161 research outputs found

    FINE-GRAINED EMOTION DETECTION IN MICROBLOG TEXT

    Get PDF
    Automatic emotion detection in text is concerned with using natural language processing techniques to recognize emotions expressed in written discourse. Endowing computers with the ability to recognize emotions in a particular kind of text, microblogs, has important applications in sentiment analysis and affective computing. In order to build computational models that can recognize the emotions represented in tweets we need to identify a set of suitable emotion categories. Prior work has mainly focused on building computational models for only a small set of six basic emotions (happiness, sadness, fear, anger, disgust, and surprise). This thesis describes a taxonomy of 28 emotion categories, an expansion of these six basic emotions, developed inductively from data. This set of 28 emotion categories represents a set of fine-grained emotion categories that are representative of the range of emotions expressed in tweets, microblog posts on Twitter. The ability of humans to recognize these fine-grained emotion categories is characterized using inter-annotator reliability measures based on annotations provided by expert and novice annotators. A set of 15,553 human-annotated tweets form a gold standard corpus, EmoTweet-28. For each emotion category, we have extracted a set of linguistic cues (i.e., punctuation marks, emoticons, emojis, abbreviated forms, interjections, lemmas, hashtags and collocations) that can serve as salient indicators for that emotion category. We evaluated the performance of automatic classification techniques on the set of 28 emotion categories through a series of experiments using several classifier and feature combinations. Our results shows that it is feasible to extend machine learning classification to fine-grained emotion detection in tweets (i.e., as many as 28 emotion categories) with results that are comparable to state-of-the-art classifiers that detect six to eight basic emotions in text. Classifiers using features extracted from the linguistic cues associated with each category equal or better the performance of conventional corpus-based and lexicon-based features for fine-grained emotion classification. This thesis makes an important theoretical contribution in the development of a taxonomy of emotion in text. In addition, this research also makes several practical contributions, particularly in the creation of language resources (i.e., corpus and lexicon) and machine learning models for fine-grained emotion detection in text

    ISP/PhD Comprehensive Examination

    Get PDF

    Doctor of Philosophy

    Get PDF
    dissertationDue to the popularity of Web 2.0 and Social Media in the last decade, the percolation of user generated content (UGC) has rapidly increased. In the financial realm, this results in the emergence of virtual investing communities (VIC) to the investing public. There is an on-going debate among scholars and practitioners on whether such UGC contain valuable investing information or mainly noise. I investigate two major studies in my dissertation. First I examine the relationship between peer influence and information quality in the context of individual characteristics in stock microblogging. Surprisingly, I discover that the set of individual characteristics that relate to peer influence is not synonymous with those that relate to high information quality. In relating to information quality, influentials who are frequently mentioned by peers due to their name value are likely to possess higher information quality while those who are better at diffusing information via retweets are likely to associate with lower information quality. Second I propose a study to explore predictability of stock microblog dimensions and features over stock price directional movements using data mining classification techniques. I find that author-ticker-day dimension produces the highest predictive accuracy inferring that this dimension is able to capture both relevant author and ticker information as compared to author-day and ticker-day. In addition to these two studies, I also explore two topics: network structure of co-tweeted tickers and sentiment annotation via crowdsourcing. I do this in order to understand and uncover new features as well as new outcome indicators with the objective of improving predictive accuracy of the classification or saliency of the explanatory models. My dissertation work extends the frontier in understanding the relationship between financial UGC, specifically stock microblogging with relevant phenomena as well as predictive outcomes

    Detecting Events and Patterns in Large-Scale User Generated Textual Streams with Statistical Learning Methods

    Full text link
    A vast amount of textual web streams is influenced by events or phenomena emerging in the real world. The social web forms an excellent modern paradigm, where unstructured user generated content is published on a regular basis and in most occasions is freely distributed. The present Ph.D. Thesis deals with the problem of inferring information - or patterns in general - about events emerging in real life based on the contents of this textual stream. We show that it is possible to extract valuable information about social phenomena, such as an epidemic or even rainfall rates, by automatic analysis of the content published in Social Media, and in particular Twitter, using Statistical Machine Learning methods. An important intermediate task regards the formation and identification of features which characterise a target event; we select and use those textual features in several linear, non-linear and hybrid inference approaches achieving a significantly good performance in terms of the applied loss function. By examining further this rich data set, we also propose methods for extracting various types of mood signals revealing how affective norms - at least within the social web's population - evolve during the day and how significant events emerging in the real world are influencing them. Lastly, we present some preliminary findings showing several spatiotemporal characteristics of this textual information as well as the potential of using it to tackle tasks such as the prediction of voting intentions.Comment: PhD thesis, 238 pages, 9 chapters, 2 appendices, 58 figures, 49 table

    Active Learning With Complementary Sampling for Instructing Class-Biased Multi-Label Text Emotion Classification

