Studio report: Linux audio for multi-speaker natural speech
technology

Charles FOX, Heidi CHRISTENSEN and Thomas HAIN
Speech and Hearing
Department of Computer Science
University of Sheffield , UK

charles.fox@sheffield.ac.uk

Abstract

The Natural Speech Technology (NST) project is the
UK’s flagship research programme for speech recogni-
tion research in natural environments. NST is a collab-
oration between Edinburgh, Cambridge and Sheffield
Universities; public sector institutions the BBC, NHS
and GCHQ); and companies including Nuance, EADS,
Cisco and Toshiba. In contrast to assumptions made
by most current commercial speech recognisers, nat-
ural environments include situations such as multi-
participant meetings, where participants may talk over
one another, move around the meeting room, make
non-speech vocalisations, and all in the presence of
noises from office equipment and external sources such
as traffic and people outside the room. To generate
data for such cases, we have set up a meeting room /
recording studio equipped to record 16 channels of au-
dio from real-life meetings, as well as a large computing
cluster for audio analysis. These systems run on free,
Linux-based software and this paper gives details of
their implementation as a case study for other users
considering Linux audio for similar large projects.

Keywords

Studio report, case study, speech recognition, diarisa-
tion, multichannel

1 Introduction

The speech recognition community has evolved
into a niche distinct from general computer au-
dio and Linux audio in particular. It has its own
large collection of tools, some of which have been
developed continually for over 20 years such as
the HTK Hidden Markov Model ToolKit [Young
et al., 2006]'. We believe there could be more
crosstalk between the speech and Linux audio
worlds, and to this end we present a report of

LCurrently owned by Microsoft, source available gratis
but not libre. Kaldi is a libre alternative currently under
development, (kaldi.sourceforge.net).

our experiences in setting up a new Linux-based
studio for dedicated natural speech research.

In contrast to assumptions made by current
commercial speech recognisers such as Dragon
Dictate, natural environments include situations
such as multi-participant meetings [Hain et al.,
2009], where participants may talk over one an-
other, move around the meeting room, make non-
sentence utterances, and all in the presence of
noises from office equipment and external sources
such as traffic and people outside the the room.
The UK Natural Speech Technology project aims
to explore these issues, and their applications to
scenarios as diverse as automated TV programme
subtitling; assistive technology for disabled and
elderly health service users; automated business
meeting transcription and retrieval, and home-
land security.

The use of open source software is practically a
prerequisite for exploratory research of this kind,
as it is never known in advance which parts of
existing systems will need to be opened up and
edited in the course of research. The speech
community generally works on offline statistical,
large data-set based research. For example cor-
pora of 1000 hours of audio are not uncommon
and require the use of large compute clusters to
process them. These clusters already run Linux
and HTK, so it is natural to extend the use of
Linux into the audio capture phase of research.
As speech research progresses from clean to nat-
ural speech, and from offline to real-time process-
ing, it is becoming more integrated with general
sound processing [Wolfel and McDonough, 2009],
for example developing tools to detect and clas-
sify sounds as precursors to recognition. The use
of Bayesian techniques in particular emphasises
the advantages of considering the sound process-

ing and recognition as tightly coupled problems,
and using tightly integrated computer systems.
For example, it may be useful for Linux cluster
machines running HTK in real-time to use high
level language models to generate Bayesian prior
beliefs for low-level sound processing occurring in
Linux audio.

This paper provides a studio report of our ini-
tial experiences setting up a Linux based studio
for NST research. Our studio is based on a typical
meeting room, where participants give presenta-
tions and hold discussions. We hope that it will
serve as a self-contained tutorial recipe for other
speech researchers who are new to the Linux au-
dio community (and have thus included detailed
explanations of relatively simple Linux audio con-
cepts). It also serves as an example of the audio
requirements of the natural speech research com-
munity; and as a case study of a successful Linux
audio deployment.

