7,921 research outputs found

    Average Rank-Based Score to Measure Deregulation of Molecular Pathway Gene Sets

    Get PDF
    Deregulation of biological pathways has been shown to be involved in the turmorigenesis of a variety of cancers. The co-regulation of pathways in tumor and normal tissues has not been studied in a systematic manner.In this study we propose a novel statistic named AR-score (average rank based score) to measure pathway activities based on microarray gene expression profiles. We calculate and compare the AR-scores of pathways in microarray datasets containing expression profiles for a wide range of cancer types as well as the corresponding normal tissues. We find that many pathways undergo significant activity changes in tumors with respect to normal tissues. AR-scores for a small subset of pathways are capable of distinguishing tumor from normal tissues or classifying tumor subtypes. In normal tissues many pathways are highly correlated in their activities, whereas their correlations reduce significantly in tumors and cancer cell lines. The co-expression of genes in the same pathways was also significantly perturbed in tumors.The co-regulation of genes in the same pathways and co-regulation of different pathways are significantly perturbed in tumors versus normal tissues. Our method provides a useful tool for better understanding the mechanistic changes in tumors, which can also be used for exploring other biological problems

    Accurate and Reliable Cancer Classification Based on Probabilistic Inference of Pathway Activity

    Get PDF
    With the advent of high-throughput technologies for measuring genome-wide expression profiles, a large number of methods have been proposed for discovering diagnostic markers that can accurately discriminate between different classes of a disease. However, factors such as the small sample size of typical clinical data, the inherent noise in high-throughput measurements, and the heterogeneity across different samples, often make it difficult to find reliable gene markers. To overcome this problem, several studies have proposed the use of pathway-based markers, instead of individual gene markers, for building the classifier. Given a set of known pathways, these methods estimate the activity level of each pathway by summarizing the expression values of its member genes, and use the pathway activities for classification. It has been shown that pathway-based classifiers typically yield more reliable results compared to traditional gene-based classifiers. In this paper, we propose a new classification method based on probabilistic inference of pathway activities. For a given sample, we compute the log-likelihood ratio between different disease phenotypes based on the expression level of each gene. The activity of a given pathway is then inferred by combining the log-likelihood ratios of the constituent genes. We apply the proposed method to the classification of breast cancer metastasis, and show that it achieves higher accuracy and identifies more reproducible pathway markers compared to several existing pathway activity inference methods

    Mapping genomic and transcriptomic alterations spatially in epithelial cells adjacent to human breast carcinoma.

    Get PDF
    Almost all genomic studies of breast cancer have focused on well-established tumours because it is technically challenging to study the earliest mutational events occurring in human breast epithelial cells. To address this we created a unique dataset of epithelial samples ductoscopically obtained from ducts leading to breast carcinomas and matched samples from ducts on the opposite side of the nipple. Here, we demonstrate that perturbations in mRNA abundance, with increasing proximity to tumour, cannot be explained by copy number aberrations. Rather, we find a possibility of field cancerization surrounding the primary tumour by constructing a classifier that evaluates where epithelial samples were obtained relative to a tumour (cross-validated micro-averaged AUC = 0.74). We implement a spectral co-clustering algorithm to define biclusters. Relating to over-represented bicluster pathways, we further validate two genes with tissue microarrays and in vitro experiments. We highlight evidence suggesting that bicluster perturbation occurs early in tumour development

    Artificial Neural Network Inference (ANNI): A Study on Gene-Gene Interaction for Biomarkers in Childhood Sarcomas

