8,055 research outputs found

    Instrumentation for measuring aircraft noise and sonic boom

    Get PDF
    Improved instrumentation suitable for measuring aircraft noise and sonic booms is described. An electric current proportional to the sound pressure level at a condenser microphone is produced and transmitted over a cable and amplified by a zero drive amplifier. The converter consists of a local oscillator, a dual-gate field-effect transistor mixer, and a voltage regulator/impedance translator. The improvements include automatic tuning compensation against changes in static microphone capacitance and means for providing a remote electrical calibration capability

    High-temperature microphone system

    Get PDF
    Pressure fluctuations in air or other gases in an area of elevated temperature are measured using a condenser microphone located in the area of elevated temperature and electronics for processing changes in the microphone capacitance located outside the area the area and connected to the microphone by means of high-temperature cable assembly. The microphone includes apparatus for decreasing the undesirable change in microphone sensitivity at high temperatures. The high temperature cable assembly operates as a half-wavelength transmission line in an AM carrier system and maintains a large temperature gradient between the two ends of the cable assembly. The processing electronics utilizes a voltage controlled oscillator for automatic tuning thereby increasing the sensitivity of the measuring apparatus

    Electrocardiogram (ECG/EKG) using FPGA

    Get PDF
    FPGAs (Field Programmable Gate Arrays) are finding wide acceptance in medical systems for their ability for rapid prototyping of a concept that requires hardware/software co-design, for performing custom processing in parallel at high data rates and be programmed in the field after manufacturing. Based on the market demand, the FPGA design can be changed and no new hardware needs to be purchased as was the case with ASICs (Application Specific Integrated Circuit) and CPLDs (Complex Programmable Logic Device). Medical companies can now move over to FPGAs saving cost and delivering highly-efficient upgradable systems. ECG (Electrocardiogram) is considered to be a must have feature for a medical diagnostic imaging system. This project attempts at implementing ECG heart-rate computation in an FPGA. This project gave me exposure to hardware engineering, learning about the low level chips like Atmel UC3A3256 micro-controller on an Atmel EVK1105 board which is used as a simulator for generating the ECG signal, the operational amplifiers for amplifying and level-shifting the ECG signal, the A/D converter chip for analog to digital conversion of the ECG signal, the internal workings of FPGA, how different hardware components communicate with each other on the system and finally some signal processing to calculate the heart rate value from the ECG signal

    ASDTIC control and standardized interface circuits applied to buck, parallel and buck-boost dc to dc power converters

    Get PDF
    Versatile standardized pulse modulation nondissipatively regulated control signal processing circuits were applied to three most commonly used dc to dc power converter configurations: (1) the series switching buck-regulator, (2) the pulse modulated parallel inverter, and (3) the buck-boost converter. The unique control concept and the commonality of control functions for all switching regulators have resulted in improved static and dynamic performance and control circuit standardization. New power-circuit technology was also applied to enhance reliability and to achieve optimum weight and efficiency

    Multifunction audio digitizer

    Get PDF
    An illustrative embodiment of the invention includes apparatus which simultaneously produces both direct delta modulation and pulse code modulation. An input signal, after amplification, is supplied to a window comparator which supplies a polarity control signal to gate the output of a clock to the appropriate input of a binary up-down counter. The control signals provide direct delta modulation while the up-down counter output provides pulse code modulation

    Systems and methods for determining radio frequency interference

    Get PDF
    The presence, frequency and amplitude of radio frequency interference superimposed on communication links originating from a terrestrial region and including a relay in a geostationary spacecraft are determined by pointing a narrow beam antenna on the satellite at the terrestrial region. The level of noise radiated from the region to the antenna is measured at a terrestrial station that is usually remote from the region. Calibrating radio signals having a plurality of predetermined EIRP's (Effective Isotropic Radiated Power) and frequencies in the spectrum are transmitted from the region through the spacecraft narrow beam antenna back to the station. At the station, the levels of the received calibrating signals are separately measured for each of the frequency bands and EIRP's

    Apparatus and method for determining the position of a radiant energy source

    Get PDF
    The position of a terrestrial RF source is determined from a geostationary, synchronous satellite by scanning the beam of a narrow beam width antenna in first and second orthogonal directions over a region including the source. The peak level of energy transduced by the antenna in each of the scanning directions is detected and correlated with the scanning position of the beam by feeding the output of a detector responsive to the transduced signal to an indicator of an X-Y recorder. The X and Y axes of the recorder are scanned in synchronism with the beam being respectively scanned in the first and second directions to form X and Y traces on which are indicated the detected peak position in each of the scanning directions. The source position is determined from an intersection of lines drawn parallel to the X and Y axes and including the detected peak position of each trace

    Preliminary candidate advanced avionics system for general aviation

    Get PDF
    An integrated avionics system design was carried out to the level which indicates subsystem function, and the methods of overall system integration. Sufficient detail was included to allow identification of possible system component technologies, and to perform reliability, modularity, maintainability, cost, and risk analysis upon the system design. Retrofit to older aircraft, availability of this system to the single engine two place aircraft, was considered

    Digital servo control of random sound test excitation

    Get PDF
    A digital servocontrol system for random noise excitation of a test object in a reverberant acoustic chamber employs a plurality of sensors spaced in the sound field to produce signals in separate channels which are decorrelated and averaged. The average signal is divided into a plurality of adjacent frequency bands cyclically sampled by a time division multiplex system, converted into digital form, and compared to a predetermined spectrum value stored in digital form. The results of the comparisons are used to control a time-shared up-down counter to develop gain control signals for the respective frequency bands in the spectrum of random sound energy picked up by the microphones
    • …
    corecore