2 Research applications

The NST project aims to use a meeting room stu-
dio, networked home installations, and our anal-
ysis cluster to improve recognition rates in natu-
ral environments, with multiple, mobile speakers
and noise sources. We give here some examples
of algorithms relevant to natural speech, and their
requirements for Linux audio.

Beamforming and ICA are microphone-array
based techniques for separating sources of au-
dio signals, such as extracting individual speak-
ers from mixtures of multiple speakers and noise
sources. ICA [Roberts and Everson, 2001] typ-
ically makes weak assumptions about the data,
such as assuming that the sources are non Gaus-
sian in order to find a mixing matrix M which
minimises the Gaussian-ness over time ¢ of the la-
tent sources vector x¢, from the microphone array
time series vectors 1, in y = Mxy.

ICA can be performed with as few microphones
as there are sound sources, but gives improved
results as the number of microphones increases.
Beamforming [Trees, 2002] seeks a similar out-
put, but can include stronger physical assump-
tions - for example known microphone and source
locations. It then uses expected sound wave
propagation and interference patterns to infer the
source waves from the array data. Beamform-
ing is a high-precision activity, requiring sample-

synchronous accuracy between recorded channels,
and often using up to 64 channels of simultaneous
audio in microphone arrays (see for example the
NIST Mark-III arrays [Brayda et al., 2005]).

Reverberation removal has been performed in
various ways, using single and multi-channel data.
In multi-channel settings, sample-synchronous
audio is again used to find temporal correlations
which can be used to separate the original sound
from the echos. In the iPhone4 this is performed
with two microphones but performance may in-
crease with larger arrays [Watts, 2009).

Speaker tracking may use SLAM techniques
from robotics, coupled with acoustic observation
models, to infer positions of moving speakers in
a room (eg. [Fox et al., 2012], [Christensen and
Barker, 2010]). This can be used in conjunction
with beamforming to attempt retrieval of individ-
ual speaker channels from natural meeting envi-
ronments, and again relies on large microphone
arrays and sample-accurate recording.

Part of the NST project called ‘homeService’
aims to provide a natural language interface to
electrical and electronic devices, and digital ser-
vices in people’s homes. Users will mainly be dis-
abled people with conditions affecting their ability
to use more conventional means of access such as
keyboard, computer mouse, remote control and
power switches. The assistive technology (AT)
domain presents many challenges; of particular
consequence for NST research is the fact that
users in need of AT typically have physical dis-
abilities associated with motor control and such
conditions (e.g. cerebral palsy) will also often af-
fect the musculature surrounding the articulatory
system resulting in slurred and less clear speech;
known as dysarthric speech.

3 Meeting room studio setup

Our meeting room studio, shown in fig. 1, is
used to collect natural speech and training data
from real meetings. Is centred on a six-person
table, with additional chairs around the walls for
around a further 10 people. It has a whiteboard at
the head of the table, and a presentation projec-
tor. Typical meetings involve participants speak-
ing from their chairs but also getting up and walk-
ing around to present or to use the whiteboard. A
2x2.5m aluminium frame is suspended from the
ceiling above the table and used for mounting au-

Figure 1: Meeting room recording setup. The
boxes on the far wall are active-badge trackers.
The frame on the ceiling and the black cylinder
on the table each contain eight condenser micro-
phones. Participants wear headsets and active
badges.

dio equipment. Currently this consists of eight
AKG C417/11I vocal condenser microphones, ar-
ranged in an ellipse around the table perime-
ter. A further eight AKG C417/IIls are embed-
ded in a 100mm radius cylinder placed in the ta-
ble centre to act similarly to eight-channel multi-
directional tele-conferencing recorder. The table
can also include three 7-channel DevAudio Micro-
cones (www.dev-audio.com), which are commer-
cial products performing a similar function. The
Microcone is a 6-channel microphone array which
comes with propriety drivers and an API. A fur-
ther 7th audio channel contains a mix of the other
6 channels as well as voice activity detection and
sound source localisation information annotation.
Some noise reduction and speech enhancement ca-
pabilities are provided, although details of the ex-
act processing are not made public.