    Get PDF
    High-quality corpora have been very scarce for the text emotion research. Existing corpora with multi-label emotion annotations have been either too small or too class-biased to properly support a supervised emotion learning. In this paper, we propose a novel active learning method for efficiently instructing the human annotations for a less-biased and high-quality multi-label emotion corpus. Specifically, to compensate annotation for the minority-class examples, we propose a complementary sampling strategy based on unlabeled resources by measuring a probabilistic distance between the expected emotion label distribution in a temporary corpus and an uniform distribution. Qualitative evaluations are also given to the unlabeled examples, in which we evaluate the model uncertainties for multi-label emotion predictions, their syntactic representativeness for the other unlabeled examples, and their diverseness to the labeled examples, for a high-quality sampling. Through active learning, a supervised emotion classifier gets progressively improved by learning from these new examples. Experiment results suggest that by following these sampling strategies we can develop a corpus of high-quality examples with significantly relieved bias for emotion classes. Compared to the learning procedures based on traditional active learning algorithms, our learning procedure indicates the most efficient learning curve and estimates the best multi-label emotion predictions

    Social media mental health analysis framework through applied computational approaches

    Get PDF
    Studies have shown that mental illness burdens not only public health and productivity but also established market economies throughout the world. However, mental disorders are difficult to diagnose and monitor through traditional methods, which heavily rely on interviews, questionnaires and surveys, resulting in high under-diagnosis and under-treatment rates. The increasing use of online social media, such as Facebook and Twitter, is now a common part of people’s everyday life. The continuous and real-time user-generated content often reflects feelings, opinions, social status and behaviours of individuals, creating an unprecedented wealth of person-specific information. With advances in data science, social media has already been increasingly employed in population health monitoring and more recently mental health applications to understand mental disorders as well as to develop online screening and intervention tools. However, existing research efforts are still in their infancy, primarily aimed at highlighting the potential of employing social media in mental health research. The majority of work is developed on ad hoc datasets and lacks a systematic research pipeline. [Continues.]</div

    Computational Sociolinguistics: A Survey

    Get PDF
    Language is a social phenomenon and variation is inherent to its social nature. Recently, there has been a surge of interest within the computational linguistics (CL) community in the social dimension of language. In this article we present a survey of the emerging field of "Computational Sociolinguistics" that reflects this increased interest. We aim to provide a comprehensive overview of CL research on sociolinguistic themes, featuring topics such as the relation between language and social identity, language use in social interaction and multilingual communication. Moreover, we demonstrate the potential for synergy between the research communities involved, by showing how the large-scale data-driven methods that are widely used in CL can complement existing sociolinguistic studies, and how sociolinguistics can inform and challenge the methods and assumptions employed in CL studies. We hope to convey the possible benefits of a closer collaboration between the two communities and conclude with a discussion of open challenges.Comment: To appear in Computational Linguistics. Accepted for publication: 18th February, 201

    Graph-Based Conversation Analysis in Social Media

    Get PDF
    Social media platforms offer their audience the possibility to reply to posts through comments and reactions. This allows social media users to express their ideas and opinions on shared content, thus opening virtual discussions. Most studies on social networks have focused only on user relationships or on the shared content, while ignoring the valuable information hidden in the digital conversations, in terms of structure of the discussion and relation between contents, which is essential for understanding online communication behavior. This work proposes a graph-based framework to assess the shape and structure of online conversations. The analysis was composed of two main stages: intent analysis and network generation. Users' intention was detected using keyword-based classification, followed by the implementation of machine learning-based classification algorithms for uncategorized comments. Afterwards, human-in-the-loop was involved in improving the keyword-based classification. To extract essential information on social media communication patterns among the users, we built conversation graphs using a directed multigraph network and we show our model at work in two real-life experiments. The first experiment used data from a real social media challenge and it was able to categorize 90% of comments with 98% accuracy. The second experiment focused on COVID vaccine-related discussions in online forums and investigated the stance and sentiment to understand how the comments are affected by their parent discussion. Finally, the most popular online discussion patterns were mined and interpreted. We see that the dynamics obtained from conversation graphs are similar to traditional communication activities

    Emotion AI-Driven Sentiment Analysis: A Survey, Future Research Directions, and Open Issues

    Get PDF
    The essential use of natural language processing is to analyze the sentiment of the author via the context. This sentiment analysis (SA) is said to determine the exactness of the underlying emotion in the context. It has been used in several subject areas such as stock market prediction, social media data on product reviews, psychology, judiciary, forecasting, disease prediction, agriculture, etc. Many researchers have worked on these areas and have produced significant results. These outcomes are beneficial in their respective fields, as they help to understand the overall summary in a short time. Furthermore, SA helps in understanding actual feedback shared across di erent platforms such as Amazon, TripAdvisor, etc. The main objective of this thorough survey was to analyze some of the essential studies done so far and to provide an overview of SA models in the area of emotion AI-driven SA. In addition, this paper o ers a review of ontology-based SA and lexicon-based SA along with machine learning models that are used to analyze the sentiment of the given context. Furthermore, this work also discusses di erent neural network-based approaches for analyzing sentiment. Finally, these di erent approaches were also analyzed with sample data collected from Twitter. Among the four approaches considered in each domain, the aspect-based ontology method produced 83% accuracy among the ontology-based SAs, the term frequency approach produced 85% accuracy in the lexicon-based analysis, and the support vector machine-based approach achieved 90% accuracy among the other machine learning-based approaches.Ministerio de Educación (MOE) en Taiwán N/
    corecore