0.1. In Figure 5 of Cunningham et al. (1991), the

permeability also decays to 0.1 in about two days, but the normalized biofilm thickness takes about

Figure 2.  Variation in simulated normalized media porosity with normalized biofilm concentration.
The triangles and the stars represent the experimental values for .70 mm and .54 sands, respectively,
from Cunningham et al., (1991).

9
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six days to tend to 1. The difference is due to the averaging of the biofilm thickness done by

Cunningham et al. (1991), where the dominant component is for 1mm glass spheres (experiment not

modeled in this article). Note that Cunningham et al. (1991) use permeability k instead of the more

widely used hydraulic conductivity K. The relation between the two is K=kρg/µ, with ρ and µ the

density and viscosity of water, respectively, and g the acceleration of gravity.

Figure 4 shows the growth of biomass together with the decrease in nutrients. The amount of

biomass reaches a maximum steady state at about two days, which coincides with the time it takes

for the nutrients to reach their minimum.

The agreement is very good and shows that the model can reproduce experimental results and

that in the future can be used as a predictive tool.  However, the curves in Figure 2 are closer

together than the corresponding experimental ones. One reason is that we are plotting biomass

concentrations instead of biofilm thickness. Another possible reason is that we took all the bacteria

to be in biofilm form with no significant detachment, so all the biomass reduces the porosity and

permeability. In practice there is detachment and the free- floating microbes will not change the

physical properties of the medium.  Also, for the 0.54 mm sand, the pore channels are smaller and

the velocities higher, which would increase the detachment in this case and add to the separation of

the curves.

Figure 3.  Normalized porous media permeability decrease corresponding to increased normalized
microbial concentration versus time.  The microbial concentration curve is the average for both
types of sand.  The triangles and the stars represent experimental permeability values for .70 mm
sands and .54 mm sands, respectively, from Cunningham et al., (1991).
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Figure 4.  Increase in microbial concentration and decrease of normalized nutrient concentration
with time.

CONCLUSIONS
A new class of numerical methods has been developed for solving one-dimensional, transient

convective-dispersive transport equations with nonlinear reactions. Large time steps can be taken

without affecting the accuracy of the numerical solution. The appropriate time step size for a particu-

lar model problem can be determined by physical considerations, rather than stability, convergence,

or consistency reasons.

The proposed new methods have been successfully applied to biobarrier formation models

incorporating Monod kinetics. Numerical results confirmed the theoretical and experimental predic-

tions that microbial barriers are effective for manipulating the porous media properties in general,

and for reducing the hydraulic conductivity in particular.

NOMENCLATURE
The symbols L, M, and T denote the dimensions of length, mass, and time, respectively.  (See

Table 2.)
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L/T
1/T

dimensionless
M/L
L2/T
1/T
M/L

dimensionless
1/T
M/L
M/L

dimensionless
dimensionless

12

Journal of Hazardous Substance Research, Vol. 3 [2001], Art. 1

https://newprairiepress.org/jhsr/vol3/iss1/1
DOI: 10.4148/1090-7025.1019



Journal of Hazardous Substance Research 1-13Volume Three

Douglas, J. Jr., and T. F. Russell, 1982, “Numerical methods for convection-dominated diffusion
problems based on combining the method of characteristics with finite element or finite
difference procedures,” SIAM J. Numer. Anal., 19, pp. 871-885.

Ewing, R. E., and T.  F. Russell, 1982, “Efficient time-stepping methods for miscible displacement
problems in porous media,” SIAM J. Numer. Anal., 19, pp. 1-66.

Freter, R., H. Brickner, and S. Temme, 1986, “An understanding of colonization resistance of the
mammalian large intestine requires mathematical analysis,” Microecology and Therapy, 16,
pp. 147-155.

Huyakorn, P. S., and G. F. Pinder, 1983, Computational Methods in Subsurface Flow, Aca-
demic Press, NY.

James, G.A., B.K. Warwood, A.B. Cunningham, P.J. Sturman, R. Hiebert, and J.W. Costerton,
1995, “Evaluation of subsurface biobarrier formation and persistence,” Proceedings of the
10th Annual Conference on Hazardous Waste Research, Great Plains/Rocky Mountain
Hazardous Substance Research Center, pp. 82-91.

Jensen, O. K., and B. A. Finlayson, 1980, “Oscillation limits for the weighted residual methods
applied in convection-diffusion problems,” Int. J. Numer. Meth. Eng., 15, pp. 1681-1689.

Jones, D. A., and H. Smith, 2000, “Microbial competition for nutrient and wall sites in plug flow,”
SIAM J. Appl. Math.,  60:5, pp. 1576-1600.

Kojouharov, H. V., and B.  M. Chen, 1998, “Non-standard methods for the convective transport
equation with nonlinear reactions,” Numer. Methods Partial Differential Equations, 14,
pp. 467-485.

 Kojouharov, H. V., and B.  M. Chen, 1999, “Non-standard methods for the convective-dispersive
transport equation with nonlinear reactions,” Numer. Methods Partial Differential Equa-
tions, 15, pp. 617-624.

Lake, L. W., and G. J. Hirasaki, 1981, “Taylor’s dispersion in stratified porous media,” Soc. Pet.
Eng. Jour., 21, pp. 459-468.

Liu, B., M.B. Allen, H. Kojouharov, and B. Chen, 1996, “Finite-element solution of reaction-
diffusion equations with advection,” Computational Methods in Water Resources XI,
Vol. 1: Computational Methods in Subsurface Flow and Transport Problems, (A.A.
Aldama et al., Eds.), Computational Mechanics Publications, Southampton Boston, pp.
3-12.

Morton, K. W., 1996, Numerical Solution of Convection-Diffusion Problems, Chapman &
Hall, London.

Russell, T. F.,  and M.  F. Wheeler, 1983. “Finite element and finite difference methods for continu-
ous flows in porous media,” Frontiers in Applied Mathematics, Vol. 1: The Mathematics
of Reservoir Simulation, R.E. Ewing, Ed., SIAM, Philadelphia, pp. 35-106.

Taylor, S.W., and P.R. Jaffe, 1990. “Substrate and biomass transport in a porous medium,” Water
Resources Research, 26, pp. 2181-2194.

13

Chen-Charpentier and Kojouharov: Modeling of Subsurface Biobarrier Formation

Published by New Prairie Press, 2017



Journal of Hazardous Substance Research1-14 Volume Three

Original manuscript received: June 6, 2000
Revised manuscript received: July 30, 2001

14

Journal of Hazardous Substance Research, Vol. 3 [2001], Art. 1

https://newprairiepress.org/jhsr/vol3/iss1/1
DOI: 10.4148/1090-7025.1019


	Modeling of Subsurface Biobarrier Formation
	Recommended Citation

	Modeling of Subsurface Biobarrier Formation
	Cover Page Footnote

	Work\Jour