There are four Sennheiser ew100 wireless head-
sets which may be mounted on selected partici-
pants to record their speech directly. The stu-
dio will soon also include a Radvision Scopia
XT1000 videoconferencing system, comprised of
a further source-tracking steered microphone and

two 1.bm HD presentation screens. In the four
upper corners of the meeting room are mounted
Ubisense infrared active badge receivers, which
may be used to track the 3D locations of 15 mo-
bile badges worn by meeting participants. (The
university also has a 24-channel surround sound
diffusion system used in an MA Electroacoustic
music course [Mooney, 2005], which may be use-
ful for generating spatial audio test sets.)

Sixteen of the mics are currently routed
through two MOTU 8Pre interfaces, which take
eight XLR or line inputs each. Both currently
run at 48kHz but can operate up to 96kHz. The
first of these runs in A/D conversion mode and
sends all 8 digitised channels via a single ADAT
Lightpipe fibre optic cable to the second 8Pre.
The second 8Pre receives this input, along with its
own eight audio channels and outputs all 16 chan-
nels to the DAW by Firewire 400 (IEEE 1394, 400
bits/sec). (The two boxes must be configured to
have (a) the same speed, (b) 1x ADAT protocol
and (c) be in be in converter/interface mode re-
spectively.) Further firewire devices will be added
to the bus later to accommodate the rest of the
microphones in the room.

4 Linux audio system review

Fig. 2 outlines the Linux audio system and high-
lights the parts of the many possible Linux audio
stacks that are used for recording in the meet-
ing room studio. The Linux audio architecture
has grown quite complex in recent years, so is re-
viewed here in detail.

OSS (Open Sound System) was developed in
the early 1990s, focused initially on Creative
SoundBlaster cards then extending to others. It
was a locking system allowing only one program
at a time to access the sound card, and lacked
support for features such as surround sound. It
allowed low level access to the card, for exam-
ple by cataudio.wav > /dev/dsp0. ALSA (Ad-
vanced Linux Sound Architecture) was designed
to replace OSS, and is used on most current distri-
butions including our Ubuntu Studio 11.10. Por-
tAudio is an API with backends that abstract
both OSS and ALSA, as well as sound systems of
non-free platforms such as Win32 sound and Mac
CoreAudio, created to allow portable audio pro-
grams to be written. Several software mixer sys-
tems were built to resolve the locking problem for

Pro apps Consumer apps
eg. HTK tools eg.
Ardour VLC, Banshee, Firefox W

‘OSS(padsp)‘ ‘ ALSA H canberra‘GStreamer‘

firewire

Figure 2: Audio system for recording.

consumer-audio applications, including PulseAu-
dio, ESD and aRts. Some of these mixers grew to
take advantage of and to control hardware mix-
ing provided by sounds cards, and provided addi-
tional features such as network streaming. They
provided their own APIs as well as emulation lay-
ers for older (or mixer-agnostic) OSS and ALSA
applications. (To complicate matters further, re-
cent versions of OSS4 and ALSA have now be-
gun to provide their own software mixers, as well
as emulation layers for each other.) Many cur-
rent Linux distributions including Ubuntu 11.10
deploy PulseAudio running on ALSA, and also in-
clude an ALSA emulation layer on Pulse to allow
multiple ALSA and Pulse applications to run to-
gether through the mixer. Media libraries such
as GStreamer (which powers consumer-audio ap-
plications such as VLC, Skype and Flash) and
libcanberra (the GNOME desktop sound system)
have been developed closely with PulseAudio, in-
creasing its popularity. However, Pulse is not de-
signed for pro-audio work as such work requires
very low latencies and minimal drop-outs.