    Get PDF
    Objective: To model the potential interaction between previously identified biomarkers in children sarcomas using artificial neural network inference (ANNI). Method: To concisely demonstrate the biological interactions between correlated genes in an interaction network map, only 2 types of sarcomas in the children small round blue cell tumors (SRBCTs) dataset are discussed in this paper. A backpropagation neural network was used to model the potential interaction between genes. The prediction weights and signal directions were used to model the strengths of the interaction signals and the direction of the interaction link between genes. The ANN model was validated using Monte Carlo cross-validation to minimize the risk of over-fitting and to optimize generalization ability of the model. Results: Strong connection links on certain genes (TNNT1 and FNDC5 in rhabdomyosarcoma (RMS); FCGRT and OLFM1 in Ewing’s sarcoma (EWS)) suggested their potency as central hubs in the interconnection of genes with different functionalities. The results showed that the RMS patients in this dataset are likely to be congenital and at low risk of cardiomyopathy development. The EWS patients are likely to be complicated by EWS-FLI fusion and deficiency in various signaling pathways, including Wnt, Fas/Rho and intracellular oxygen. Conclusions: The ANN network inference approach and the examination of identified genes in the published literature within the context of the disease highlights the substantial influence of certain genes in sarcomas

    Sparse integrative clustering of multiple omics data sets

    Get PDF
    High resolution microarrays and second-generation sequencing platforms are powerful tools to investigate genome-wide alterations in DNA copy number, methylation and gene expression associated with a disease. An integrated genomic profiling approach measures multiple omics data types simultaneously in the same set of biological samples. Such approach renders an integrated data resolution that would not be available with any single data type. In this study, we use penalized latent variable regression methods for joint modeling of multiple omics data types to identify common latent variables that can be used to cluster patient samples into biologically and clinically relevant disease subtypes. We consider lasso [J. Roy. Statist. Soc. Ser. B 58 (1996) 267-288], elastic net [J. R. Stat. Soc. Ser. B Stat. Methodol. 67 (2005) 301-320] and fused lasso [J. R. Stat. Soc. Ser. B Stat. Methodol. 67 (2005) 91-108] methods to induce sparsity in the coefficient vectors, revealing important genomic features that have significant contributions to the latent variables. An iterative ridge regression is used to compute the sparse coefficient vectors. In model selection, a uniform design [Monographs on Statistics and Applied Probability (1994) Chapman & Hall] is used to seek "experimental" points that scattered uniformly across the search domain for efficient sampling of tuning parameter combinations. We compared our method to sparse singular value decomposition (SVD) and penalized Gaussian mixture model (GMM) using both real and simulated data sets. The proposed method is applied to integrate genomic, epigenomic and transcriptomic data for subtype analysis in breast and lung cancer data sets.Comment: Published in at http://dx.doi.org/10.1214/12-AOAS578 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    A novel epigenetic AML1-ETO/THAP10/miR-383 mini-circuitry contributes to t(8;21) leukaemogenesis

    Get PDF
    DNA methylation patterns are frequently deregulated in t(8;21) acute myeloid leukaemia (AML), but little is known of the mechanisms by which specific gene sets become aberrantly methylated. Here, we found that the promoter DNA methylation signature of t(8;21)(+) AML blasts differs from that of t(8;21)(-) AMLs. This study demonstrated that a novel hypermethylated zinc finger-containing protein, THAP10, is a target gene and can be epigenetically suppressed by AML1-ETO at the transcriptional level in t(8;21) AML. Our findings also show that THAP10 is a bona fide target of miR-383 that can be epigenetically activated by the AML1-ETO recruiting co-activator p300. In this study, we demonstrated that epigenetic suppression of THAP10 is the mechanistic link between AML1-ETO fusion proteins and tyrosine kinase cascades. In addition, we showed that THAP10 is a nuclear protein that inhibits myeloid proliferation and promotes differentiation both in vitro and in vivo Altogether, our results revealed an unexpected and important epigenetic mini-circuit of AML1-ETO/THAP10/miR-383 in t(8;21) AML, in which epigenetic suppression of THAP10 predicts a poor clinical outcome and represents a novel therapeutic target

    Enhanced directed random walk for the identification of breast cancer prognostic markers from multiclass expression data