The JACK system is an alternative software
mixer for pro-audio work. Like the other soft
mixers, JACK runs on many lower level plat-

forms — usually ALSA on modern Linux machines.
The bulk of pro-audio applications such as Ar-
dour, zynAddSubFx and ¢Synth run on JACK.
JACK also provides network streaming, and em-
ulations/interfaces for other audio APIs including
ALSA, OSS and PulseAudio. (Pulse-on-JACK
is useful when using pro and consumer applica-
tions at the same time, such as when watching a
YouTube tutorial about how to use a pro appli-
cation. This re-configuration happens automati-
cally when JACK is launched on a modern Pulse
machine such as Ubuntu 11.10.)

5 Software setup

Our DAW is a relatively low-power Intel E8400
(Wolfdale) duo-core, 3GHz, 4Gb Ubuntu Stu-
dio 11.10-64-bit machine. Ubuntu studio was in-
stalled directly from CD — not added as pack-
ages to an existing Ubuntu installation — this
gives a more minimalist installation than the lat-
ter approach. In particular the window manager
defaults to the low-power XFCE, and resource-
intensive programs such as Gnome-Network-
Monitor (which periodically searches for new wifi
networks in the background) are not installed.
Ubuntu was chosen for compatibility and famil-
iarity with our other desktop machines. (Sev-
eral other audio distributions are available includ-
ing PlanetCCRMA (Fedora), 64Studio(Debian),
ArchProAudio(Arch)).

The standard ALSA and OSS provide inter-
faces to USB and PCI devices below, and to
JACK above. However for firewire devices such
as our Pre8, the ffado driver provides a direct
interface to JACK from the hardware, bypassing
ALSA or OSS. (Though the latest/development
version provides an ALSA output layer as well.)
Our DAW uses ffado with JACK2 (Ubuntu pack-
ages: jack2d, jack2d-firewire, libffado,
jackd, laditools. JACKI is the older but per-
haps more stable single-processor implementation
of the JACK API) and fig. 3 shows our JACK set-
tings, in the qjackctl tool. The firewire backend
driver (ffado) is selected rather than ALSA.

We found it useful to unlock memory for good
JACK performance.? As well as ticking the un-

2By default, JACK locks all memory of its clients into
RAM, ie. tells the kernel not to swap their pages to virtual
memory on disc, see mlock(2). Unlock memory relaxes this
slightly, allowing just the large GUI components of clients

lock memory option, the user must also be allowed
to use it, eg. adduser charles audio. Also the
file /etc/security/limits.d/audio.conf was
edited (followed by a reboot) to include

©@audio - rtprio 95

@audio - memlock unlimited

These settings can be checked by

ulimit -r -1.

The JACK sample rate was set to 48kHz,
matching the Pre8s. (This is a good sample rate
for speech research work as it is similar to CD
quality but allows simple sub-sampling to power-
of-two frequencies used in analysis.)

Fig. 4 shows the JACK connections (again in
qjackctl) for our meeting room studio setup.
The eight channels from the converter-mode Pre8
appear as ADAT optical inputs, and the eight
channels from the interface-mode Pre8 appear as
‘Analog’ inputs, all within the firewire device. Ar-
dour was used with two tracks of eight channel
audio to record as shown in fig. 5.

5.1 Results

Using this setup we were able to record simul-
taneously from six overhead microphones, eight
table-centre microphones, and two wireless head-
sets, as illustrated in fig. 5. We experienced
no JACK xruns in a ten minute, 48kHz, 32-bit,
16-channel recording, and the reported JACK la-
tency was 8ms. A one hour meeting recording
with the same settings experienced only 11 xruns.
Total CPU usage was below 25% at all times, with
top listing the following typical total process CPU
usages: jack 11%, ardour 8%, jack.real 3%,
pulseaudio 3%.

However, we were unable to play audio back
through the Pre8s, hearing distorted versions of
the recording. For our speech recognition this
is relatively unimportant, and can be worked
around by streaming the output over the network
with JACK and playing back on a second ma-
chine. The ffado driver’s support for the Pre8
hardware is currently listed as ‘experimental’ so
work is needed here to fix this problem.

The present two Pre8 system is limited to 16
audio channels, we plan to extend it with fur-
ther firewire devices to record from more audio
sources around the meeting room and from tele-

to perform swapping, leaving more RAM free for the audio
parts of clients.

Setup - JACK Audio Connection Kit + X

j I Save * Delete
jﬂams:‘(default} jDrivgr: firewire | v

}ettmg;‘ Options Display Misc |

Preset Name: ‘NSTrstudinrl—char\e;

Server
Server Path: ‘ Jusr/binfjackd

Parameters
Realtime Pricrity: | (default) || Interface: | (default) jﬂ
[No Memory Lock Frames/Period: [128 j Dither: None v
Unlock Memary Sample Rate: | 48000 j Audio: M

E :):;‘I:‘:de elasb LR -l Input Device: | (default) jj
) ;JI’(E 16hit Word Length: [16 j Output Device: | (default) jﬂ
[H/W Monitor Wait (usec): | 21333 j Input Channels: ’m—ﬂ
7 H/W Meter Channels: [(default) [7] - output Channels:[12 [1]
O Ignore HW Port Maximum: | 256 j Input Latency: Wﬂ
Verbose messages Timeout (msec): | 500 j Output Latency: Wﬂ
MIDI Driver: none v Start Delay (secs): lz—ﬂ

| [

Latency: 8 msec

Cancel OK

Figure 3: 16 channel recording JACK settings.

Connections - JACK Audio Connection Kit + - 0X

Audio | MIDI |

Readable Clients / Output Ports M Writable Clients / Input Ports M ‘
~ [@ ardour

& Audio ceiling/out 1 %, Audio ceiling/in 1
& Audio ceiling/out 2 R, Audio ceiling/in 2
Audio table/out 1 ', Audio ceiling/in 3
Audio table/out 2 %, Audio ceiling/in 4
auditionerfout 1 'Y, Audio ceiling/in §
auditioner/out 2 %, Audio ceiling/in 6
& clickjout 1 ®, Audio ceiling/in 7
& clickjout 2 &, Audio ceiling/in 8
masterfout 1 ', Audio tablefin 1
masterfout 2 ‘%, Audio tablefin 2
& TESTjout 1 ', Audio tablefin 3
& TEST/out 2 R, Audio tablefin 4

~ [firewire_pcm ®, Audio tablefin 5
A 0001f2000009287_cap_ADAT1_in R, Audio tablefin 6
%, Audio tablefin 7
'Y, Audio tablefin 8
R, masterfin 1
&, master/in 2
& TEST/in 1

= [firewire_pcm
< 0001f20000092f87_pbk_ADAT1_out

4 0001f2000009287_cap_ADAT2_in
4 0001f20000092f87_cap_ADAT3_in
A 0001f20000092f87_cap_ADAT4_in
A 0001f20000092f87_cap_ADATS_in
A 0001f20000092f87_cap_ADATE_in
4 0001f2000009287_cap_ADAT7_in
4 0001f2000009287_cap_ADATS_in

/4 0001f20000092f87_cap_Analogl in
/4 0001f2000009287_cap_Analog2_in
A 0001f2000009287_cap_Analog3_in
A 0001f2000009287_cap_Analogd_in
£ 0001f20000092f87_cap_Analog5_in
A 0001f20000092f87_cap_Analogé_in
/4 0001f2000009287_cap_Analog?_in
4 0001f2000009287_cap_Analog8_in
A 0001f2000009287_cap_Mix-L_in

A 0001f2000009287_cap_Mix-R_in

 0001f20000092f87_pbk_ADATZ_out
< 000120000092f87_pbk_ADAT3_out
< 000120000092f87_pbk_ADAT4_out
¢ 000120000092f87_pbk_ADATS_out
¢ 000120000092f87_pbk_ADAT6_out
¢ 000120000092187_pbk_ADAT7 out
 0001f20000092f87_pbk_ADATS_out
01f20000092f87_pbk_Main-L_out
01f20000092f87_pbk_Main-R_out
001f20000092f87_pbk_Phones-L_...