    Get PDF
    Artificial intelligence in healthcare can potentially identify the probability of contracting a particular disease more accurately. There are five common molecular subtypes of breast cancer: luminal A, luminal B, basal, ERBB2, and normal‐like. Previous investigations showed that pathway-based microarray analysis could help in the identification of prognostic markers from gene expres-sions. For example, directed random walk (DRW) can infer a greater reproducibility power of the pathway activity between two classes of samples with a higher classification accuracy. However, most of the existing methods (including DRW) ignored the characteristics of different cancer sub-types and considered all of the pathways to contribute equally to the analysis. Therefore, an enhanced DRW (eDRW+) is proposed to identify breast cancer prognostic markers from multiclass expression data. An improved weight strategy using one‐way ANOVA (F‐test) and pathway selection based on the greatest reproducibility power is proposed in eDRW+. The experimental results show that the eDRW+ exceeds other methods in terms of AUC. Besides this, the eDRW+ identifies 294 gene markers and 45 pathway markers from the breast cancer datasets with better AUC. There-fore, the prognostic markers (pathway markers and gene markers) can identify drug targets and look for cancer subtypes with clinically distinct outcomes

    Identification of pathway and gene markers using enhanced directed random walk for multiclass cancer expression data

    Get PDF
    Cancer markers play a significant role in the diagnosis of the origin of cancers and in the detection of cancers from initial treatments. This is a challenging task owing to the heterogeneity nature of cancers. Identification of these markers could help in improving the survival rate of cancer patients, in which dedicated treatment can be provided according to the diagnosis or even prevention. Previous investigations show that the use of pathway topology information could help in the detection of cancer markers from gene expression. Such analysis reduces its complexity from thousands of genes to a few hundreds of pathways. However, most of the existing methods group different cancer subtypes into just disease samples, and consider all pathways contribute equally in the analysis process. Meanwhile, the interaction between multiple genes and the genes with missing edges has been ignored in several other methods, and hence could lead to the poor performance of the identification of cancer markers from gene expression. Thus, this research proposes enhanced directed random walk to identify pathway and gene markers for multiclass cancer gene expression data. Firstly, an improved pathway selection with analysis of variances (ANOVA) that enables the consideration of multiple cancer subtypes is performed, and subsequently the integration of k-mean clustering and average silhouette method in the directed random walk that considers the interaction of multiple genes is also conducted. The proposed methods are tested on benchmark gene expression datasets (breast, lung, and skin cancers) and biological pathways. The performance of the proposed methods is then measured and compared in terms of classification accuracy and area under the receiver operating characteristics curve (AUC). The results indicate that the proposed methods are able to identify a list of pathway and gene markers from the datasets with better classification accuracy and AUC. The proposed methods have improved the classification performance in the range of between 1% and 35% compared with existing methods. Cell cycle and p53 signaling pathway were found significantly associated with breast, lung, and skin cancers, while the cell cycle was highly enriched with squamous cell carcinoma and adenocarcinoma

    A Densely Interconnected Genome-Wide Network of MicroRNAs and Oncogenic Pathways Revealed Using Gene Expression Signatures

    Get PDF
    MicroRNAs (miRNAs) are important components of cellular signaling pathways, acting either as pathway regulators or pathway targets. Currently, only a limited number of miRNAs have been functionally linked to specific signaling pathways. Here, we explored if gene expression signatures could be used to represent miRNA activities and integrated with genomic signatures of oncogenic pathway activity to identify connections between miRNAs and oncogenic pathways on a high-throughput, genome-wide scale. Mapping >300 gene expression signatures to >700 primary tumor profiles, we constructed a genome-wide miRNA–pathway network predicting the associations of 276 human miRNAs to 26 oncogenic pathways. The miRNA–pathway network confirmed a host of previously reported miRNA/pathway associations and uncovered several novel associations that were subsequently experimentally validated. Globally, the miRNA–pathway network demonstrates a small-world, but not scale-free, organization characterized by multiple distinct, tightly knit modules each exhibiting a high density of connections. However, unlike genetic or metabolic networks typified by only a few highly connected nodes (“hubs”), most nodes in the miRNA–pathway network are highly connected. Sequence-based computational analysis confirmed that highly-interconnected miRNAs are likely to be regulated by common pathways to target similar sets of downstream genes, suggesting a pervasive and high level of functional redundancy among coexpressed miRNAs. We conclude that gene expression signatures can be used as surrogates of miRNA activity. Our strategy facilitates the task of discovering novel miRNA–pathway connections, since gene expression data for multiple normal and disease conditions are abundantly available
    corecore