- 0001f20000092f87_pbk_Phones-R._...
B

» B PulseAudio JACK Sink

o Connect | 3¢ Disconnect

3¢ Disconnect All | € Expand All ‘ 5 Refresh

Figure 4: 16 channel recording JACK connec-
tions.

conferencing channels in future. We have not
yet needed to make further speed optimisations,
but we note that for future, more-channel sys-
tems, two speedups include disabling PulseAu-
dio (adding pulseaudio -kill and pulseaudio
-start to gjackct!l’s startup and shutdown option
is a simple way to do this); and installing the real-
time rt-linux kernel.

Figure 5: 16 channel meeting room recording in
Ardour, using two 8-channel tracks.

Pro apps Consumer apps
eg. HTK tools eg.
Ardour VLC, Banshee, Firefox W

‘OSS(padsp)‘ ‘ ALSA H canberra‘GSIreamer‘

Figure 6: Audio system for data analysis.

5.1.1 Audio analysis

Analysis of our audio data is performed on a com-
pute cluster of 20 Linux nodes with 96 proces-
sor cores in total, running the Oracle (formerly
Sun) Grid Engine, the HTK Hidden Markov
Model Tool Kit [Young et al., 2006] and the
Juicer recognition engine [Moore et al., 2006].
During analysis, audio playback on desktop ma-
chines is useful and is done with the setup of

fig. 6. For direct audio connections the HTK
tools make use the OSS sound system, which may
be emulated on PulseAudio on a modern ma-
chine, by installing the padsp tool (Ubuntu pack-
age pulseaudio-utils_0.9.10-1lubuntul_i386)
then prefixing all audio HTK commands with
padsp. Similarly, Juicer allows the use of an OOS
front, the implementation of a JACK plugin is in
progress.

The cluster may be used both for online and
offline processing. An example of online process-
ing can be found in the description of an online
transcription system for meetings [Garner et al.,
2009]. Such systems distinguish between far and
near-field audio sources and employ beamform-
ing and echo cancellation procedures [Hain et al.,
2009] for which either sample synchronicity or at
least minimal latency between channels is of ut-
most importance. For both offline and online pro-
cessing typically audio at 16kHz/16bit is required,
to be converted into so-called feature streams (for
example Perceptual Linear Predictive (PLP) fea-
tures [Hermansky, 1990]) of much lower bit rate.
Even higher sampling frequencies (up to 96kHz
are commonplace) are often required for cross-
correlation based sound source localisation algo-
rithms to provide sufficient time resolution in or-
der to detect changes in angles down to one de-
gree. In offline mode the recognition of audio typ-
ically operates at 10 times real-time (i.e. 1 hour
of audio in many channels takes 10 hours to pro-
cess). However, the grid framework allows the
latency of processing to drop to close to 1.5 times
real-time using massive parallelisation.

6 Future directions

The ultimate goal of NST is to obtain transcrip-
tions of what was said in natural environments.
Traditionally, the source separation and denoising
techniques of sec. 2 have been treated as a sepa-
rate preprocessing step, before the cleaned audio
is passed to a separate transcriber such as HTK.
However for challenging environments this is sub-
optimal, as it reports only a single estimate of the
denoised signal rather than Bayesian information
about its uncertainty. Future integrated systems
could fuse the predictions from transcription lan-
guage models with inference and reporting of low-
level audio data, for example by passing real-time
probabilistic messages between HTK’s transcrip-

tion inference (on a Linux computing cluster) and
low-level audio processing (on desktop or embed-
ded Linux close to the recording hardware.)

For training and testing speaker location track-
ing systems it is useful to build a database of
known speaker position sequences, which need to
be synchronised to the audio. Positions change at
the order of seconds so it is wasteful to use audio
channels to record them — however we note that
JACK is able to record MIDI information along-
side audio, and one possibility would be to encode
position from our Ubisense active badges as MIDI
messages, synchronous with the audio, and record
them together for example in Ardour3. It could
also be useful to — somehow — synchronise video
of meetings to JACK audio.

The homeService system has two major parts,
namely hardware components that are deployed
in people’s homes during trial (Android tablet,
Microcone, and Linux box responsible for audio
capture, network access, infrared and blue tooth
communication), as well as our Linux computing
cluster back at the university running the pro-
cesses with particularly high demands in terms of
processing power and memory usage. The main
audio capturing will take place on a Linux box
in the users’ home, and we plan to develop a
setup which will enable the Microcone and JACK
to work together and provide — if needed — live
streaming of audio over the network.

The main requirements of NST research for
Linux audio are support for sample-synchronous,
many (e.g. 128 or more) channel recording,
and communication with cluster computing and
speech tools such as HTK. As natural speech tech-
nology makes closer contact with signal process-
ing research, we expect to see more speech re-
searchers moving to Linux audio in the near fu-
ture, and we hope that this paper has provided
some guidance for those who wish to make this
move, as well as a guide for the Linux audio com-
munity about what technologies are important to
this field.

Acknowledgements

The research leading to these results was
supported by EPSRC Programme Grant
EP/1031022/1 (Natural Speech Technology).

References

L. Brayda, C. Bertotti, L Cristoforetti, M. ,
Omologo, and P. Svaizer. 2005. Modifications
on NIST MarkIII array to improve coherence
properties among input signals. In Proc. of
118th Audio Engineering Society Conv.

H. Christensen and J. Barker. 2010. Speaker
turn tracking with mobile microphones: com-

bining location and pitch information. In Proc.
of EUSIPCO.

C. Fox, M. Evans, M. Pearson, and T. Prescott.
2012. Tactile SLAM with a bilomimetic
whiskered robot. In Proc. ICRA.

P. N. Garner, J. Dines, T. Hain, A. el Hannani,
M. Karafiat, D. Korchagin, Mike L., V. Wan,
and L. Zhang. 2009. Real-Time ASR from
Meetings. In Interspeech’09, pages 2119-2122.

T. Hain, L. Burget, J. Dines, P. N. Garner,
A. el Hannani, M. Huijbregts, M. Karafiat,
M. Lincoln, and V. Wan. 2009. The AMIDA
2009 meeting transcription system. In Proc. In-
terspeech.

H. Hermansky. 1990. Perceptual linear predic-
tive analysis for speech. J. Acoustic Society of
America, pages 1738-1752.

J. Mooney. 2005. Sound Diffusion Systems for
the Live Performance of Electroacoustic Music.
Ph.D. thesis, University of Sheffield.

D. Moore, J. Dines, M. Magimai Doss, J. Vepa,
O. Cheng, and T. Hain. 2006. Juicer: A
weighted finite state transducer speech decoder.
In Machine Learning for Multimodal Interac-
tion, pages 285—-296. Springer-Verlag.

S. Roberts and R. Everson, editors. 2001. Inde-
pendent Components Analysis: Principles and
Practice. Cambridge.

H. L. Van Trees. 2002. Optimum array process-
ing. Wiley.

L. Watts. 2009. Reverberation removal. In
United States Patent Number 7,508,948.

M. Wolfel and J. McDonough. 2009. Distant
Speech Recognition. Wiley.

S. Young, G. Evermann, M. Gales, T. Hain,
D. Kershaw, XA Liu, G. Moore, J. Odell, D. Ol-
lason, D. Povey, et al. 2006. The HTK book.

